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Abstract

A center-transversal line for two finite point sets inR
3 is a line with the property that any

closed halfspace that contains it also contains at least onethird of each point set. It is known that
a center-transversal line always exists,but the best knownalgorithm for finding such a line takes
roughlyn12 time. We propose an algorithm that finds a center-transversal line in O(n1+εκ2(n))
worst-case time, for anyε > 0, whereκ(n) is the maximum complexity of a single level in an
arrangement ofn planes inR3. With the current best upper boundκ(n) = O(n5/2), the running
time isO(n6+ε), for anyε > 0. We also show that the problem of deciding whether there is a
center-transversal line parallel to a given direction can be solved inO(n log n) expected time.
Finally, we extend the concept of center-transversal line to that of bichromatic depth of lines in
space, and give an algorithm that computes a deepest line exactly in timeO(n1+εκ2(n)), and a
linear-time approximation algorithm that computes, for any specifiedδ > 0, a line whose depth
is at least1 − δ times the maximum depth.
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1 Introduction

Center points and ham-sandwich cuts are two classical notions in discrete geometry. Given a set
P of points inR

d, a pointq, not necessarily inP , is acenter pointwith respect toP if any closed
halfspace that containsq also contains at least|P |/(d+1) points ofP . The existence of center points
is a consequence of Helly’s theorem [20]. Givend finite point setsP0, . . . , Pd−1 in R

d with n points
in total, aham-sandwich cutis a hyperplaneh such that each of the open halfspaces bounded byh
contains at most|Pi|/2 points ofPi, for everyi = 0, 1, . . . , d − 1. Dol’nikov [15], andŽivaljević
and Vrećica [31] proved the following theorem, calledcenter-transversal theorem, which yields a
generalization of center points and ham-sandwich cuts.

Theorem 1.1 (Center-Transversal Theorem)Givenk + 1 finite point setsP0, P1, . . . , Pk in R
d,

for any0 ≤ k ≤ d − 1, there exists ak-flat f such that any closed halfspace that containsf also
contains at least 1

d−k+1 |Pi| points ofPi, for eachi = 0, 1, . . . , k.

Observe that whenk = 0, f is a center point, and whenk = d − 1, f is a ham-sandwich
cut. Therefore, the center-transversal theorem can be seenas an “interpolation” between these two
theorems. A weaker result with|Pi|/(d + 1) instead of|Pi|/(d − k + 1) can easily be obtained by
considering thek-flat passing through a center point of each of thePi, i = 0, 1, . . . , k.

In this paper we consider in detail the cased = 3, k = 1. Given two finite point setsP0, P1 in
R

3, we say that a linè is acenter-transversal linefor P0, P1 if any closed half-space that contains
` also contains at least|Pi|/3 points ofPi, for i = 0, 1. The center-transversal theorem asserts that,
for any finite point setsP0, P1 in R

3, there exists a center-transversal line. However, the original
proofs [15, 31] of this result are non-constructive and do not lead to an algorithm for finding a
center-transversal line. The running time of the best knownalgorithm for this problem [5] is rather
large (aboutn12—see below). We present a considerably more efficient algorithm for finding such
a line, and consider several other related problems.

Related work. A more detailed review of center points, ham sandwich cuts, and related problems
can be found in Matoušek [20]. Efficient algorithms are known for computing a center point in
R

2 andR
3 [13, 18, 21]. A center point inRd can be found using linear programming withΘ(nd)

linear inequalities, and there exists a faster algorithm, due to Clarkson et al. [12], for computing an
approximatecenter point in arbitrary dimensions; that is, a pointq such that any closed halfspace
containingq contains at leastΩ(n/d2) points ofP . Efficient algorithms have also been developed
for constructing thecenter region, namely, the set of all center points, inR2 and R

3 [4, 7, 19].
The concept of center point leads to generalizations that have been useful in robust statistics. The
halfspace depth(also called location depth, data depth) of a pointq relative to a data setP in R

d,
is the smallest number of data points in any closed halfspacewhose boundary passes throughq. A
center point is a point with depth at least|P |/(d + 1), and a halfspace median, or aTukey point, is
a point with maximum halfspace depth. Chan [7], improving upon previous results, has obtained a
randomizedO(n log n + nd−1) expected-time algorithm for computing a Tukey point inR

d.
The problem that we consider can be related tomultivariate regression depth, a generalization,

introduced by Bern and Eppstein [5], ofregression depth, a quality measure for robust linear re-
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gression defined by Rousseeuw and Hubert [17, 26, 27]. In particular, Bern and Eppstein [5] give
a general-purpose algorithm, which can be easily modified toyield an algorithm that constructs a
center-transversal line inR3 in O(n12+ε) time, for anyε > 0.

Our contributions. Let P0, P1 be two finite point sets inR3 with a total ofn points.

• We present an algorithm that constructs a center-transversal line forP0 andP1 in O(n1+εκ2(n))
worst-case time, for anyε > 0, whereκ(n) is the maximum complexity of a single level in
an arrangement ofn planes inR

3. With the current best upper boundκ(n) = O(n5/2) of
[28], the running time isO(n6+ε), for anyε > 0. This is a considerable improvement over
the algorithm by Bern and Eppstein [5].1 This improvement is attained by analyzing the
combinatorial structure of the problem, by searching for candidate center-transversal lines
in a controlled recursive manner, and by using (standard) range-searching data structures for
handling the interaction between lines and polyhedral terrains. See Section 2.

• Using a simple relation between center-transversal lines and center points in two dimensions,
we show how to decide inO(n log n) time, for a given direction, whether there exists a center-
transversal line ofP0 andP1 with that direction. See Section 3.

• We introduce the notion of thebichromatic depthof a line `, with respect toP0 and P1,
extending similar earlier concepts. Specifically, it is theminimum fraction sizeρ of the points
in either set that lie in a halfspace that contains`; that is, each halfspace containing` contains
at leastρ|P0| points ofP0 andρ|P1| points ofP1. This concept generalizes that of center-
transversal line (which has bichromatic depth at least1/3). We show how to compute a
deepest line inO(n1+εκ2(n)) time, for anyε > 0, and give a linear-time approximation
algorithm that computes, for anyδ > 0, a line whose depth is at least1−δ times the maximum
depth. See Section 4.

2 Finding a Center-Transversal Line

We consider the problem of computing a center-transversal line in dual space, where the problem is
reformulated in terms of levels in arrangements of planes. We generate a set of candidate lines that
is guaranteed to contain a center-transversal line, and we use a data structure to determine which
of these candidate lines is a center-transversal line. For simplicity, we assume thatP0 ∪ P1 are in
general position in the sense that no four of them are coplanar.

Center-transversal lines in the dual. The widely usedduality transform maps a pointp in R
d

to a hyperplanep∗ in R
d and vice-versa, so that the incidence and above/below relationships are

preserved. There are many variants of duality [20]; we use the following one: A pointa =
(a1, . . . , ad) ∈ R

d is mapped to the nonvertical hyperplanea∗ : xd = a1x1 + · · · + ad−1xd−1 −
ad, and a hyperplaneh : xd = α1x1 + · · · + αd−1xd−1 + αd is mapped to the pointh∗ =

1We note though that an algorithm with running time nearn8 is not hard to obtain.
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(α1, . . . , αd−1,−αd), so (a∗)∗ = a. A point p lies below (resp., above, on) a hyperplaneh if
the dual pointh∗ lies below (resp., above, on) the dual hyperplanep∗. Thepencil of hyperplanes
passing through a linèin R

d, for d ≥ 3, maps to the set of points inRd lying on a line`∗; we refer
to `∗ as the dual of̀ . For a setA of objects, setA∗ = {a∗ | a ∈ A}.

Let P be a set ofn points inR
3, and letH = P ∗ be the set ofn non-vertical planes inR3 dual to

the points inP . Thelevelof a pointp ∈ R
3, with respect toH, is the number of planes inH that lie

belowp. For0 ≤ k < n, thek-levelof H, denotedLk(H) (or simplyLk if the setH is understood),
is the closure of the set of all points on any of the planes ofH that are at levelk. Thek-levelLk is a
polyhedral terrain, that is, anxy-monotone piecewise-linear continuous surface formed by asubset
of the faces of the arrangementA(H). The combinatorial complexity ofLk is the number of faces
of all dimensions inLk. Let κ(n) denote the maximum complexity of a level in any arrangement of
n planes inR

3. The best known upper bound forκ(n) is O(n5/2) [28], which differs substantially
from the best known lower boundn2eΩ(

√
log n) [30, 22]. See [3] for more details on arrangements

and levels.
If h is a plane inR3 so that each of the two halfspaces bounded byh contains at leastk points

of P , thenh∗ lies betweenLk(H) andLn−k(H). If ` is a line inR
3 so that any halfspace con-

taining ` contains at leastk points of P , then the entire dual linè∗ lies betweenLk(H) and
Ln−k(H). Hence, the problem of computing a center-transversal linefor P0 andP1 reduces to
computing a line in the dual space that lies aboveΣ0 = Lk0

(H0),Σ1 = Lk1
(H1) and below

Σ2 = Ln0−k0
(H0),Σ3 = Ln1−k1

(H1), whereHi = P ∗
i , ni = |Pi|, andki = dni/3e for i = 0, 1.

We note that each of these four terrains can be computed inO(nεκ(n)) time, for anyε > 0 [2].
We thus have four terrainsΣ0,Σ1,Σ2,Σ3, and we wish to compute a line that lies aboveΣ0,Σ1

and belowΣ2,Σ3. Note that such a line cannot bez-vertical, i.e., parallel to thez-axis. LetEi be
the set of edges inΣi, for i = 0, 1, 2, 3, andE =

⋃3
i=0 Ei. Setm := |E| ≤ 4κ(n), and assume

thatm ≥ n (or else the problem can be solved much faster than the time bound of our algorithm).
Let H = H0 ∪ H1. Each edge inEi lies in the intersection line of a pair of planes inH. We define
a “sidedness function”χ : E → {+1,−1}, whereχ(e) = +1 if e ∈ E0 ∪ E1 andχ(e) = −1 if
e ∈ E2 ∪ E3. Let V be the set of endpoints of edges inE. By the general-position assumption on
input points, each point ofV is incident upon at most three edges ofE. Note that the edges inE
arenot in general position because many of them can be collinear or coplanar. For an object (point,
line, segment)∆ in R

3, let ∆̃ denote itsxy-projection inR
2.

Definition 2.1 Let ` be a nonvertical line inR3, and lete be a nonvertical segment inR3 so that
˜̀ intersects̃e. We say that̀ lies above(resp.,below) e if the oriented line in the(+z)-direction
that passes through̀̃∩ ẽ meetse before (resp., after)̀. The line` is in compliancewith an edge
e ∈ E if (i) ˜̀does not intersect̃e, or (ii) ` does not lie below (resp., above)e if χ(e) = +1 (resp.,
χ(e) = −1). We say that̀ is in compliance with a subsetR ⊆ E if it is in compliance with every
edge inR. In particular, we have:

Lemma 2.2 A nonvertical line` in R
3 lies aboveΣ0,Σ1 and belowΣ2,Σ3 if and only if ` is in

compliance withE.

The problem of computing a center-transversal line now reduces to finding a line that is in
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compliance withE. Let L be the set of all lines inR3 that are not parallel to theyz-plane, and let
Lyz be the set of lines inR3 that are parallel to theyz-plane. We restrict the search for a line that
is in compliance withE to lines inL. This involves no loss of generality: The lines inLyz have
three degrees of freedom and a center-transversal line among them, if there exists one, can be found
using a much simpler (and more efficient) algorithm; see, e.g., the remark following Lemma 2.7.

Overview of the algorithm. Before describing the algorithm in detail, we give a brief overview
of the algorithm. Using the fact that each terrainΣi is contained in the union ofn planes, we show
that, for each linè ∈ L, there exists a “witness set” ofO(n) edges ofE, so that̀ is in compliance
with E if and only if it is in compliance with its witness set. The concept of witness sets is the basic
tool to obtain an improved running time over trivial algorithms. We then group the lines inL into
equivalence classes so that all lines in the same class have the same witness set.

Using these ideas, we present an algorithm to construct a setof candidate lines that works in
three stages. The first stage, called thefiltering stage, splits the problem intoO(m2/n2) subprob-
lems (recall thatm is the number of edges in our four terrains). Each subproblemis defined by a
triangle∆ in a parametric plane, and corresponds to the set of candidate lines whosexy-projection
dualizes (in the plane) to a point in∆. In each subproblem there is a witness set ofO(n) edges, and
therefore we obtainO(m2/n2) subproblems, each involving onlyO(n) edges. The second stage,
called therecursive candidate generation stage, computes, for each subproblem, a set ofO(n3+ε)
candidate lines, for anyε > 0, which is guaranteed to contain a line in compliance with thecorre-
sponding subset of edges if there exists one. This stage is similar to the approach used in [23, 25].
The final stage, called theverification stage, uses known data structures to check which of the can-
didate lines generated by the previous step is in compliancewith E, and report the first such line
that it encounters (which is guaranteed to exist, by Theorem1.1). We now describe each of these
steps in detail.

Witness sets and equivalence classes.For a line` ∈ L and a subsetR ⊆ E of edges, we define
the witness setof ` for R, denoted byW (`,R), as follows. Fori = 0, 1, 2, 3, let Ri ⊆ R be the
sequence of edges inR∩Ei whosexy-projections intersect̀̃, sorted by the order of the intersection
points along˜̀. For a planeh ∈ H0 ∪ H1, let e−h,i, e

+
h,i ∈ Ri be, respectively, the first and the last

edges in thei-th sequence that lie onh, where only planes inH0 (resp.,H1) are considered for
i = 0, 2 (resp.,i = 1, 3). We set

W (`,R) = {e−h,i, e
+
h,i | h ∈ H, 0 ≤ i ≤ 3}.

By definition, ˜̀intersects thexy-projection of every edge inW (`,R). Note that|W (`,R)| = O(n).

Lemma 2.3 For a subsetR ⊆ E, a line ` ∈ L is in compliance withR if and only if ` is in
compliance withW (`,R).

The proof of the lemma follows from the simple observation that if ` lies above (resp., below)
bothe−h,i, e

+
h,i then it lies above (resp., below) all edges inRi that lie inh.
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We define, for a subsetR ⊆ E, an equivalence relation onL so that for any two lines̀1, `2

in the same equivalence class,W (`1, R) = W (`2, R). This will discretize the search for a center-
transversal line. For this we need a few notations. For a point, a line, or a segmentξ in R

3, let
ϕ(ξ) denote the dual (inR2) of ξ̃, i.e., ϕ(ξ) = (ξ̃)∗. 2 For an edgee = uv in E, let ϕ(e) ⊆ R

2

be the double wedge that is formed by the linesϕ(u) andϕ(v) and does not contain the line in
R

2 passing through their intersection point and parallel to the y-axis. By standard properties of the
duality transform inR2, a lineγ in R

2 intersects̃e if and only if γ∗ ∈ ϕ(e). Moreover if the points
γ∗
1 , γ∗

2 ∈ R
2 lie in the same (left or right) wedge ofϕ(e), thenγ1, γ2 intersect̃e from thesame side,

in the sense that the same endpoint ofẽ lies in each of the positive halfplanes bounded byγ1 and
γ2, respectively (that is, the halfplanes above these lines, in they-direction).

Let R ⊆ E be a fixed subset of edges, and letVR ⊆ V be the set of endpoints of the edges in
R. For a pointv ∈ VR, ϕ(v) is the line inR

2 dual to the point̃v. SetΛ(R) = {ϕ(v) | v ∈ VR}.
For each facef in the arrangementA(Λ(R)) of Λ(R), let R(f) denote the set of those edgese ∈ R
for which ϕ(e) containsf . For a line` ∈ L, if f is the face containingϕ(`) then, by construction,
R(f) is the set of edges ofR whosexy-projections intersect̀̃. By definition,W (`,R) ⊆ R(f). We
note that, in general,Λ(R) is not in general position, since it consists of lines dual topoints that lie
on O(n2) lines (namely, the projections of the intersection lines between pairs of planes inH0 or
in H1). Nevertheless, the techniques that we are about to apply (such as cuttings of arrangements)
work equally well in degenerate scenarios.

Definition 2.4 We call two lines̀ 1, `2 ∈ L equivalent(with respect toR), denoted bỳ 1 ≡R `2, if
ϕ(`1) andϕ(`2) lie in the same face ofA(Λ(R)).

Lemma 2.5 Let R ⊆ E be a set of edges, and let`1, `2 ∈ L be two lines so that̀1 ≡R `2. Then
W (`1, R) = W (`2, R).

Proof: Let f be the face ofA(Λ(R)) that containsϕ(`1) andϕ(`2). SetRi(f) := R(f) ∩ Ei and
Li := Λ(Ri(f)) ⊆ Λ(R), for i = 0, 1, 2, 3. Clearly,ϕ(`1), ϕ(`2) lie in the same face ofA(Li).
Since the edges ofEi all belong to the same terrain, theirxy-projections are pairwise disjoint. An
easy observation (due to [1]) shows that˜̀

1, ˜̀
2 intersect thexy-projections of the edges inRi(f) in

the same order. This immediately implies thatW (`1, R) ∩ Ei = W (`2, R) ∩ Ei, from which the
lemma follows. 2

In view of the preceding lemma, we define, for each facef of A(R), Wf (R) ⊆ R to be the
common witness set for any line in the equivalence class corresponding tof .

The filtering stage. Given a setL of lines inR
2, a triangle∆0 (crossed by all the lines inL), and

a parameter1 ≤ r ≤ |L|, a(1/r)-cuttingof (L,∆0) is a triangulationΞ of ∆0 so that each triangle
of Ξ is crossed by at most|L|/r lines of L. It is known that a(1/r)-cutting consisting ofO(r2)
triangles, along with the set of lines crossing each of its triangles, can be computed inO(|L|r)
time [9].

2Note thatϕ(`) is not defined if̀ is parallel to theyz-plane. That is why we exclude these lines fromL.
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Let Λ = Λ(E). We set∆0 = R
2 andr = m/n, and compute a(1/r)-cutting Ξ of (Λ,∆0).

For each triangle∆ ∈ Ξ, let Λ∆ be the set of lines ofΛ that cross∆; sinceΞ is a (1/r)-cutting,
we have|Λ∆| ≤ m/r = n. Let E∆ ⊆ E be the set of edgese = uv so that eitherϕ(u) or
ϕ(v) belongs toΛ∆. Since each vertex ofV is an endpoint of at most three edges ofE, we have
|E∆| ≤ 3|Λ∆| ≤ 3n. For each∆ ∈ Ξ, let F∆ = {e ∈ E \ E∆ | ∆ ⊆ ϕ(e)}. We refer to the edges
in E∆ asshortand to the edges inF∆ aslong (in ∆). Finally, letL∆ = {` ∈ L | ϕ(`) ∈ ∆}.

Since∆ is contained in a face ofA(Λ(F∆)) (the arrangement of lines dual to thexy-projections
of the endpoints of the edges inF∆), Lemma 2.5 implies thatW (`, F∆) is the same for all lines
` ∈ L∆; let W∆ denote this common witness set. Observe that|W∆| = O(n).

If two triangles∆ and∆′ in Ξ share an edge, then the symmetric difference ofF∆, F∆′ is a
subset ofE∆ ∪E∆′ . ThereforeW∆ can be computed fromW∆′ in O(|E∆|+ |E∆′ |) = O(n) time.
Hence, by performing a traversal ofΞ, we can computeW∆ for all triangles∆ ∈ Ξ, in overall time
O(m2/n).

The next lemma follows from Lemmas 2.3 and 2.5.

Lemma 2.6 For any∆ ∈ Ξ, a line` ∈ L∆ is in compliance withE if and only if` is in compliance
with E∆ ∪ W∆.

Hence, for each∆ ∈ Ξ, we have a subproblem(∆, E∆,W∆), in which we want to determine
whether there is a line inL∆ that is in compliance withE∆ ∪ W∆ (and thus withE). Since
⋃

∆ L∆ = L, these subproblems together exhaust the overall problem ofcomputing a line inL
that is in compliance withE. There areO(m2/n2) such subproblems, and the total time spent in
generating them isO(m2/n).

The recursive candidate generation stage. Let (∆, E∆,W∆) be one of the subproblems gener-
ated in the previous stage. We generate a set of “candidate” lines that is guaranteed to contain a line
in compliance withE∆ ∪ W∆ if there exists one inL∆. If there is a line inL \ L∆ in compliance
with E∆ ∪ W∆, then the candidate set may or may not contain such a line. Moreover, a candidate
line generated by the algorithm may be parallel to theyz-plane. The time used to generate this set
of “candidate” lines will beO(n3+ε), for anyε > 0.

Before describing the algorithm, we briefly review the representation of lines in Plücker space [24].
An oriented linè in R

3 can be mapped to a pointπ(`) ∈ R
5, called thePlücker pointof `, that lies

on the so-called4-dimensionalPlücker hypersurfaceΠ, or to a hyperplane$(`) in R
5, called the

Plücker hyperplaneof `. (The actual Plücker space is thereal projectiveR
5, but since we exclude

lines parallel to theyz-plane, one of the homogeneous coordinates is always nonzero, and hence we
can embed the Plücker structure into the real 5-dimensional space. However, the mapping$(·) is
also defined for lines parallel to theyz-plane.) Abusing the notation a little, we useπ(e) and$(e)
to denote the Plücker point and hyperplane, respectively,of the line supporting an oriented segment
e in R

3. Two lines`1, `2, where`1 ∈ L, are incident (or parallel) if and only ifπ(`1) ∈ $(`2).
We orient every line ofL and every edge ofE in the (+x)-direction (this is well defined for

lines in L, by definition, and for edges ofE, by making a small rotation, if necessary). For two
oriented lines̀ 1, `2 in R

3, π(`1) lies above$(`2) (which is the same asπ(`2) lying above$(`1))
if and only if the simplex spanned by a vector~u1 lying on `1 with the same orientation, and by a

6



vector~u2 lying on `2 with the same orientation, is positively oriented. This is easily seen to imply
that, wheǹ 1 and`2 are non-vertical,̀ 1 passes abovè2 if and only if either (i)π(`1) lies above
$(`2) and ˜̀

1 lies counterclockwise tò̃2, or (ii) π(`1) lies below$(`2) and ˜̀
1 lies clockwise to˜̀

2.
See [24] for more details.

Let η1, η2, η3 be the vertical lines such that the lines dual to their intersections with thexy-
plane support the respective edgese1, e2, e3 of ∆. We also use the term “edges” when referring to
η1, η2, η3. For any linè ∈ L∆, letB(`) denote the subset of edges ofX∆ = E∆∪W∆∪{η1, η2, η3}
that are touched bỳ(in their relative interior or at an endpoint).

Assume now that there is a linè∈ L∆ in compliance withE∆ ∪ W∆. If ϕ(`) is a vertex of
∆, then` touches two of the vertical edges ofX∆. Since˜̀ intersects an edge of eachΣi, we can
move` in the vertical plane containing̀so that it touches two edges ofE∆ ∪ W∆. Hence, ifϕ(`)
is a vertex, then we may assume that` touhces at least four edges ofX∆, otherwise we may assume
that it touches at least two edges ofX∆. Next, we movè around while keeping it in compliance
with E∆ ∪W∆, keepingϕ(`) in ∆, and not losing any contact with an edge inX∆ until we reach a
critical position of` at whichB(`) is maximal. We call a line in such position as acritical line. If
ϕ(`) reaches a boundary edgeei of ∆ during this motion, theǹ touches the corresponding vertical
line ηi. If ∆ is unbounded, theǹmay become parallel to theyz-plane. In other words, if there is a
line ` ∈ L∆ in compliance withE∆ ∪W∆, then there is another linè′ such that̀ ′ is in compliance
with E∆ ∪ W∆, ϕ(`) ∈ ∆ (possibly at infinity),B(`) ⊆ B(`′), and either̀ ′ ∈ L∆ is a critical line
or ` ∈ Lyz. We focus on the case when`′ ∈ L∆ and assume that`′ cannot be moved to infinity in
the above motion without violating one of the constraints (see also the remark below).

Using the fact that a line inR3 has four degrees of freedom and the above argument, it can be
verified that a critical line touches at least four edges ofX∆. We next show that each critical linè
has a subsetA(`) ⊆ B(`) of four edges that defines̀, in the precise sense stated in the following
lemma. This is easily seen to be the case when the segments inX∆ are in general position. However,
in our scenario many of these edges might be coplanar, so a more careful argument is needed.

Lemma 2.7 If ` ∈ L is a critical line, then there exists a subsetA(`) ⊆ B(`) consisting of four
edges such that

⋂

{$(e) | e ∈ A(`)} is not contained inΠ and π(`) is one of the (at most two)
pointsΠ ∩ (

⋂

{$(e) | e ∈ A(`)}).

Proof: Let F (`) =
⋂

{$(e) | e ∈ B(`)} be the flat in Plücker space that contains (the Plücker
points of) all lines that meetB(`).

We first claim thatF (`) cannot be a 1-flat contained inΠ, nor canF (`) contain a 2-flat. Indeed,
in either of these casesF (`) would contain (points representing) a 1-parameter continuous family
of lines, including`, so that all lines in this family touchB(`). We can then movè within this
family until it touches another edge ofX∆ or becomes parallel to theyz-plane. In either casèis
not critical.

If F (`) is a 1-flat not contained inΠ, thenF (`) and the (quadratic) Plücker hypersurfaceΠ
intersect in at most two points. Moreover, there must exist four edgese1, e2, e3, e4 in B(`) such
thatF (`) =

⋂

{$(e) | e ∈ B(`)} =
⋂4

i=1 $(ei). The subsetA(`) := {e1, . . . , e4} has the desired
properties.
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If F (`) is a0-flat, then there must exist five edgese1, . . . , e5 ∈ B(`) such thatF (`) =
⋂

{$(e) |
e ∈ B(`)} =

⋂5
i=1 $(ei). The Plücker hypersurfaceΠ cannot contain the five different 1-flats

obtained by intersecting any four of the hyperplanes$(e1), . . . ,$(e5), because they spanR5.
Therefore, there exists a subset of four edgesA(`) := {e′1, . . . , e

′
4} ⊂ {e1, . . . , e5} ⊆ B(`)

such that
⋂4

i=1 $(e′i) is a 1-flat not contained inΠ andπ(`) is one of the (at most two) points

Π ∩
(

⋂4
i=1 $(e′i)

)

. 2

Remark. We can define the notion of “critical” lines for lines inLyz as well. Since these lines
have three degrees of freedom, an argument similar to the onein Lemma 2.7 shows that a critical
line ` ∈ Lyz is defined by a setA(`) ⊆ B(`) of three segments inX∆. For each tripleξ of segments
in X∆, we can compute the set ofO(1) “candidate” lines. The number of such candidate lines is
O(n3), which we add to the overall set of candidate lines. In the rest of the section, we focus on
generating critical lines inL∆.

For each critical linè ∈ L∆ we choose and fix a setA(`) with the properties stated in
Lemma 2.7, which contains as many edges from{η1, η2, η3} as possible. We classify each criti-
cal line` ∈ L∆ into one of the following types:

(E1) A(`) contains two elements of{η1, η2, η3}. In this caseϕ(`) is a vertex of∆.

(E2) A(`) contains one element of{η1, η2, η3}. In this caseϕ(`) lies in the relative interior of an
edge of∆.

(E3) A(`) is disjoint from{η1, η2, η3}. In this caseϕ(`) may lie anywhere in the interior of∆.

Note that in cases (E2), (E3),B(`) can contain additional edgesηi not included inA(`). Since
in cases (E1), (E2)A(`) contains at most three edges ofE∆ ∪ W∆, we can generate a set that
contains all the critical lines of type (E1) or (E2) as follows: For each 4-tuple(e1, e2, e3, e4) of
distinct edges, withe1 ∈ {η1, η2, η3}, e2 ∈ X∆, ande3, e4 ∈ E∆ ∪ W∆, we compute

⋂4
i=1 $(ei)

and, if this space is a 1-flat not contained inΠ, we add the (at most two) lines corresponding to
Π ∩

⋂4
i=1 $(ei) to the candidate set. This procedure takesO(n3) time.

It remains to construct the setC(∆, E∆,W∆) of critical lines of type (E3). Each such linèis
in compliance withE∆ ∪W∆, and is associated with a subsetA(`) ⊆ E∆ ∪W∆ of four edges such
that

⋂

{$(e) | e ∈ A(`)} is a 1-flat not contained inΠ andπ(`) ∈ Π ∩ (
⋂

{$(e) | e ∈ A(`)}). We
will compute a superset ofC(∆, E∆,W∆) using a divide-and-conquer algorithm. Our approach for
generating candidate lines is very similar to that used by Pellegrini [23] (see also [25]).

We choose a sufficiently large constantr, and construct a(1/(6r))-cutting T of (Λ(E∆),∆).
As in the filtering stage, we define, for eachτ ∈ T , Eτ ⊆ E∆ to be the set of short edges inτ , and
Fτ ⊆ E∆ to be the set of long edges inτ . We have|Eτ | ≤ 3|Λ(E∆)|/6r ≤ |E∆|/r. SetWτ :=
Fτ ∪ W∆. DefineLτ = {` ∈ L∆ | ϕ(`) ∈ τ}, and note that

⋃

τ∈T Lτ = L∆. For eachτ ∈ T , we
compute a set ofcandidatelinesCτ ⊂ Lτ , with the property thatC(∆, E∆,W∆) ⊆

⋃

τ∈T Cτ .
Consider a triangleτ ∈ T . We want to construct a set of candidate linesCτ that includes the

lines inLτ of type (E3). Hence, it suffices to consider only the edgesEτ ∪ Wτ in its construction.
The line` is in compliance with an edgee ∈ Wτ if π(`) lies in one specific halfspaceΓe bounded
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by $(e). Γe depends on the functionχ(e) and on the clockwise order of̃` andẽ (when oriented in
the positivex-direction). Sinceτ is a subset of a fixed wedge ofϕ(e), this clockwise order is the
same for all lines̀ ∈ Lτ ; henceΓe is the same halfspace for all lines inLτ . SetK :=

⋂

e∈Wτ

Γe.
K is a convex polyhedron inR5 with O(n) facets, so its overall combinatorial complexity isO(n2),
and it can be constructed inO(n2) time [8]. Note that if̀ ∈ Lτ is a critical line in compliance with
Wτ , then

⋂

{$(e) | e ∈ A(`) ∩ Wτ} supports a(5 − j)-face ofK, wherej = |A(`) ∩ Wτ |. There
are four cases, depending on how many edges ofWτ are inA(`).

A(`) ⊆ Wτ . In this case the 1-flat
⋂

{$(e) | e ∈ A(`)} supports an edge ofK. Therefore, we find
critical lines of this type as follows: For each edge ofK that is not contained inΠ, add the (at
most) two lines corresponding to the intersection points ofthe edge andΠ to the candidate
setCτ . The total time spent isO(n2).

|A(`) ∩ Wτ | = 3. In this caseπ(`) lies in the intersection of the 2-flat{$(e) | e ∈ A(`) ∩ Wτ}
with K, soπ(`) lies on the intersection edge of some 2-face of∂K and the Plücker hyperplane
$(e) for somee ∈ Eτ . We find critical lines of this type as follows: For each pair of an edge
e ∈ Eτ and a2-faceφ of K, compute the intersectionφ ∩ $(e) and, if it is not contained
in Π, add the (at most) two lines corresponding to the intersection pointsφ ∩ $(e) ∩ Π to
the candidate setCτ . Since the polyhedronK hasO(n2) 2-faces, the total number of lines
generated in this case isO(n2|Eτ |) = O(n3/r), and their construction takesO(n3/r) time.

|A(`) ∩ Wτ | = 2. Let e1, e2 ∈ Eτ be the two edges that belong toA(`). The Plücker subspace
of lines (in L) that touche1 and e2 lies in the 3-dimensional flatF = $(e1) ∩ $(e2).
Therefore, sincè is in compliance withWτ , we haveπ(`) ∈ F ∩ K. Note thatF ∩ K

is a convex 3-polyhedron withO(n) facets, and therefore it has onlyO(n) edges. We find
critical lines` of this type withe1, e2 ∈ A(`), as follows: For each edge ofF ∩ K that is not
contained in the Plücker surfaceΠ, add the (at most two) lines corresponding toF ∩ K ∩ Π
to the candidate setCτ . This has to be done for each pair of edgese1, e2 ∈ Eτ . The total
number of lines generated in this case isO(|Eτ |

2n) = O(n3/r2), and their computation
takesO(|Eτ |

2n log n) = O((n3/r2) log n) time, where the costliest step is the construction,
repeatedO(|Eτ |

2) times, of convex 3-polyhedra, each defined by at mostn inequalities.

|A(`) ∩ Wτ | ≤ 1. We partitionWτ (arbitrarily) into u = O(r) subsetsW (1)
τ , . . . ,W

(u)
τ so that

|W
(i)
τ | ≤ n/r for eachi. We recursively compute the set of candidate linesC(τ,Eτ ,W

(i)
τ ),

for 1 ≤ i ≤ u and forτ ∈ T . We thus recursively solveO(r) subproblems, all of whose
outputs are added to our candidate setCτ . Clearly, all lines of this type (and perhaps more)
are found by this recursive procedure.

The correctness of the procedure is fairly straightforward. Let T (n) denote the maximum time
needed to compute

⋃

τ∈T Cτ , which is a superset ofC(∆, E∆,W∆), when|E∆|, |W∆| ≤ n. For
eachτ ∈ T , we spendO(n2 + n3/r + (n3/r2) log n) time plus the time needed to solveO(r)
recursive calls where the size of each of the two sets of edgesis at mostn/r. Since the cuttingT
consists ofO(r2) triangles, we obtain the following recurrence.

T (n) = O(r3)T (n/r) + O(n2r2 + n3r + n3 log n).
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The solution of this recurrence isT (n) = O(n3+ε), for anyε > 0 (for which we need to chooser
sufficiently large, as a function ofε). The size ofC(∆, E∆,W∆) is also bounded by this quantity.

Repeating this procedure for theO(m2/n2) subproblems generated by the filtering stage and
adding the set of critical lines inLyz, we construct, inO(m2n1+ε) overall time, a setC of O(m2n1+ε)
candidate lines, guaranteed to contain a center-transversal line forP0, P1.

The verification stage. To complete the algorithm, we test which of the lines inC is in compliance
with E. Using the data structure described in [11], we can preprocess, inO(m2+ε) time, eachEi

into a data structure of sizeO(m2+ε) so that we can determine inO(log n) time whether a linè ∈ L

passes above or below the terrainΣi, or, equivalently, whether̀is in compliance withEi. Querying
each line inC with this data structure for everyEi, we can determine, inO(m2+ε + m2n1+ε log n)
time, which of the lines inC are in compliance withE. With an appropriate calibration of the
parametersε, we can rewrite this bound asO(m2n1+ε), for anyε > 0.

Since a center-transversal line always exists, it belongs to C, by construction, and will be found
by this procedure. Putting everything together, and recalling thatm ≤ 4κ(n), whereκ(n) is the
maximum complexity of a level in an arrangement ofn planes inR3, we obtain the following main
result of the paper. For the concrete time bound, we use the currently best known upper bound
κ(n) = O(n5/2) of [28].

Theorem 2.8 A center-transversal line for two setsP0, P1 with a total ofn points inR
3 can be

constructed inO(n1+εκ2(n)) time, for anyε > 0. This bound isO(n6+ε), for anyε > 0.

Remarks. (1) It is strongly believed thatκ(n) = O(n2+ε), for any ε > 0, in which case our
algorithm would take onlyO(n5+ε) time, for anyε > 0.

(2) The general-position assumption onP0 andP1 was only used for bounding the size ofE∆

(or Eτ ). If the points are not in general position, we can assign aweightto each lineϕ(v) ∈ Λ(E),
which is the number of edges ofE incident uponv, and computeweighted(1/r)-cuttings [10], to
obtain the same bound on the size ofE∆ (or Eτ ).

(3) Let Ψ(P0, P1) be the set of Plücker points of center transversal lines ofP0 andP1. The
above algorithm also proves that the combinatorial complexity of Ψ(P0, P1) is O(n1+εκ2(n)), for
anyε > 0.

Terrains with many coplanar faces. Pellegrini [23] and Halperin and Sharir [16] have shown
that the complexity of the envelope of lines lying above a polyhedral terrain of complexityk is
O(k3+ε), for any ε > 0. The complexity of this envelope is measured in terms of the number
of critical lines that are tangent to the terrain while otherwise lying above it. In our scenario, we
have taken advantage of the fact that the faces of our terrains are contained in relatively few planes.
This observation can be extended to more general scenarios:Using the ideas of witness sets and
the filtering stage, as in our analysis, we directly obtain the following result, which may be of
independent interest.

Theorem 2.9 LetΣ be a terrain of complexityk in R
3, all of whose facets lie onn different planes.

Then the complexity of the envelope of lines that pass aboveΣ is O(n1+εk2), for anyε > 0.
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3 Center-Transversal Line in a Given Direction

In this section we present a randomized algorithm for deciding whether there exists a center-
transversal line ofP0 andP1 in a given direction, say, thez-direction. LetP̃0 (resp.,P̃1) be the
xy-projection ofP0 (resp.,P1). A center-transversal line ofP0 andP1 exists in thez-direction if
and only if the intersection of the center regions ofP̃0 and P̃1 is nonempty. Since each of these
center regions can be computed inO(n log2 n) randomized expected time [7] and their intersection
can be computed in linear time, we can compute a center-transversal line in thez-direction, if it
exists, inO(n log2 n) expected time. Here we improve the expected running time toO(n log n).

For i = 0, 1, let Hi be the set of lines dual tõPi, and, for an integerk, let Lk(Hi) (resp.,
Uk(Hi)) be the set of points whose level inA(Hi) is at mostk (resp., at least|Hi| − k). In the dual
setting, the problem of computing a center-transversal line in thez-direction reduces to determining
whether there exists a line in the dual plane that lies aboveLk0

(H0)∪Lk1
(H1) and belowUk0

(H0)∪
Uk1

(H1), whereki = d|Pi|/3e for i = 0, 1.
Let L be the set of all lines inR2. Suppose we have a (possibly infinite) setS of points inR

2,
in which each point is colored red or blue. We wish to compute

ω(S) := min
`∈L

slope(`)

s.t. ` lies above the red points ofS

and` lies below the blue points ofS (1)

As argued by Chan [7], this is an instance of linear programming. By settingS = Lk(H0) ∪
Lk(H1)∪Uk(H0)∪Uk(H1), where the points ofLk(H0)∪Lk(H1) are colored red and the points
of Uk(H0) ∪ Uk(H1) are colored blue, we can reduce our problem to an instance of (1). Although
the setS is infinite in our case, it suffices to consider the vertices ofLk(Hi) and Uk(Hi), for
i = 0, 1. However we cannot afford to compute the vertices of the levels explicitly if we are aiming
for anO(n log n)-time algorithm, as the best known upper bound on the complexity of a level in
A(Hi) is O(n4/3) [14], and a lower bound ofn · 2Ω(

√
log n) exists [30]. We use Chan’s randomized

technique for solving LP-type problems in which the constraints are defined implicitly by a set of
input objects, and which satisfy certain properties (see Lemma 3.1 below).

Given a setH of constraints and a totally ordered setW , a weight functionω : 2H → W is
calledLP-typeof dimension at mostd if the following three conditions are satisfied for every subset
H ⊆ H and each constrainth ∈ H:

• There exists a subsetB of size at mostd, called abasisof H, so thatω(H) = ω(B).

• ω(H ∪ {h}) ≥ ω(H).

• Let F ⊆ H such thatω(F ) = ω(H). Thenω(H ∪ {h}) > ω(H) ⇔ ω(F ∪ {h}) > ω(F ).

Since linear programming, withω being the corresponding linear objective function, is an LP-
type problem of dimensiond + 1, (1) is an LP-type problem. See [29] for more details. The
following lemma is the main result behind Chan’s technique.
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Lemma 3.1 (Chan [7]) Let ω : 2H → W be an LP-type function of constant dimensiond, and let
α < 1 ands be fixed constants. Supposef : P → 2H is a function that maps inputs from some set
P to sets of constraints with the following properties:

(C1) For inputsP1, . . . , Pd ∈ P of constant size, a basis forf(P1) ∪ · · · ∪ f(Pd) can be computed
in constant time.

(C2) For any inputP ∈ P of sizen and any basisB ⊆ f(P ), we can decide inO(D(n)) time
whetherB satisfiesf(P ), i.e.,ω(f(P )) = ω(B).

(C3) For any inputP ∈ P of sizen, we can construct, inO(D(n)) time, inputsP1, . . . , Ps ∈ P

each of size at mostdαne, so thatf(P ) = f(P1) ∪ · · · ∪ f(Ps).

Then we can compute a basis forf(P ) in O(D(n)) expected time, assuming thatD(n)/nε is
monotonically increasing.

This lemma is a multidimensional version of an earlier technique that Chan proposed in [6]; he used
this technique to compute the Tukey depth of a point set. A very slight (straightforward) variant
of this algorithm can be used to solve our problem. For the sake of completeness, we sketch the
algorithm here.

We formulate the problem in a slightly more general framework. The set of inputsP that we
consider is the set of tuples(G0, G1, τ, a0, a1, b0, b1), whereGi ⊆ Hi, for i = 0, 1, τ is a triangle
in the plane, anda0, a1, b0, b1 are nonnegative integers. The functionf : P → 2R

2

is given by

f(G0, G1, τ, a0, a1, b0, b1) = τ ∩ (La0
(G0) ∪ La1

(G1) ∪ Ub0(G0) ∪ Ub1(G1)). (2)

The points ofL = (La0
(G0) ∪ La1

(G1)) ∩ τ are colored red, and the points ofU = (Ub0(G0) ∪
Ub1(G1)) ∩ τ are colored blue. We wish to computeω(f(G0, G1, τ, a0, a1, b0, b1)), as defined in
(1).

We show that (2) satisfies (C1)–(C3). Condition (C1) is trivial because we can solve the problem
explicitly in O(1) time for constant-size inputs, by constructing the full arrangement of the input
lines.

As for (C2), let` be the line defined by a basisB. We need to determine whether` lies above
L and belowU . We describe how to determine whether` lies aboveL. Let τ+ be the portion ofτ
lying above`, then` lies aboveL if and only if τ+ ∩ L = ∅; the latter holds if and only if none of
the edges ofτ+ intersectsL. Let e be an edge ofτ+. We compute the intersection points ofe with
the lines inG0 ∪G1 and sort them alonge. By computing the level of an endpoint ofe with respect
to G0 andG1 and then traversing the list of the intersection points, we can determine in linear time
whetherL intersectse. Hence (C2) holds withD(n) = O(n log n).

As for (C3), we choose a constantr and compute in linear-time a(1/r)-cutting Ξ of G0 ∪ G1

of sizeO(r2) within τ [10]. For a triangle∆ ∈ Ξ, let G∆
i ⊆ Gi be the set of lines that intersect∆.

Let a∆
i (resp.,b∆

i ) be the number of lines ofGi that lie below (resp., above)∆. Then

f(G0, G1, τ, a0, a1, b0, b1) =
⋃

∆∈Ξ

f(G0, G1,∆, a0, a1, b0, b1)

=
⋃

∆∈Ξ

f(G∆
0 , G∆

1 ,∆, a0 − a∆
0 , a1 − a∆

1 , b0 − b∆
0 , b1 − b∆

1 ).
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Since|G∆
0 ∪ G∆

1 | ≤ |G0 ∪ G1|/r, condition (C3) is satisfied.
Hence, we can compute a basis forf(H0,H1, R

2, k0, k1, k0, k1) in randomized expectedO(n log n)
time. Putting everything together, we conclude the following.

Theorem 3.2 Given two finite point setsP0, P1 in R
3 with a total ofn points and a directionu, we

can compute a center-transversal line forP0, P1 in directionu, or decide that no such line exists, in
O(n log n) expected time.

4 Variations

Bichromatically deepest line. The algorithm that we have presented in Section 2 can be extended
so that, for any given numberα ∈ [0, 1], it finds a line` with the property that any closed halfspace
containing` also contains at leastdα|Pi|e points ofPi, for i = 0, 1, or determines that no such line
exists. The running time remainsO(n1+εκ2(n)), for anyε > 0.

We define thebichromatic depthof a line` with respect toP0, P1 as follows:

DEPTH(`;P0, P1) = min
h

{

min

{

|P0 ∩ h|

|P0|
,
|P1 ∩ h|

|P1|

}}

∈ [0, 1],

where the minimum is taken over all closed halfspacesh containing̀ . Equivalently, DEPTH(`;P0, P1) ≥
α means that any closed halfspace containing` also contains at leastdα|Pi|e points of Pi, for
i = 0, 1. A line `0 is a bichromatically deepest lineif it has maximum bichromatic depth. The
center-transversal theorem (Theorem 1.1) implies that there always exists a line of depth at least
1/3. By conducting a binary search and using the extended version of the algorithm of Section 2,
we can easily find a line with maximum depth. We thus obtain thefollowing.

Theorem 4.1 Given two finite point setsP0, P1 in R
3 with a total ofn points, we can compute a

bichromatically deepest line forP0, P1 in O(n1+εκ2(n)) time, for anyε > 0.

Computing an almost-deepest line. We next observe that, for any fixedδ > 0, we can compute
in linear time a linè whose bichromatic depth with respect toP0, P1 is at least1 − δ times the
maximum depth of a line. Anε-approximationof a point setP (with respect to closed halfspace
ranges) is a subsetA ⊆ P such that, for any closed halfspaceh we have

∣

∣

∣

∣

|A ∩ h|

|A|
−

|P ∩ h|

|P |

∣

∣

∣

∣

≤ ε.

As is well known [10], for any fixedε, anε-approximation of sizeO
(

1
ε2 log 1

ε

)

can be computed
deterministically inO(n) time.

We fix ε = δ
6 , and compute for eachPi anε-approximation subsetAi ⊂ Pi as above. We then

compute a bichromatic deepest line`A for A0 andA1 in O(1) time and returǹ A. We now argue
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that`A is an almost-deepest line. Observe that for any line` we have (whereh ranges over all closed
halfspaces containing̀)

DEPTH(`;P0, P1) = min
h

min
i=0,1

{|Pi ∩ h|/|Pi|} ≥ min
h

min
i=0,1

{|Ai ∩ h|/|Ai|} − ε

= DEPTH(`;A0, A1) − ε,

and similarly
DEPTH(`;P0, P1) ≤ DEPTH(`;A0, A1) + ε.

Let `opt be a bichromatically deepest line forP0, P1. Since DEPTH(`opt;P0, P1) ≥
1
3 , we have

DEPTH(`A;P0, P1) ≥ DEPTH(`A;A0, A1) − ε ≥ DEPTH(`opt;A0, A1) − ε

≥ DEPTH(`opt;P0, P1) −
δ

3
≥ (1 − δ)DEPTH(`opt;P0, P1).

We thus conclude the following.

Theorem 4.2 For a fixed parameterδ > 0, and two finite point setsP0, P1 ⊂ R
3 with a total ofn

points, we can compute inO(n) time a line` whose bichromatic depth is at least1 − δ times the
maximum bichromatic depth.

5 Conclusions

The efficiency of our algorithm in Section 2 depends on the worst-case complexityκ(n) of a k-
level in an arrangement ofn planes in three dimensions. The currently best known boundκ(n) =
O(n5/2) of [28] is probably not tight, and reducing it would have direct impact on the running time
bound of our algorithm. Also, it is not clear that our approach best exploits the geometric structure
of the problem inR3. For example, in Section 3 we note that a center-transversalline exists in a
given direction~u if and only if the projections ofP0 andP1 onto a plane orthogonal to~u have a
common center point. Can we find an efficient characterization of “candidate” directions, and then
test each of them efficiently? Finally, it is unclear whetherthe tools that we use can be extended to
yield any improvement over the algorithm in [5] for constructing center-transversal flats in higher
dimensions.
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