The Fibonacci dimension of a graph

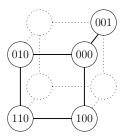
Sergio Cabello University of Ljubljana Slovenia

Joint work with David Eppstein and Sandi Klavžar

Sergio Cabello Fibonacci dimensio

Partial cubes

- The hypercube Q_d of dimension d as a graph:
 - $V(Q_d) = \{ \text{binary strings of length } d \}.$
 - Two vertices are adjacent if the strings differ in one position.
 - Distance between two vertices is Hamming distance of the strings.
 - each element of the string is a binary coordinate.
- Partial cubes: isometric subgraphs of hypercubes.



Isometric dimension

- ► The isometric dimension of a graph G, idim(G), is the smallest d such that G isometrically embeds into Q_d.
- ▶ idim(G) finite if and only if G is a partial cube.
- ► Attach binary strings to each vertex, so that the induced subgraph of Q_d and G have the same distances.
- $\operatorname{idim}(G)$ can be found in polynomial time via Θ -classes.
- There is one isometric embedding of G into $Q_{\text{idim}(G)}$, up to
 - reordering the string coordinates.
 - switching the roles of 1 and 0 in a coordinate.

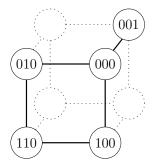
Lattice dimension

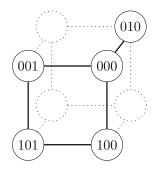
- The lattice dimension of a graph G, ldim(G), is the smallest d such that the graph embeds isometrically into Z^d with ℓ₁-metric.
- ► Attach Z-strings to each vertex, so that the induced subgraph of Z^d and G have the same distances.
- $\operatorname{ldim}(G)$ finite iff $\operatorname{idim}(G)$ finite.
- The lattice dimension can be determined in polynomial time (Eppstein, 2005).

Fibonacci cubes

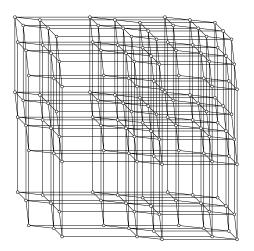
- Fibonacci string: binary string without two consecutive 1's.
 - 01010001 and 00100001 are Fibonacci strings.
 - 011000 and 001010110 are not Fibonacci strings.
- name comes from Zeckendorf's theorem.
- Fibonacci cube: Γ_d , $d \ge 1$: subgraph of Q_d induced by the Fibonacci strings of length d.
- appears in chemical graph theory: resonance of some certain hexagonal chains.
- used as network topology in parallel computation.
- "is G a Fibonacci cube?" is decidable in near-linear time.

Γ_3 in Q_3





The Fibonacci cube Γ_{10}



Fibonacci dimension

The Fibonacci dimension, fdim(G), is the smallest integer f such that G admits an isometric embedding into Γ_f .

Attach Fibonacci strings to each vertex, such that the induced subgraph of Γ_f and G have the same distances.

Relations to other dimensions

- $\operatorname{fdim}(G) < \infty$ iff $\operatorname{idim}(G) < \infty$ iff $\operatorname{Idim}(G) < \infty$.
- $\operatorname{idim}(G) \leq \operatorname{fdim}(G) \leq 2\operatorname{idim}(G) 1.$
 - $G \to \Gamma_f \to Q_f$.
 - $(v \in G) \mapsto (abcde \in Q_d) \mapsto (a0b0c0d0e \in \Gamma_{2d-1}).$
- $\operatorname{ldim}(G) \leq \lceil \operatorname{fdim}(G)/2 \rceil$.

• $\Gamma_f \to \mathbb{Z} \Box \Gamma_{f-2}$ via

$$u \mapsto \begin{cases} (0, u^*) & \text{if } u = 01u^*; \\ (1, u^*) & \text{if } u = 00u^*; \\ (2, u^*) & \text{if } u = 10u^*. \end{cases}$$

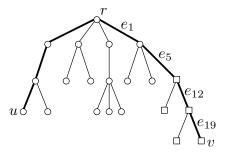
•
$$\operatorname{fdim}(G) \leq \operatorname{idim}(G) + \operatorname{Idim}(G) - 1.$$

Sergio Cabello

<u>►</u> . . .

Some Fibonacci dimensions

Proposition For any tree T, fdim(T) = |E(T)|.



$$\begin{split} v &\equiv 100010000010000010 \\ u &\equiv 000100000100000100 \\ \text{sibling of } v &\equiv 1000100000100000001 \end{split}$$

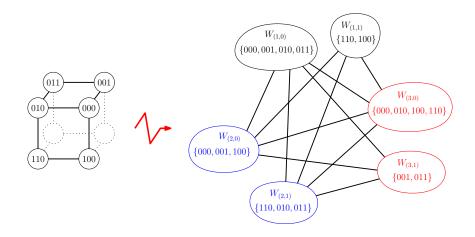
Sergio Cabello

Bad news

Theorem

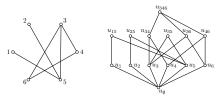
It is NP-complete to decide if $\operatorname{idim}(G) = \operatorname{fdim}(G)$.

- $d = \operatorname{idim}(G)$.
- isometrically embed G in Q_d : attach binary labels of length d.
- the labels are unique up to permutations of coordinates and switching 0 \leftrightarrow 1.
- Can we permute coordinates and switch 0 ↔ 1 such that all labels are Fibonacci strings?
- This can be formalized using an associated graph X(G)....



More results

- Closely related to Hamiltonian path with weights 1 and 2.
- NP-hard to approximate fdim within $(741/740) \varepsilon$.
- Approximable within 3/2.
- fdim(G) can be determined in $O(2^k k^2 + k^2 n)$, where k = idim(G).
- $(1 + \varepsilon)$ -approximation for simplex graphs.



 \Rightarrow approximating pairs of problems.

The end

- thanks
- thanks
- ...

