
Approximation Algorithms for Aligning
Points

Sergio Cabello

Marc van Kreveld

institute of information and computing sciences, utrecht university

technical report UU-CS-2003-003

www.cs.uu.nl

Approximation Algorithms for Aligning Points ∗

Sergio Cabello Marc van Kreveld

Institute of Information and Computing Sciences
Utrecht University
The Netherlands

{sergio,marc}@cs.uu.nl

Abstract

We study the problem of aligning as many points as possible horizontally, vertically, or
diagonally, when each point is allowed to be placed anywhere in its own, given region. Different
shapes of placement regions and different sets of alignment orientations are considered. More
generally, we assume that a graph is given on the points, and only the alignments of points
that are connected in the graph count. We show that for planar graphs the problem is NP-
hard, and we provide an inapproximability result for general graphs. For the case of trees and
planar graphs, we give approximation algorithms whose performance depends on the shape of
the given regions and the set of orientations. When the orientations are the ones given by the
axes and the regions are axis-parallel rectangles, we obtain a polynomial time approximation
scheme.

1 Introduction

Placement problems for geometric objects have appeared in various forms in computational geom-
etry. A particular position is sought that optimizes some measure and/or satisfies certain criteria.
Facility location is an obvious example, where a placement of a point is desired that minimizes,
for instance, the sum of distances to all other points in a given set. When the maximum distance
is minimized, the problem is the well-known smallest enclosing disk problem [6, 18]. In motion
planning, the positioning of a robot in the free configuration space requires the placement of a
polygon amidst other polygons without intersection [17].

There are also geometric placement problems where many objects must be placed. Some
examples are the placement of shapes for clothing manufacturing [12, 5] such that the amount of
fabric lost is minimized, label placement on maps [19], guard placement [16], and graph drawing [7].
Some of these problems are related to packing. Often, placement problems for multiple objects are
computationally demanding, because the problems have many degrees of freedom in the solution
space. Especially when some measure must be optimized, such problems are generally NP-hard,
and therefore polynomial-time algorithms are not known to exist.

This paper studies another placement problem for multiple objects, motivated from cartogra-
phy. In the design of schematic networks, like subway maps, a strongly simplified depiction of a
transportation system should be computed. The connection between two major locations or junc-
tions is shown in a stylized manner where the exact geometry of the connection is unimportant.
Figure 1, left, shows an example.

Instead of faithful geometry, a connection is usually shown using only a small number of
segments which all have one of four orientations: horizontal, vertical, or one of the two diagonals.
The automated construction of schematic maps has been studied in several papers [1, 3, 4, 8, 15].
Some of the proposed methods leave the positions of the junctions untouched and concentrate
∗Supported by the Dr.ir. Cornelis Lely Stichting.

1

Figure 1: Left: Detail of the underground map of London. Right: Voronoi diagram of points and
scaled Voronoi cells.

on the schematization of the connections only. Other suggested methods consist of iterative
approaches where the connections should converge to the major orientations, while displacing the
junctions. Methods of the latter type don’t bound the maximum displacement, and convergence
is not guaranteed.

This paper presents a combinatorial method to displace the important locations or junctions
of a schematic network. We abstract the problem as follows: Let a set P of n points in the plane
be given, and for each point pi ∈ P some region Si around it. Furthermore, a graph is given
of which the nodes correspond one-to-one with the points of P (and the regions). Find for each
point pi a position in its region such that the number of alignments with other points of P is
maximized. Here alignment is for a given, constant number of orientations, and alignment only
counts (is optimized) for two points whose nodes are connected in the graph.

The motivation for abstracting the alignment problem for schematic networks this way is as
follows. The precise positions of the junctions in the schematic network is not important, but
the positions must be approximately preserved. Hence the introduction of a region around each
point. Alignment on schematic networks usually implies horizontal or vertical alignment, or also
diagonal (45 or 135 degrees) alignment. This is abstracted to alignment with respect to a constant
number of given orientations. Of course, alignment is important only for two points that have a
connection. This is modelled by the graph, which generally is a planar or almost planar graph.

For the type of regions around each point, there are various natural choices. A fixed, maximum
allowed displacement gives rise to a fixed radius disk around each point. Because the preservation
of the approximate East-West positioning and North-South positioning is more important than for
any other direction, we could instead choose squares or rectangles. Since the relative positioning
to points in the neighborhood is important, one could also choose to allow each point to be placed
anywhere in its Voronoi cell, or in a scaled-down copy of it (Figure 1, right). This allows points
further away from other points to be displaced more than points in a cluster, a behavior that is
desirable. Hence, in our alignment problems we will consider circular, rectangular, and convex
polygonal regions in the problem statement. We do not deal with the actual choice of the regions,
or which regions are preferable, but we assume that the regions are already given.

An interesting aspect of the problem is that it contains both geometry and graph aspects.
We will combine ideas from both fields in this paper. In next section we formalize the problem
and show that if we are able to approximate the optimal solution when the graph is a tree, then
we also obtain an approximation for planar graphs. In Section 3 we show that a rather simple
version of the problem where we only care about vertical alignment is NP-hard. We also give an
inapproximability result for general graphs provided that P6=NP.

In Sections 4, 5, and 6, we give approximation algorithms for different cases of the problem.

2

orientations graph, region approximation ratio time reference

1
tree 1 O(n2) Theorem 4

planar graph
1
3 O(n2) Corollary 3

k−1
k O(k(2n)3k+1) Theorem 7

tree, convex k
k+1 O(k9kn2) Theorem 3

planar graph, convex k
3(k+1) O(k9kn2) Corollary 2

tree, rectangles 1 O(n3) Theorem 5
1 planar graph, 1

3 O(n3) Corollary 5
rectangles k−1

k O(k(2n)6k+1) Theorem 8
planar graph, 1

3 O(n2) Corollary 4
disjoint rectangles k−1

k O(k(2n)3k+1) Corollary 9

h > 2

1
3h O(n2) Corollary 6

planar graph, 2k
3h(k+1) O(k9kn2) Corollary 7

convex k
3(k+1) nO(2k) Theorem 6
k

h(k+1) O(k(2n)3k+1) Corollary 8

Table 1: Approximation algorithms in this paper.

Both the approximation factors and the time bounds depend on the properties of the regions and
the set of orientations; the results are summarized in Table 1. More specifically, in Section 4 we
give a polynomial time approximation scheme (PTAS) when the graph is a tree. In Section 5 we
use the same approach to get several approximation algorithms for planar graphs. For the case of
rectangular regions and the horizontal and vertical orientations only, we give a polynomial time
approximation scheme as well. This is based on the results from Baker [2] and is explained in
Section 6. We finish with the conclusions and open problems.

2 Preliminaries

2.1 Formulation of the problem

In this section we formalize the problem of alignment. Recall that a graph G = (S, E) consists of
a set of nodes S and a set of edges E ⊂

(S
2

)
. In particular, we consider graphs where each node

is a convex region. Given a fixed set of orientations O, we define a function χO that assigns to
pairs of regions the value 1 if there is a line with orientation in O that intersects both regions, and
0 otherwise. In particular, for two points p, q, we have χO(p, q) := χO({p}, {q}) = 1 if the line
through p and q has its orientation in O, and 0 otherwise. For the application to cartography, the
orientations will typically be axis-parallel (|O| = 2) or also including diagonal lines (with slope 1
or −1, so |O| = 4).

The problem can be stated as follows: given a set of n convex regions, S = {S0, . . . , Sn−1}, a
graph G = (S, E) on those regions, and a set of orientations O, place n points p0, . . . , pn−1 with
pi ∈ Si to maximize the function ∑

{Si,Sj}∈E
χO(pi, pj).

We denote the maximum value by MO(G), or simply M(G), as we consider the given orientations
O to be fixed. A 1

r -approximation of MO(G), where r ≥ 1, is a collection of n points p0, . . . , pn−1

with pi ∈ Si such that ∑
{Si,Sj}∈E

χO(pi, pj) ≥
1
r
MO(G)

3

S S

LO(S) LO(S)

Figure 2: Left: LO(S) for a region S when O is axis-parallel. Right: LO(S) when O is axis-parallel
and diagonal

For our application to cartography, we usually assume G to be a planar graph. Nevertheless,
we also will consider in some extension non-planar graphs. Typical regions Si that we consider are
scaled Voronoi cells, rectangles, and circles. However, it turns out that we only need to distinguish
the case of axis-parallel rectangles and any other convex region. Regions can overlap or not, which
leads to slightly different results. When the regions overlap, the placement of two points can
coincide, and in this case we also assume that they are aligned.

We remark that possibly, the computed placement does not give a planar straight-line embed-
ding. In fact we are not assuming that an embedding is given initially. If this would be the case,
the new embedding may be non-equivalent to the original one.

For a region S, we define LO(S) to be the set of lines tangent to S that have orientation in O
(see Figure 2). In the algorithm to be described, we will subdivide region S into cells C1, . . . , Ct.
We will also use the notation LO(Cj) for the lines with orientation in O that are tangent to the
cell Cj . For a set L of lines, we will use A(L) for the arrangement in the plane induced by L (see
[6] for the concept).

2.2 Decomposing the original graph

It appears to be difficult to develop a general technique that gives a good approximation algorithm
for any graph G, any shape of region, and any set of alignment orientations. But if G is a tree, we
will present a general approach in Section 4 that gives several different polynomial time approxi-
mation results, depending on the shape of the regions and the number of alignment orientations.
Furthermore, it is known that a planar graph G can be decomposed into three trees (or forests),
such that every edge of G appears in exactly one tree (or forest) [10]. Such partition can be found
in O(n logn) time, and is the main ingredient for the following result.

Lemma 1 Given r ≥ 1, if for any tree T we can compute a 1
r -approximation of MO(T) in

O(T (n)) time, then we can compute a 1
3r -approximation of MO(G) for any planar graph G in

O(T (n) + n logn) time.

Proof: Given a planar graph G, we decompose it into three edge disjoint forests F1,F2,F3.
Let Ai be a 1

r -approximation of MO(Fi). The value A := max{A1, A2, A3} can be computed in
O(n logn+ 3T (n) + 1) = O(n logn+T (n)) time, and it is a 1

3r -approximation of MO(G). Indeed,
consider the placement p0, . . . , pn−1 that achieves MO(G). Then

MO(G) =
∑

{Si,Sj}∈E
χO(pi, pj) =

3∑
k=1

(∑
{Si,Sj}∈Fk

χO(pi, pj)
)
≤

3∑
k=1

MO(Fk),

4

and because Ai is a 1
r -approximation of MO(Fi) we get

MO(G) ≤
3∑
k=1

MO(Fk) ≤
3∑

k=1

rAi ≤ 3rA.

�

So, basically, when we approximate the original problem for the special case of trees we also
obtain an approximation for a planar graph. The same approach also works for general graphs.
In [9] it is shown how to get an edge-disjoint partition of a graph in O(kn

3
2
√
n+ k log n) time,

where k is the number of forests needed. However, since k can be Ω(n), the approximation ratio
for a general graph would be O(1

n) times the one for trees, which is not really interesting.

3 Hardness of the problem

We show the hardness of a rather simple version of the aligning problem: the regions are horizontal
segments and we want to maximize the number of vertical alignments (so |O| = 1). The reduction
is from E3-SAT (Exact3-SATifiability), and implies an inapproximability result for non-planar
graphs. An E3-SAT instance is a formula of t Boolean variables x1, . . . , xt given by m conjunctive
clauses C1, . . . , Cm, where each clause contains exactly 3 literals (a variable or its negation). MAX-
E3-SAT is the associated optimization problem: given an E3-SAT instance, find an assignment to
the variables that maximizes the number of satisfied clauses.

Theorem 1 Let O be the vertical orientation, let S = {S0, . . . Sn−1} be a set of horizontal seg-
ments and let G = (S, E) be a graph. For any ε > 0, it is NP-hard to place points p0, . . . , pn−1

with pi ∈ Si that yield a (15
16 + ε)-approximation of MO(G)

Proof: Given a E3-SAT instance φ with t variables x1, . . . , xt and m clauses C1, . . . , Cm, we
construct an aligning problem Pφ as follows (see Figure 3):

1. take S := ∅, E := ∅;

2. for each Boolean variable xi, add the horizontal interval Ii := [i− 1
3 , i+

1
3] to S;

3. for each clause Cj , add the horizontal interval Jj := [2
3 , t+ 1

3] to S;

4. for each occurrence of xi in Cj , add the horizontal interval Ii,j := [i− 1
3 , i−

1
3] = {i− 1

3} to
S, and the edges {Jj , Ii} and {Jj , Ii,j} to E;

5. for each occurrence of the negation of xi in Cj , add the horizontal interval Ii,j := [i+ 1
3 , i+

1
3] = {i+ 1

3} to S and the edges {Jj , Ii} and {Jj , Ii,j} to E.

When considering a placement in this aligning problem Pφ, we can assume that all points
have the x-coordinate in the set C = {1 − 1

3 , 1 + 1
3 , . . . , t −

1
3 , t + 1

3}. If a point has a different
x-coordinate, we displace it to the largest x-coordinate value in C that is smaller than the actual
value. By doing this, we always keep or increase the number of alignments: two points that were
vertically aligned keep being vertically aligned because either they were not displaced or they both
have been displaced to the same x-coordinate. With this assumption, we have a bijection between
the Boolean assignments of the variables x1, . . . , xt and the placements of the points p1, . . . , pt
with pi ∈ Ii: xi is true if and only if pi ∈ Ii is placed at i − 1

3 , and false if and only if pi ∈ Ii is
placed at i+ 1

3 .
Consider an assignment of the Boolean variables x1, . . . , xt and the corresponding placement

of points in the regions I1, . . . , It. The key observation is that a clause Cj is satisfied in the
assignment if and only if we can place a point in the region Jj that provides two alignments.
When Cj is not satisfied, the placement of a point in the region Jj provides exactly one alignment.
Therefore, we can satisfy s clauses in φ if and only if we can align m + s pairs of points in the

5

ii− 1
3 i+ 1

3

.
I1 . . .

Ii Ik It

12
3

4
3

t

Jj ≡ x1 ∨ xi ∨ ¬xk

k + 1
3k

I1,j Ii,j
Ik,j

Jj′ ≡ xt ∨ ¬xi ∨ xk

It,j′Ik,j′Ii,j′

t+ 1
3

Figure 3: Reduction from E3-SAT to an aligning problem. The variables x1, . . . , xt are represented
by the segments I1, . . . , It, and each clause Cj is represented by the segment Jj plus three segments
Ii,j that depend on its literals.

corresponding problem Pφ. In particular, for a satisfiable instance φ, the optimum number of
alignments is 2m.

If we have a polynomial time (15
16 + ε)-approximation algorithm for the aligning problem, and

we use it for Pφ, where φ is a satisfiable E3-SAT instance, we would get at least

(
15
16

+ ε)2m =
30m
16

+ 2εm = m+ (
7
8

+ 2ε)m

alignments. But then we would have a polynomial time (7
8 + 2ε)-approximation algorithm for

MAX-E3-SAT on satisfiable instances, which is NP-hard by Theorem 6.5 of [11]. �

Corollary 1 If the graph G is planar, it is NP-hard to compute MO(G).

Proof: Consider a planar 3-SAT instance φ (see [14] for the definition) and apply the reduction
used in the proof of the previous theorem to get an aligning problem Pφ. We claim that the graph
Gφ of the problem Pφ is planar. Observe that the nodes of the type Ii,j have degree one, and
therefore we can remove them without affecting the planarity or non-planarity of the graph. The
remaining graph is

({I1, . . . , It, J1, . . . , Jm}, {{Ii, Jj}|xi appears in Cj}),

and is isomorphic to

({x1, . . . , xt, C1, . . . , Cm}, {{xi, Cj}|xi appears in Cj}),

which has to be planar by definition of planar 3-SAT instances.
As discussed in the previous proof, MO(Gφ) = 2m if and only if φ is satisfiable. Therefore,

if for any planar graph we can compute M(G), we can decide the satisfiability of planar 3-SAT
instances, which is NP-hard [14]. �

It is natural to wonder if we can construct aligning problems where it is NP-complete to decide
if all edges can be aligned or not. We can show that the answer is negative if we restrict ourselves
to only one orientation.

6

Theorem 2 Let O be the vertical orientation, let S = {S0, . . . Sn−1} be a set convex regions and
let G = (S, E) be a connected graph. Then, MO(G) = |E| if and only if there is a vertical line
that intersects all regions.

Proof: We can assume that the regions are horizontal segments, otherwise, we project each regions
onto a horizontal line and we get an equivalent problem.

If all the intervals in G are intersected by a vertical line l, then we can place the point pi ∈ Si
at l ∩ Si. It is clear that we get MO(G) = |E| because all points are vertically aligned.

For the other implication, consider a placement p0, . . . , pn−1, with pi ∈ Si, that achieves
MO(G) = |E| alignments. We claim that the vertical line through p0 goes also through all pi. To
see this, fix any Si, and assume without loss of generality that S0, S1, . . . , Si is a path in G from
S0 to Si (it always exists because G is connected). Then, point p0 has to be vertically aligned with
point p1, and p1 has to be vertically aligned with p2, and so on until pi. Because being vertically
aligned is a transitive relation, p0 has to be vertically aligned with pi, and both are contained in
the same vertical line. �

4 The basic approach for trees

We explain the algorithm for alignment for the specific case of convex regions and two aligning
orientations. In next section we will analyze what results are obtained when we apply the same
technique to other versions of the alignment problem, with different region shapes and different
alignment orientations.

Let S = {S0, . . . , Sn−1} be a set of n convex regions, and let T = (S, E) be a tree. We choose
any node, S0, to be the root of T . Let bi be the complexity of the boundary of region Si. If for
an arbitrary node Si, we remove from T the edge connecting Si with its parent node, we get two
subtrees. We will use Ti to denote the subtree containing the node Si. We assume that nodes
S1, . . . , Sd are the neighbors of node S0, so d is the degree of S0. In particular, when we remove
S0 from T , we get the subtrees T1, . . . , Td (see Figure 4, left). We use T (pi) to denote the graph
T after replacing the node Si by pi, that is, the point pi is the placement chosen for the region
Si (see Figure 4, right). Fixing a point p0 in the region S0 makes the subproblems that appear in
the subtrees T1, . . . , Td independent, and therefore we get the following recurrence:

M(T (p0)) =
d∑
i=1

max
pi∈Si

{χO(p0, pi) +M(Ti(pi))}.

The overall idea is to subdivide (or partition) region S0 into cells such that any placement
within a cell will give exactly the same solution. This will be done in a recursive way: to construct
the subdivision in S0 we will use subdivisions of S1, . . . , Sd with that same property, but only for
the corresponding subtree: each placement in a cell of Si gives the same number of alignments in
Ti.

Definition 1 A convex cell C ⊆ Si is T -stable if and only if

M(T (pi)) = M(T (p′i)) ∀pi, p′i ∈ C.

We use M(T (C)) to denote this invariant value.

It is clear that if Si is a leaf of T , then Si already is a Ti-stable cell. This gives the basis for a
recursive formulation on how to make the subdivision of S0. Let C1

i , . . . , C
ti
i be a subdivision of

Si into Ti-stable cells. Let L0 be the set of all lines with orientation in O that are tangent to some
cell Cji , where i = 1 . . . d and j = 1 . . . ti (see the example in Figure 5). In other words, we have

L0 =
d⋃
i=1

ti⋃
j=1

LO(Cji).

7

Ti
Si

S2

S0

T2

T1

T3

S1

S3

S1

S3

S2

p0

T (p0)

Figure 4: Left: Neighbors of S0 and the corresponding subtrees. Right: When we substitute S0

by {p0} we get T (p0).

We can subdivide S0 using all lines in L0 to make an arrangement A(L0) inside S0.

Lemma 2 Any cell in A(L0) ∩ S0 is T -stable.

Proof: Consider any cell C in A(L0) ∩ S0, and two points p0, p
′
0 ∈ C. We want to show that

M(T (p0)) = M(T (p′0)). Let the points p1, . . . , pd with pi ∈ Si be placed to attain the value
M(T (p0)), that is,

M(T (p0)) =
d∑
i=1

{χO(p0, pi) +M(Ti(pi))}.

Let Cjii ⊂ Si be the Ti-stable cell in which pi lies. If we have points p′1, . . . , p
′
d with p′i ∈ C

ji
i such

that χO(p0, pi) ≤ χO(p′0, p′i), then

M(T (p0)) =
d∑
i=1

{χO(p0, pi) +M(Ti(pi))} ≤
d∑
i=1

{χO(p′0, p
′
i) +M(Ti(pi))}

and because pi and p′i are in the same Ti-stable cell Cjii

M(T (p0)) ≤
d∑
i=1

{χO(p′0, p
′
i) +M(Ti(pi))} =

d∑
i=1

{χO(p′0, p
′
i) +M(Ti(p′i))} ≤M(T (p′0)).

But by symmetry we also have M(T (p′0)) ≤M(T (p0)) and therefore M(T (p0)) = M(T (p′0)).
The points p′1, . . . , p′d that we need can be found as follows. If χO(p0, pi) = 0, take p′i := pi,

and the properties hold. If χO(p0, pi) = 1, let o ∈ O be the orientation of the line p0pi, and let li
be the line through p′0 with orientation o. Because p0 and p′0 are in the same cell C of A(L0)∩S0,
the line li lies between the two tangents to Cjii with orientation o. Therefore, the intersection
Cjii ∩ li is nonempty, and any p′i ∈ C

ji
i ∩ li has the desired properties. �

When we have subdivided S0 into T -stable cells C1
0 , . . . C

t0
0 , we can compute the maximum

value M(T) = maxj∈{1,...,t0}{M(T (Cj0))}. Thus, we need to be able to compute, for a T -stable
cell C, the actual number of alignments M(T (C)): we place an arbitrary point p0 ∈ C and then
we have

M(T (C)) = M(T (p0)) =
d∑
i=1

max
j∈{1...ti}

{χO(p0, C
j
i)) +M(Ti(Cji))}.

There are two important issues to address: how many cells does the subdivision of S0 have
if we recursively use Lemma 2, and how much time does it take to compute the value M(T (C))

8

S0S0

S2

S3

S1

Cj3

Cj2

Figure 5: In this example S1, S2, S3 are adjacent to S0 in T . The tangents to the cells Cji induce
a subdivision in S0.

Si

Figure 6: Analysis of the different tangents that can be produced. The vertex represented by a
square is internal to Si, and doesn’t produce more tangent lines than we had. The other vertices
come from an intersection of a line in Li with the boundary of Si, and it contributes to L0 with
at most one new line. Furthermore, the region has 2|O| = 4 tangents that are new lines.

for each cell C of the subdivision. We will bound the time spent at node S0 assuming we have
already processed its children S1, . . . , Sd.

Lemma 3 If the tree T has height k, then we can subdivide S0 into O(9kn2) T -stable cells in
O(9kn2 + b0) time, where b0 is the complexity of S0.

Proof: We compute the set of lines L0 that has been used in the previous lemma, and then we
compute A(L0) ∩ S0. We start by bounding the number of lines in L0. Let Li be the set of lines
that are used in the recursive process to subdivide the region Si into Ti-stable cells. Any line in
L0 is tangent to some vertex of a cell Cji , where i ∈ {1, . . . , d}. Three cases arise (see Figure 6):

• The vertex is interior to Si, that is, it was determined by the intersection of two of the lines
in Li. Because we only have two orientations, those tangents are already present in Li.

• The vertex is on the intersection of the boundary of Si and a line in Li. The region Si is
convex, so any line in Li intersects the boundary at most twice. Therefore each line can
produce at most two new lines in L0.

• The vertex is on the boundary, but it does not lie on any line of Li. In this case each region
Si can produce at most 2|O| = 4 new lines.

9

Maximum values
for vertical strips

Maximum values
for horizontal
strips

S0

.

Tj′

Ti
Ti′ Tj

Tl Tr

Si Si′ Sj′Sj

Figure 7: The proof of Lemma 4. Left: If S0 only has one child, we store in each strip of S1 the
maximum values. Right: If S0 has more than one child we use divide and conquer.

Therefore, we have the recursive relation |L0| ≤
∑d
i=1(3|Li| + 4), and we will show that |L0| ≤

3k+1(n − 1) = O(3kn) by induction on the height k of the tree. Indeed, if the tree has height 0,
then it consists of only one node and it is trivially true because no tangent line has been used.
For the general case, observe that the set Li of lines has been constructed recursively from the
tree Ti, which is rooted at node Si and has height k − 1. Therefore, if |Ti| denotes the number of
nodes in Ti, we have

|L0| ≤
d∑
i=1

(3|Li|+ 4) ≤ 4d+ 3
d∑
i=1

3k(|Ti| − 1) = 4d+ 3k+1
d∑
i=1

(|Ti| − 1))

and because
∑d
i=1 |Ti| = n− 1 and k ≥ 1 we get

|L0| ≤ 4d+ 3k+1(n− d− 1) = 3k+1(n− 1) + d(4− 3k+1) ≤ 3k+1(n− 1).

This finishes the inductive proof that shows |L0| = O(3kn).
To construct L0, we need to find, for each child Si of S0, the intersections of Li with the

boundary of Si. But this has been done already when A(Li) ∩ Si was computed, and therefore
takes time linear in the number of lines generated. Once we have L0, we compute A(L0) and walk
through the boundary of S0 to compute A(L0)∩ S0, the portion of the arrangement A(L0) inside
S0. We can bound the time spent in this part by O(b0) (the complexity of the boundary of S0)
plus the complexity of the arrangement, which is O(b0 + (3kn)2) = O(9kn2 + b0) in total. �

Once we have computed all T -stable cells C1
0 , . . . , C

t0
0 , we can compute the values M(T (Cj0)).

Assuming that each neighbor Si of S0 has been subdivided into C1
i , . . . , C

ti
i Ti-stable cells, and

that the corresponding values M(Ti(C1
i)), . . . ,M(Ti(Ctii)) have been computed, we will show how

to compute the values of the cells in the subdivision of S0. Observe that if we would compute for
each cell Cj0 the value M(T (Cj0)) by examining the children, then we would spend Ω(d) time per
cell, and so it would take Ω(9kn2d) time. Because d can be Ω(n), this gives Ω(9kn3) time in the
worst case. We can do better than this using a divide and conquer approach on the children of
S0.

Lemma 4 We can compute the values M(T (C1
0)), . . . ,M(T (Ct00)) in O(9kn2 + db0) time.

Proof: Let T (n, d) be the time needed when T has n nodes and S0 has d children in T . There
are two cases depending on the value of d:

10

• If d = 1, then S0 has only one child, S1. Let C1
1 , . . . C

t1
1 be the subdivision on S1 into

T1-stable cells. Then, for every strip of the subdivision of S1 with orientation in O, we
compute the maximum value M(T (Cj1)) over all cells Cj1 in that strip and store it in one of
two arrays, one for each orientation (see Figure 7, left). We also store the maximum value
over all cells M1 := max{M(C1

1), . . . ,M(Cti1)}. This can be done in O(9k−1n2) time.

We already had A(L0)∩S0, and now, for each cell Cj0 ∈ A(L0)∩S0, we take a point p0 ∈ Cj0 :

M(T (Cj0)) = M(T (p0)) = max
j∈{1...t1}

{χO(p0, C
j
1)) +M(T1(C

j
1))} =

= max
o∈O

{
M1, 1 + max

Cj1 , χ{o}(p0,C
j
1)=1
{M(T1(C

j
1))}

}
.

But the value maxCj1 , χ{o}(p0,C
j
1)=1{M(T1(C

j
1))} corresponds to an entry in the array corre-

sponding to the orientation o, so it takes constant time to compute M(T (Cj0)). Because
A(L0) ∩ S0 has O(9kn2) cells, we conclude that T (n, 1) = O(9kn2).

• If d > 1, then S0 has more than one child. In this case, we split its children into two
sets Sl and Sr := {S1, . . . , Sd} \ Sl, and consider the subtrees Tl and Tr, where Tl is the
connected component of T \ Sr that contains S0 and Tr is the connected component of
T \ Sl that contains S0 (see Figure 7, right). Let Ll ⊂ L0 be the set of lines that have been
produced by nodes Si ∈ Sl in Lemma 3, and let Lr ⊂ L0 be the set of lines that have been
produced by nodes Sj ∈ Sr in Lemma 3, thus we have L0 = Ll ∪ Lr. By Lemma 2, any cell
Cl ∈ A(Ll) ∩ S0 is Tl-stable and any cell Cr ∈ A(Lr) ∩ S0 is Tr-stable. We can compute
A(Ll)∩S0 and A(Lr)∩S0 in O(9kn2 +b0) time, the values M(Tl(Cl)) for all Cl ∈ A(Ll)∩S0

in T (|Tl|, |Sl|) time, and the values M(Tr(Cr)) for all Cr ∈ A(Lr) ∩ S0 in T (|Tr|, |Sr|) time.
Then, because any cell Cj0 ∈ A(L0) ∩ S0 is of the form Cl ∩ Cr, with Cl ∈ A(Ll) ∩ S0

and Cr ∈ A(Lr) ∩ S0, we have M(T (Cj0)) = M(Tl(Cl)) +M(Tr(Cr)), and we can compute
M(T (Cj0)) in constant time per cell. We conclude that it takes O(9kn2) time for all cells in
A(L0) ∩ S0.

The two cases give the recurrence

T (n, d) = O(9kn2 + b0) + T (|Tl|, |Sl|) + T (|Tr|, |Sr|), T (n, 1) = O(9kn2),

where we still have freedom to choose the sets Sl and Sr. The choice is made as follows. Assume
without loss of generality that the subtree T1 is the biggest among the subtrees T1, . . . , Td, that
is, |T1| ≥ |Ti| for any 2 ≤ i ≤ d. We distinguish two cases depending on the size of T1:

• If |T1| ≥ 3n
4 , then Sl := {S1} and Sr := {S2, . . . , Sd}.

• If |T1| < 3n
4 , we take Sl and Sr such that n

4 ≤ |Tl|, |Tr| ≤
3n
4 .

Taking m = |Tl| and d′ = |Sl|, we can rewrite the recurrence as

T (n, d) ≤


C9kn2 if d = 1
C(9kn2 + b0) + T (m, 1) + T (n−m, d− 1) if m ≥ 3n

4 and d > 1
C(9kn2 + b0) + T (m, d′) + T (n−m, d− d′) if n

4 < m,n−m < 3n
4 and d > 1

where C > 0 is some fixed constant. We will show by substitution that it solves to T (n, d) ≤
3C(9kn2 + (d − 1)b0) = O(9kn2 + db0). Indeed, for the first case of the recurrence it is evident.
For the second case we use T (m, 1) ≤ C9km2 to get

T (n, d) ≤ C(9kn2 + b0) + T (m, 1) + T (n−m, d− 1) ≤
≤ C(9kn2 + b0) + C9km2 + 3C(9k(n−m)2 + (d− 2)b0) =

= C9k(n2 +m2 + 3(n−m)2) + Cb0(1 + 3(d− 2)).

11

Because m ≤ n and n−m ≤ n/4 we have

T (n, d) ≤ C9k
(
n2 + n2 + 3(n/4)2

)
+ 3C(d− 1)b0 ≤ C9k(3n2) + 3C(d− 1)b0.

For the third case we have

T (n, d) ≤ C(9kn2 + b0) + T (m, d′) + T (n−m, d− d′) ≤
≤ C

(
9kn2 + b0 + 3(9km2 + (d′ − 1)b0) + 3(9k(n−m)2 + (d− d′ − 1)b0)

)
≤ C9k

(
n2 + 3m2 + 3(n−m)2

)
+ Cb0

(
1 + 3(d′ − 1) + 3(d− d′ − 1)

)
.

Because m2 + (n−m)2 is concave, and n/4 < m,n−m < 3n/4, we have

T (n, d) ≤ C9k
(
n2 + 3(n/4)2 + 3(3n/4)2

)
+ 3C(d− 1)b0 ≤ C9k(3n2) + 3C(d− 1)b0

. �

Putting together Lemma 3 and Lemma 4 we can show how to compute M(T) for a tree T of
bounded height.

Lemma 5 If each region Si has complexity O(n), and T = (S, E) has height k, we can compute
in O(9kn2) time a placement p0, . . . , pn−1 with pi ∈ Si that achieves M(T) alignments.

Proof: Starting from the region S0, we recursively apply the subdivision done in Lemma 2, and
for the leaves, we take the whole region as a stable cell. For the leaves Si we take M(Ti(Si)) := 0.
Traversing the tree T in a bottom-to-top fashion, for each region Si that has been subdivided into
Ti-stable cells C1

i , . . . , C
ti
i we compute all the values M(Ti(C1

i)), . . . ,M(Ti(Ctii)) using Lemma 4.
Finally, we choose a cell Cj00 such that M(T (Cj00)) = max{M(T (C1

0)), . . . ,M(T (Ct00))}, and a
point p0 ∈ Cj00 . If we have kept information on how we computed M(T (Cj00)) in Lemma 4, then
it is easy to find points p1, . . . , pd such that

M(T (p0)) =
d∑
i=1

(χO(p0, pi)) +M(Ti(pi))

and recursing on M(Ti(pi)) we get the placement for all points top-to-bottom.
Let bi be the complexity of region Si and let di be the degree of node Si in Ti. To bound the

time needed, observe that for a node Si that is at depth ki, we have spent O(9k−ki |Ti|2 + bi) time
to compute its subdivision into Ti-stable cells C1

i , . . . , C
ti
i (Lemma 3), and O(9k−ki|Ti|2 + dibi)

time to compute M(Ti(C1
i)), . . . ,M(Ti(Ctii)) (Lemma 4). To bound the time of the whole process,

we sum over all nodes∑
Si∈S O(9k−ki|Ti|2 + dibi) =

∑k
k′=0

(∑
Si at depth k′ O(9k−k

′|Ti|2)
)

+
∑n−1
i=0 dibi ≤

≤
∑k
k′=0O

(
9k−k

′∑
Si at depth k′ |Ti|2

)
+O(n)

∑n−1
i=0 di ≤

≤
∑k
k′=0O(9k−k

′
n2) +O(n2) ≤ O(9kn2).

�

We can combine this last result with the shifting technique of Hochbaum and Maass [13] to get
a polynomial time approximation scheme (PTAS) to approximate M(T) for any tree T , which is
the main result of this section.

Theorem 3 Let O be a set of two orientations, let S = {S0, . . . , Sn−1} be a set of n convex
regions, each of complexity O(n), and let T = (S, E) be a tree. For any given integer k > 0, we
can place points p0, . . . , pn−1 with pi ∈ Si that yield a k

k+1 -approximation of MO(T) in O(k9kn2)
time.

12

Proof: Choose any node S0 of T to be the root. We apply the shifting technique of Hochbaum
and Maass [13] in order to decompose the problem into trees of height k while controlling the loss
in optimality. For u = 0, . . . , k, consider the forest Fu that is obtained by removing from T the
parent edge from any node that has distance u+ i · (k+1) to the root node, where i is any integer.
If we root each tree in Fu at the node that was closest to S0 in T , then it has height at most k,
and we can use Lemma 5 to determine the optimum value MO(Fu) in O(9kn2) time. It is then
clear that it takes O(k9kn2) time to compute M := max{MO(F0), . . . ,MO(Fk)}.

We claim that M is a k
k+1 -approximation of MO(T). To this end, consider the placement

p0, . . . , pn−1 with pi ∈ Si that achieves MO(T) alignments. Because for each forest Fu we have
MO(Fu) ≥

∑
{Si,Sj}∈Fu χO(pi, pj), then

(k + 1)M ≥
k∑
u=0

MO(Fu) ≥
k∑
u=0

∑
{Si,Sj}∈Fu

χO(pi, pj).

But if an edge is not in Ft, then it is present in all Fu with u 6= t, and so each edge of T appears
exactly k times in the sum. This means that

k∑
u=0

∑
{Si,Sj}∈Fu

χO(pi, pj) ≥ k
∑

{Si,Sj}∈T
χO(pi, pj) = kMO(T),

and we conclude that M is a k
k+1 -approximation of MO(T). �

Corollary 2 Under the assumptions of the previous theorem, if G = (S, E) is a planar graph and
k > 0 a given integer, we can compute a k

3(k+1) -approximation of MO(G) in O(9kn2) time.

5 Specific results for planar graphs

For different settings (regions and orientations) we can apply the same idea of dividing each region
Si into cells that are stable. The same recursive idea as explained before works out, but the analysis
gives different results. Reconsidering Lemmas 3, 4, and 5 for each setting separately will give us
the new bounds. We distinguish the following cases.

5.1 Any region, one orientation

Theorem 4 Let O consist of one orientation, let S = {S0, . . . , Sn−1} be a set of n regions, and
let T = (S, E) be a tree. We can place points p0, . . . , pn−1 with pi ∈ Si that yield MO(T) in O(n2)
time.

Proof: We assume without loss of generality that the orientation for alignment to be considered
is vertical. Also, as has been noted in the proof of Theorem 2, we can assume that the regions
are horizontal segments, otherwise, we project each region onto a horizontal line and we get an
equivalent problem.

In Lemma 3 we can get a more tight bound for |L0|: in this setting each region produces two
tangents (the vertical lines through its endpoints), and those are all the tangents that are created
through the process, which means |L0| ≤ 2n. The lines L0 induce a partition of the interval S0 into
O(n) intervals, regardless of the height of T . For Lemma 4, we can compute in a straightforward
way the values M(T (C)) in O(d) time per cell C, where d is, as before, the degree of S0. This
means that we can accomplish Lemma 4 in O(nd) time. For the time bound in Lemma 5, we have
to sum over all nodes Si the time spent at each node. If we denote by di the degree of Si at Ti
then we use

n−1∑
i=0

O(|Ti|di) ≤ O
(n−1∑
i=0

ndi
)
= O

(
n
n−1∑
i=0

di
)
= O(n2)

13

time to accomplish Lemma 5. As this is independent of the height of T , we directly get the
statement. �

This, together with Lemma 1, leads to the following result.

Corollary 3 Under the assumptions of the previous theorem, if G = (S, E) is a planar graph, we
can get a 1

3 -approximation of MO(G) in O(n2) time.

5.2 Axis-parallel rectangles, axis orientations

If the regions are disjoint rectangles, the placement of a point inside the region can be done
independently for each axis orientation, and we can use the results from the previous subsection.

Corollary 4 Let O be the orientations of the coordinate axes, let S = {S0, . . . , Sn−1} be a set of
n axis-parallel rectangles, and let G = (S, E) be a planar graph. If the regions S are disjoint, we
can get a 1

3 -approximation of MO(G) in O(n2) time.

Proof: Consider the vertical orientation ov ∈ O, and use Corollary 3 to compute a placement
yielding a 1

3 -approximation ofM{ov}(G). This placement only fixes the x-coordinates of the points,
and we can independently decide the y-coordinate of each point because the regions are rectan-
gles. The y-coordinate is computed using Corollary 3 to get a 1

3 -approximation of M{oh}(G),
where oh ∈ O is the horizontal orientation. Because the regions are disjoint, no two points coin-
cide and we have constructed a placement achieving at least 1

3 (M{ov}(G)+M{oh}(G)) ≥ 1
3MO(G)

alignments. �

If the regions overlap, then this procedure only gives us a 1
6 -approximation because if points

placed for different regions coincide, then we are counting them as two alignments. Without
considering each orientation independently, but both as a whole, we can approximate this problem
at the cost of another linear factor. Again, we have to consider first the case of a tree, and then
combine it with Lemma 1 to approximate the planar graph case.

Theorem 5 Let O be the orientations of the coordinate axes, let S = {S0, . . . , Sn−1} be a set of
n axis-parallel rectangles, and let T = (S, E) be a tree. We can place points p0, . . . , pn−1 with
pi ∈ Si that yield MO(T) in O(n3) time.

Proof: We reconsider Lemmas 3, 4, and 5 for this particular setting. In Lemma 3 we can get
a more tight bound for |L0|: in this setting each region produces four tangents (the axis-aligned
lines containing the boundary of the region), and those are all the tangents that are created in the
process, which means |L0| ≤ 4n. The lines L0 induce a partition of the rectangle S0 into O(n2)
rectangles, regardless of the height of T . For Lemma 4, we can compute in a straightforward way
the values M(T (C)) in O(d) time per cell C, where d is, as before, the degree of S0. This means
that we can accomplish Lemma 4 in O(n2d) time. For the time bound in Lemma 5, we have to
sum over all nodes Si the time spent at each node. If we denote by di the degree of Si at Ti then
we use

n−1∑
i=0

O(|Ti|2di) ≤ O
(n−1∑
i=0

n2di
)
= O

(
n2

n−1∑
i=0

di
)
= O(n3)

time to accomplish Lemma 5. As this is independent of the height of T , we directly get the
statement. �

Corollary 5 Under the assumptions of the previous theorem, if G = (S, E) is a planar graph, we
can get a 1

3 -approximation of MO(G) in O(n3) time.

14

5.3 Convex regions, more than two orientations

We next assume that we are interested in alignment in |O| > 2 orientations (|O| is a constant). For
example, for schematic maps, alignment in the horizontal, vertical, and two diagonal orientations
is important (thus |O| = 4). There are different approaches and corresponding results.

Corollary 6 Let G = (S, E) be a planar graph with n nodes. We can find a 1
3|O| -approximation

of MO(G) in O(n2) time.

Proof: We consider |O| different problems, each one with a different orientation but with the
same graph G. For each orientation o ∈ O, we use Corollary 3 to compute a 1

3 -approximation of
M{o}(G) in O(n2) time, and we take the placement achieving the maximum A over all of them.
Because in the placement achieving MO(G) alignments there is one orientation õ ∈ O with at
least 1

|O|MO(G) alignments, then for the chosen placement we get A ≥ 1
3M{õ}(G) ≥ 1

3|O|MO(G)
alignments. �

Corollary 7 For any integer k > 0, we can find a 2k
3(k+1)|O| -approximation of MO(G) in O(k9kn2)

time.

Proof: We consider
(|O|

2

)
different problems, each one with a different pair of orientations but

with the same graph G. For each pair of orientations {oi, oj} ⊂ O, we use Corollary 2 to compute
a k

3(k+1) -approximation of M{oi,oj}(G) in O(k9kn2) time, and we take the placement achieving
the maximum A over all of them. Because in the placement achieving MO(G) alignments there
is a pair of orientations {õi, õj} ⊂ O with at least 2

|O|MO(G) alignments, then for the chosen
placement we get A ≥ k

3(k+1)M{õi,õj}(G) ≥ 2k
3(k+1)|O|MO(G) alignments. �

Theorem 6 Let O be a set of more than two orientations, let S = {S0, . . . , Sn−1} be a set of n
convex regions, each of complexity O(n), and let G = (S, E) be a planar graph. For any given
integer k > 0, we can place points p0, . . . , pn−1 with pi ∈ Si that yield a k

3(k+1) -approximation of

MO(G) in nO(2k) time.

Proof: We will show that for a tree T = (S, E) of height k we can compute a k
k+1 -approximation

of MO(T) in nO(2k) time. Then the proof of Theorem 3 implies that we can get a k
3(k+1) -

approximation of MO(G) in knO(2k) ≤ nO(2k)+1 = nO(2k) time, as desired.
Let’s assume that T = (S, E) is a tree of height k, and reconsider Lemmas 3, 4, and 5 for this

particular setting. The bound for |L0| in Lemma 3 is not longer true because each internal vertex
produces h− 2 additional tangent lines (when we had only two orientations this did not happen).
If for each child Si of S0, Li is the set of lines that is used in the recursive process to subdivide
the region Si into Ti-stable cells, then the lines in L0 come from intersection points of two lines
in Li, from intersection points of a line in Li with the boundary of the region Si, and the 2|O|
tangents to Si itself. Taking h = |O|, the recursion that we get is

|L0| ≤
d∑
i=1

(
(h− 2)

(
|Li|
2

)
+ (2h− 1)|Li|+ 2h

)
< 2h

d∑
i=1

(|Li|+ 1)2.

This solves to |L0| ≤ (2h)(2k−1)n(2k) − 1 by induction on the height k of T : if k = 0, then n = 1
and it holds. For k ≥ 1 we have

|L0| ≤ 2h
d∑
i=1

(|Li|+ 1)2 ≤ 2h
d∑
i=1

(
(2h)(2k−1−1)|Ti|(2

k−1)
)2
,

15

set of tangents L

Figure 8: Left: Discretization used in the proof of Theorem 7. The boxes represent the only points
to take into account. Right: If the regions are intervals and we consider two orientations to align
points, we cannot discretize the problem.

and because
∑d
i=1 |Ti| = n− 1 we get

|L0| ≤ (2h)(2k−1)
d∑
i=1

|Ti|(2
k) ≤ (2h)(2k−1)(n− 1)(2k).

Therefore, |L0| = O((2h)(2k−1)n(2k)) = nO(2k) because we assume that h = |O| is constant, and
we can subdivide S0 into nO(2k) T -stable cells in O

((
nO(2k)

)
+ b0

)
= nO(2k) +O(b0) time.

For Lemma 4, we can compute in a straightforward way the values M(T (C)) in O(d) per
cell C, where d is, as before, the degree of S0. This means that we can accomplish Lemma 4 in
O(d)nO(2k) = nO(2k) time because d ≤ n. For the time bound in Lemma 5, we have to sum over
all nodes Si the time spent in each node. If we denote by di the degree of Si in Ti, and because
bi = O(n), we use

n−1∑
i=0

(nO(2k) + bi) ≤ nO(2k)+1 = nO(2k)

time to accomplish Lemma 5. �

6 Axis-aligned regions and orientations

We can use Baker’s approach [2] for developing a polynomial time approximation schemes for
planar graphs when we care about only one orientation.

Theorem 7 Let O consist of one orientation, let S = {S0, . . . , Sn−1} be a set of n regions, and
let G = (S, E) be a planar graph. For any given integer k > 1, we can place a points p0, . . . , pn−1

with pi ∈ Si that yield a k−1
k -approximation of MO(G) in O(k(2n)3k+1) time.

Proof: As in Theorem 4, it is enough to consider vertical alignments and regions that are hori-
zontal segments. The proof goes in two steps. First, we show that for any k-outerplanar graph G,
we can find a placement of points that attains the optimal solution MO(G) in O((2n)3k+1) time.
Second, we will show how this leads to the theorem.

Let L be the set of vertical lines going through the endpoints of the segments. Consider for
each segment Si the set of points S̃i := Si ∩ L. Because L contains at most 2n vertical lines, S̃i
consists of at most 2n points (see Figure 8, left). Now, instead of considering to place the point pi
anywhere in Si, we want to place it at some point of S̃i. In other words, if G̃ is the graph G, where
each node Si is replaced by S̃i (the graphs are isomorphic, but the nodes represent different sets),
we have M(G) = M(G̃). Now that we have discretized the problem we can use Baker’s approach.

16

Consider the slice boundaries and the slices as defined in [2] (we will follow its notation).
In a level i slice boundary, we have at most (2n)i different ways of placing the points in the
corresponding segments. Thus, for each level i slice, we can encode the maximum over all possible
placements in its boundary using a table with at most (2n)2i entries. The operations between
the tables are straightforward, and the most expensive one is merging two level i slices that share
some level i boundary: it takes O((2n)3i) time. If the graph is k-outerplanar, we have i ≤ k, and
we have to perform O(n) operations with the tables. This concludes the first part of the proof.

For the given planar graph G and the integer k > 0, consider the graph Gu that we get by
removing the edges connecting any level u+ki vertex with a level u+ki+1 vertex, for all integers
i. This graph Gu is composed of k-outerplanar graphs, so we can find the best placement of points
as shown before. By the pigeon hole principle, there is some u ∈ {0, . . . , k− 1} such that MO(Gu)
is at least k−1

k M(G). Computing all MO(Gu), for u = 0, . . . , k−1, and taking the maximum leads
to the result. �

Corollary 8 For any set of orientations O, and for general regions, we can get a k−1
|O|k -approximation

of MO(G) in O(k(2n)3k+1) time.

Proof: Like in the proof of Corollary 6, we can solve each orientation independently using the
previous theorem and take the maximum over all of them. The result follows. �

As noticed in the proof of Corollary 4, if the regions are disjoint rectangles the placement
of a point inside the region can be done independently for each axis orientation and we get the
following result.

Corollary 9 Let O be the orientations of the coordinate axes, let S = {S0, . . . , Sn−1} be a set of
n axis-parallel rectangles, and let G = (S, E) be a planar graph. If the regions S are disjoint, for
any integer k > 1 we can get a k−1

k -approximation of MO(G) in O(k(2n)3k+1) time.

When the rectangles overlap, we may be counting two alignments if two points belonging to
different regions are placed exactly at the same position. We can avoid this adapting the proof of
Theorem 7 to rectangles.

Theorem 8 Let O be the orientations of the coordinate axes, let S = {S0, . . . , Sn−1} be a set of
n axis-parallel rectangles, and let G = (S, E) be a planar graph. For any integer k > 1 we can get
a k−1

k -approximation of MO(G) in O(k(2n)6k+1) time.

Proof: The proof is identical to the one of Theorem 7, but now, for solving a k-outerplanar graph
we discretize the whole rectangles combining the vertical and horizontal lines (or tangents). This
discretization uses (2n)2 points per rectangle, and thus we can do it, by the same arguments as in
that proof, in O(k(2n)6k+1) time. �

For general regions or orientations, it doesn’t seem easy to extend this approach. The problem
is that we cannot discretize the problem as we have done before: each tangent can produce more
candidate points, from which we have to trace new tangents, and this process doesn’t converge
(see Figure 8, right).

7 Remarks and conclusions

This paper studied algorithms to align points, each of which can be placed freely in their own
specified region. Our motivation came from the automated computation of schematic networks
for public transportation maps. We showed that the problem is computationally hard, and gave
several approximation algorithms and approximation schemes which apply to different variations
of the problem. Variations included the alignment orientations of interest, the shape of the regions,

17

whether overlap is allowed for any two regions, and perhaps most important, a graph on the points
that specifies which alignments count in the optimization. Our results apply to trees and planar
graphs, and remain valid if the edges of the graph are weighted. The problems and solutions gave
rise to an interesting combination of geometry and graphs.

There is room to improve the results that we have presented. In particular, more tight results
for the case of planar graphs, general regions, and general orientations would be a nice improve-
ment. When the underlying graph is a tree, we have given a PTAS, but we do not know whether
the problem is NP-hard or not. The answer to this question would not substantially improve the
approximation factors for the case of planar graphs, but it is interesting in its own right.

Acknowledgements

The authors are grateful to Bettina Speckmann and Pankaj Agarwal for spending their time to
discuss parts of this research.

References

[1] S. Avelar and M. Müller. Generating topologically correct schematic maps. In Proc. 9th Int.
Symp. on Spatial Data Handling, pages 4a.28–4a.35, 2000.

[2] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM, 41:153–180, 1994.

[3] T. Barbowsky, L.J. Latecki, and K. Richter. Schematizing maps: Simplification of geographic
shape by discrete curve evolution. In Spatial Cognition II, LNAI 1849, pages 41–48, 2000.

[4] S. Cabello, M. de Berg, S. van Dijk, M. van Kreveld, and T. Strijk. Schematization of road
networks. In Proc. 17th Annu. ACM Sympos. Comput. Geom., pages 33–39, 2001.

[5] K. Daniels and V. J. Milenkovic. Multiple translational containment, part i: An approximate
algorithm. Algorithmica, 19(1–2):148–182, September 1997.

[6] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper
Saddle River, NJ, 1999.

[8] D. Elroi. Schematic views of networks: Why not have it all. In Proc. of the 1991 GIS for
Transportation Symposium, pages 59–76. http://www.elroi.com/fr2−publications.html, 1991.

[9] H.N. Gabow. A matroid apporach to finding edge connectivity and packing arborescences.
J. Comput. Systems Sci., 50:259–273, 1995.

[10] R. Grossi and E. Lodi. Simple planar graph partition into three forests. Discrete Applied
Mathematics, 84:121–132, 1998.

[11] J. H̊astad. Some optimal inapproximability results. J. ACM, 48:798–859, 2001.

[12] R. Heckmann and T. Lengauer. Computing upper and lower bounds on textile nesting prob-
lems. In Proc. 4th Annu. European Sympos. Algorithms, volume 1136 of Lecture Notes Com-
put. Sci., pages 392–405. Springer-Verlag, 1996.

[13] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and VLSI. J. ACM, 32:130–136, 1985.

[14] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343, 1982.

18

[15] G. Neyer. Line simplication with restricted orientations. In Algorithms and Data Structures,
WADS’99, volume 1663 of LNCS, pages 13–24, 1999.

[16] J. O’Rourke. Visibility. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 25, pages 467–480. CRC Press LLC, Boca
Raton, FL, 1997.

[17] M. Sharir. Algorithmic motion planning. In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 40, pages 733–754. CRC Press
LLC, Boca Raton, FL, 1997.

[18] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results
and New Trends in Computer Science, volume 555 of Lecture Notes Comput. Sci., pages
359–370. Springer-Verlag, 1991.

[19] A. Wolff and T. Strijk. The Map-Labeling Bibliography. http://www.math-inf.uni-
greifswald.de/map-labeling/bibliography/, 1996.

19

