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Abstract

A center-transversal line for two finite point setsRA is a line with the property that any
closed halfspace that contains it also contains at leaghingeof each point set. It is known that
a center-transversal line always exists,but the best kradgorithm for finding such a line takes
roughlyn'? time. We propose an algorithm that finds a center-transMerean O(n'*<x?(n))
worst-case time, for any > 0, wherex(n) is the maximum complexity of a single level in an
arrangement af planes inR3. With the current best upper bour¢h) = O(n®/?), the running
time isO(n®+¢), for anye > 0. We also show that the problem of deciding whether there is a
center-transversal line parallel to a given direction castived inO(n logn) expected time.
Finally, we extend the concept of center-transversal tirthat of bichromatic depth of lines in
space, and give an algorithm that computes a deepest licteixatime O(n'*<x2%(n)), and a
linear-time approximation algorithm that computes, foy apecified > 0, a line whose depth
is at leastl — § times the maximum depth.
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1 Introduction

Center points and ham-sandwich cuts are two classicalmotindiscrete geometry. Given a set
P of points inR?, a pointg, not necessarily itP, is acenter pointwith respect taP if any closed
halfspace that contaisalso contains at leagP|/(d+1) points of P. The existence of center points
is a consequence of Helly’s theorem [20]. Givéfinite point sets, . . ., P;_; in R% with n points

in total, aham-sandwich cus a hyperplané: such that each of the open halfspaces bounded by
contains at mostP;|/2 points of P;, for everyi = 0,1,...,d — 1. Dol'nikov [15], andZivaljevic
and Vrecica [31] proved the following theorem, calleghter-transversal theorenvhich yields a
generalization of center points and ham-sandwich cuts.

Theorem 1.1 (Center-Transversal Theorem)Givenk + 1 finite point setsP, Py, ..., P, in R,
forany0 < k < d — 1, there exists &-flat f such that any closed halfspace that contajnalso
contains at least——|P;| points of P, for eachi = 0,1,..., k.

Observe that whek = 0, f is a center point, and whelh = d — 1, f is a ham-sandwich
cut. Therefore, the center-transversal theorem can beasean “interpolation” between these two
theorems. A weaker result wifl®;|/(d + 1) instead of|P;|/(d — k + 1) can easily be obtained by
considering thé:-flat passing through a center point of each of ihei = 0,1,... k.

In this paper we consider in detail the case- 3, £k = 1. Given two finite point set$, P; in
R3, we say that a liné is acenter-transversal linéor P, P; if any closed half-space that contains
¢ also contains at leasP; | /3 points of P;, for i = 0, 1. The center-transversal theorem asserts that,
for any finite point setd%, P, in R?, there exists a center-transversal line. However, thenatig
proofs [15, 31] of this result are non-constructive and dblead to an algorithm for finding a
center-transversal line. The running time of the best knalgorithm for this problem [5] is rather
large (about'>—see below). We present a considerably more efficient algorfor finding such
a line, and consider several other related problems.

Related work. A more detailed review of center points, ham sandwich cuid ralated problems
can be found in Matousek [20]. Efficient algorithms are kndier computing a center point in
R? andR3 [13, 18, 21]. A center point ifR? can be found using linear programming wéhn<)
linear inequalities, and there exists a faster algorithue, i Clarkson et al. [12], for computing an
approximatecenter point in arbitrary dimensions; that is, a pairguch that any closed halfspace
containingg contains at leas®(n/d?) points of P. Efficient algorithms have also been developed
for constructing thecenter region namely, the set of all center points, R andR? [4, 7, 19].
The concept of center point leads to generalizations tha baen useful in robust statistics. The
halfspace deptialso called location depth, data depth) of a pgin¢lative to a data seP in R,
is the smallest number of data points in any closed halfspdse boundary passes throughA
center point is a point with depth at led#t|/(d + 1), and a halfspace median, oifekey pointis
a point with maximum halfspace depth. Chan [7], improvingmuprevious results, has obtained a
randomized) (n logn + n9~!) expected-time algorithm for computing a Tukey poinfifi

The problem that we consider can be relatechtdtivariate regression deptla generalization,
introduced by Bern and Eppstein [5], mfgression deptha quality measure for robust linear re-



gression defined by Rousseeuw and Hubert [17, 26, 27]. licpkat, Bern and Eppstein [5] give
a general-purpose algorithm, which can be easily modifiedeidl an algorithm that constructs a
center-transversal line iR3 in O(n!2*¢) time, for anye > 0.

Our contributions.  Let Py, P; be two finite point sets iiR® with a total ofn points.

e We present an algorithm that constructs a center-traraers for Py andP; in O(n' k2% (n))
worst-case time, for any > 0, wherex(n) is the maximum complexity of a single level in
an arrangement af planes inR3. With the current best upper boundn) = O(n®?) of
[28], the running time i€ (n%+¢), for anye > 0. This is a considerable improvement over
the algorithm by Bern and Eppstein [5].This improvement is attained by analyzing the
combinatorial structure of the problem, by searching fardidate center-transversal lines
in a controlled recursive manner, and by using (standarje-@earching data structures for
handling the interaction between lines and polyhedrahiest See Section 2.

e Using a simple relation between center-transversal lindscanter points in two dimensions,
we show how to decide i@ (n log n) time, for a given direction, whether there exists a center-
transversal line of’, and P; with that direction. See Section 3.

e We introduce the notion of thbichromatic depthof a line ¢, with respect toF, and P;,
extending similar earlier concepts. Specifically, it isthi@imum fraction sizey of the points
in either set that lie in a halfspace that contdirhat is, each halfspace containihgontains
at leastp| P | points of Py and p|P;| points of P;. This concept generalizes that of center-
transversal line (which has bichromatic depth at l€gs). We show how to compute a
deepest line i (n'*¢x2(n)) time, for anye > 0, and give a linear-time approximation
algorithm that computes, for ay> 0, a line whose depth is at ledist § times the maximum
depth. See Section 4.

2 Finding a Center-Transversal Line

We consider the problem of computing a center-transveirsain dual space, where the problem is
reformulated in terms of levels in arrangements of planes.g@herate a set of candidate lines that
is guaranteed to contain a center-transversal line, andseewata structure to determine which
of these candidate lines is a center-transversal line. ikglisity, we assume thab, U P, are in
general position in the sense that no four of them are coplana

Center-transversal lines in the dual. The widely usediuality transform maps a point in R¢
to a hyperplang* in R? and vice-versa, so that the incidence and above/belowiaesiips are
preserved. There are many variants of duality [20]; we useftiiowing one: A pointa =
(a1,...,aq) € R%is mapped to the nonvertical hyperplasie: x4 = a1z + -+ + ag_124-1 —
aq, and a hyperplané : z; = ajz1 + -+ + ag_124-1 + a4 IS mapped to the poink* =

1We note though that an algorithm with running time ne#iis not hard to obtain.



(a1y...,aq-1,—0g), SO (a*)* = a. A point p lies below (resp., above, on) a hyperplainéf
the dual pointh* lies below (resp., above, on) the dual hyperplaiie The pencil of hyperplanes
passing through a linein R?, for d > 3, maps to the set of points ¢ lying on a line/*; we refer
to ¢* as the dual of. For a setd of objects, sed* = {a* | a € A}.

Let P be a set of: points inR?, and letH = P* be the set of, non-vertical planes iR? dual to
the points inP. Thelevelof a pointp € R3, with respect tad, is the number of planes iH that lie
belowp. For0 < k < n, thek-levelof H, denotedC(H ) (or simply L if the setH is understood),
is the closure of the set of all points on any of the planed dhat are at levet. Thek-level L is a
polyhedral terrain that is, ancy-monotone piecewise-linear continuous surface formeddybaet
of the faces of the arrangemedt ). The combinatorial complexity of ;. is the number of faces
of all dimensions inC;. Letx(n) denote the maximum complexity of a level in any arrangemént o
n planes inR?. The best known upper bound fefn) is O(n>/?) [28], which differs substantially
from the best known lower boundfef2(vIeen) [30, 22]. See [3] for more details on arrangements
and levels.

If his a plane inR3 so that each of the two halfspaces bounded lepntains at least points
of P, thenh* lies betweenl,(H) andL,_r(H). If £is a line inR? so that any halfspace con-
taining ¢ contains at leask points of P, then the entire dual liné* lies betweenl,(H) and
L,.—k(H). Hence, the problem of computing a center-transversalfone’, and P, reduces to
computing a line in the dual space that lies ab&e = Ly, (Hp),>1 = L, (H;) and below
Yo = Lno—ko(HO)v Y3 = Ln1—k1 (Hl), whereH; = Pi*’ n; = |Pz|’ andk; = (TLZ/3-| fori = 0, 1.
We note that each of these four terrains can be computéxdrifix(n)) time, for anye > 0 [2].

We thus have four terrainsg, X1, X9, X3, and we wish to compute a line that lies abayg >
and belowX,, 33. Note that such a line cannot bevertical, i.e., parallel to the:-axis. LetFE; be
the set of edges il;, fori = 0,1,2,3, andE = U?:o E;. Setm := |E| < 4k(n), and assume
thatm > n (or else the problem can be solved much faster than the timedoof our algorithm).
Let H = Hy U H,. Each edge ir; lies in the intersection line of a pair of planeskih We define
a “sidedness functionk : £ — {+1,—1}, wherex(e) = +1if e € Eg U E; andy(e) = —1 if
e € Es U F3. LetV be the set of endpoints of edgesfin By the general-position assumption on
input points, each point df is incident upon at most three edgestf Note that the edges i
arenotin general position because many of them can be collineanmanar. For an object (point,
line, segment)\ in R3, let A denote itszy-projection inR2.

Definition 2.1 Let ¢ be a nonvertical line i3, and lete be a nonvertical segment ik* so that
/ intersectsz. We say that lies above(resp.,below) e if the oriented line in thg+z)-direction
that passes throughn é meetse before (resp., afteri. The line/ is in compliancewith an edge
e € E if (i) ¢ does not intersect, or (i) ¢ does not lie below (resp., above)f x(e) = +1 (resp.,
x(e) = —1). We say that is in compliance with a subsét C F if it is in compliance with every
edge inR. In particular, we have:

Lemma 2.2 A nonvertical line/ in R? lies aboveX, ¥; and belowX,, ¥ if and only if ¢ is in
compliance withZ.

The problem of computing a center-transversal line now ceduo finding a line that is in
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compliance withE. Let L be the set of all lines ifR? that are not parallel to thgz-plane, and let
L, be the set of lines ifR3 that are parallel to thgz-plane. We restrict the search for a line that
is in compliance withE to lines inlL. This involves no loss of generality: The lineslipy. have
three degrees of freedom and a center-transversal lineg@them, if there exists one, can be found
using a much simpler (and more efficient) algorithm; see, thg remark following Lemma 2.7.

Overview of the algorithm. Before describing the algorithm in detail, we give a brieéoxew
of the algorithm. Using the fact that each terrainis contained in the union of planes, we show
that, for each lin¢ € L, there exists a “witness set” 6f(n) edges off, so that/ is in compliance
with E if and only if it is in compliance with its witness set. The ceipt of witness sets is the basic
tool to obtain an improved running time over trivial alghrits. We then group the lines Ininto
equivalence classes so that all lines in the same class Ira@aine witness set.

Using these ideas, we present an algorithm to construct af ®eindidate lines that works in
three stages. The first stage, called filiering stage splits the problem int@(m? /n?) subprob-
lems (recall thain is the number of edges in our four terrains). Each subprolgedefined by a
triangle A in a parametric plane, and corresponds to the set of caedidas whose:y-projection
dualizes (in the plane) to a point ik. In each subproblem there is a witness saD0f) edges, and
therefore we obtai® (m?/n?) subproblems, each involving onty(n) edges. The second stage,
called therecursive candidate generation stag@mputes, for each subproblem, a seOgh3*)
candidate lines, for any > 0, which is guaranteed to contain a line in compliance withdbere-
sponding subset of edges if there exists one. This stagmikasto the approach used in [23, 25].
The final stage, called theerification stageuses known data structures to check which of the can-
didate lines generated by the previous step is in compliantte £/, and report the first such line
that it encounters (which is guaranteed to exist, by Thedteth We now describe each of these
steps in detail.

Witness sets and equivalence classeskFor a line/ € L and a subseR C E of edges, we define
the witness sebf ¢ for R, denoted byW (¢, R), as follows. Fori = 0,1,2,3, let R; C R be the
sequence of edges RN E; whosezy-projections intersedt, sorted by the order of the intersection
points alongl. For a plane: € Hy U H, let e};i,e;’i € R; be, respectively, the first and the last
edges in the-th sequence that lie oh, where only planes i, (resp.,H;) are considered for
i =0,2(resp.; = 1, 3). We set

W(l,R) = {e, e, | he H, 0<i<3}.
By definition, / intersects they-projection of every edge iV (¢, R). Note thai IV (¢, R)| = O(n).

Lemma 2.3 For a subsetk C F, aline/ € L is in compliance withR if and only if ¢ is in
compliance withV (¢, R).

The proof of the lemma follows from the simple observatioat tifi £ lies above (resp., below)
bothe,, ;, e;i then it lies above (resp., below) all edgedipthat lie inh.



We define, for a subsd® C F, an equivalence relation dn so that for any two lineg, ¢-
in the same equivalence cla3¥,(¢;, R) = W /3, R). This will discretize the search for a center-
transversal line. For this we need a few notations. For atpaitine, or a segmerg in R?, let
©(€) denote the dual (ilR?) of £, i.e., p(¢) = (£)*. 2 For an edge: = uv in E, let p(e) C R?
be the double wedge that is formed by the linds:) and ¢(v) and does not contain the line in
R? passing through their intersection point and parallel eoytaxis. By standard properties of the
duality transform inR?, a line~ in R? intersects? if and only if v* € ¢(e). Moreover if the points
75,75 € R? lie in the same (left or right) wedge gf(e), theny;, v, intersect from thesame side
in the sense that the same endpoing dies in each of the positive halfplanes boundedyhyand
2, respectively (that is, the halfplanes above these limethiay-direction).

Let R C F be a fixed subset of edges, andlgt C V be the set of endpoints of the edges in
R. For a pointv € Vg, ¢(v) is the line inR? dual to the pointh. SetA(R) = {¢(v) | v € Vg}.
For each facg in the arrangement (A(R)) of A(R), let R(f) denote the set of those edges R
for which ¢(e) containsf. For a linel € L, if f is the face containing(¢) then, by construction,
R(f) is the set of edges d? whosexy-projections interseat By definition,W (¢, R) C R(f). We
note that, in general\(R) is not in general position, since it consists of lines duglamts that lie
on O(n?) lines (namely, the projections of the intersection linesveen pairs of planes ifl or
in H7). Nevertheless, the techniques that we are about to appd @s cuttings of arrangements)
work equally well in degenerate scenarios.

Definition 2.4 We call two linesty, /> € 1L equivalent(with respect taR), denoted by, =g 0o, if
©(¢1) andy(¢s) lie in the same face ofl(A(R)).

Lemma 2.5 Let R C FE be a set of edges, and lét, /5 € IL be two lines so that; = /5. Then
W, R) = W(ls, R).

Proof: Let f be the face ofA(A(R)) that containsp(¢;) andp(¢42). SetR;(f) := R(f) N E; and
L; :== A(Ri(f)) € A(R), fori = 0,1,2,3. Clearly,o(¢1), ¢(¢2) lie in the same face ofl(L;).
Since the edges df; all belong to the same terrain, theiy-projections are pairwise disjoint. An
easy observation (due to [1]) shows tiat/, intersect thery-projections of the edges iR;(f)in
the same order. This immediately implies th#{(¢;, R) N E; = W (l2, R) N E;, from which the
lemma follows. 0

In view of the preceding lemma, we define, for each fgaef A(R), W;(R) C R to be the
common witness set for any line in the equivalence clasespanding tof.

The filtering stage. Given a sefl of lines inR?, a triangleA, (crossed by all the lines if), and
a parametet < r < |L|, a(1/r)-cuttingof (L, Ay) is a triangulatiorE of A so that each triangle
of = is crossed by at mosL|/r lines of L. It is known that a1/r)-cutting consisting oD (r2)
triangles, along with the set of lines crossing each of iengles, can be computed ®(|L|r)
time [9].

Note thatp(¢) is not defined if? is parallel to theyz-plane. That is why we exclude these lines frium



Let A = A(E). We setdy = R? andr = m/n, and compute &1 /r)-cutting = of (A, Ag).
For each triangle\ € =, let Aa be the set of lines oA that crossA; since= is a (1/r)-cutting,
we have|Aa| < m/r = n. Let EA C E be the set of edges = wv so that eitherp(u) or
¢(v) belongs toAa. Since each vertex df is an endpoint of at most three edgesmfwe have
|Ea|l < 3|Aa] < 3n. ForeachA € E, let Fa = {e € E\ Ea | A C p(e)}. We refer to the edges
in EA asshortand to the edges ifix aslong (in A). Finally, letlLa = {¢ € L | ¢(¢) € A}.

SinceA is contained in a face AA(A(Fa)) (the arrangement of lines dual to thg-projections
of the endpoints of the edges i), Lemma 2.5 implies thall’ (¢, Fa) is the same for all lines
¢ € La; let WA denote this common witness set. Observe [Hat| = O(n).

If two trianglesA and A’ in Z share an edge, then the symmetric differencé’gf Fa: is a
subset ofEA U Enr. ThereforelVa can be computed frof/as in O(|Ea| + |Ear|) = O(n) time.
Hence, by performing a traversal 8f we can comput&V/ for all trianglesA € =, in overall time
O(m?/n).

The next lemma follows from Lemmas 2.3 and 2.5.

Lemma 2.6 Forany A € =, aline? € L is in compliance with® if and only if¢ is in compliance
with Ea U Wa.

Hence, for eaci\ € =, we have a subproblef\, Ea, Wa), in which we want to determine
whether there is a line ifi.a that is in compliance withEA U Wa (and thus withE). Since
UaLa = L, these subproblems together exhaust the overall problecoraputing a line inL
that is in compliance withE. There areO(m?/n?) such subproblems, and the total time spent in
generating them i® (m?/n).

The recursive candidate generation stage. Let (A, Ea, Wa) be one of the subproblems gener-
ated in the previous stage. We generate a set of “candidags’ that is guaranteed to contain a line
in compliance withEa U W if there exists one ifi.a. If there is a line inL \ L in compliance
with EA U Wa, then the candidate set may or may not contain such a lineedwer, a candidate
line generated by the algorithm may be parallel togheplane. The time used to generate this set
of “candidate” lines will beO (n?*¢), for anye > 0.

Before describing the algorithm, we briefly review the rejargation of lines in Plicker space [24].
An oriented line? in R3 can be mapped to a point/) € R®, called thePliicker pointof /, that lies
on the so-called-dimensionalPliicker hypersurfacél, or to a hyperplanes(¢) in R, called the
Pliicker hyperplanef ¢. (The actual Pliicker space is theal projectiveR®, but since we exclude
lines parallel to thg/z-plane, one of the homogeneous coordinates is always rmreredl hence we
can embed the Pliicker structure into the real 5-dimenk&psce. However, the mapping(-) is
also defined for lines parallel to the-plane.) Abusing the notation a little, we usé:) andw(e)
to denote the Plicker point and hyperplane, respectigéife line supporting an oriented segment
ein R3. Two lines/y, £, where/; € L, are incident (or parallel) if and only i(¢) € w(fs).

We orient every line of. and every edge of in the (4x)-direction (this is well defined for
lines inlL, by definition, and for edges af, by making a small rotation, if necessary). For two
oriented lineg/y, £ in R3, (¢1) lies abovew(f3) (which is the same as(¢2) lying abovew (/1))
if and only if the simplex spanned by a vect@r lying on ¢; with the same orientation, and by a
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vectoris lying on ¢, with the same orientation, is positively oriented. Thisasil/ seen to imply
that, when/; and/, are non-vertical/; passes abové, if and only if either (i)7(¢;) lies above
w(ly) and/; lies counterclockwise téy, or (i) 7 (¢, ) lies belowzw (¢5) and/, lies clockwise to/y.
See [24] for more details.

Let 11,12, n3 be the vertical lines such that the lines dual to their irgetisns with thezy-
plane support the respective edgeses, es of A. We also use the term “edges” when referring to
m1,M2,n3. Forany line/ € L, let B(¢) denote the subset of edgesXok = EAUWAU{n1, 12,3}
that are touched b (in their relative interior or at an endpoint).

Assume now that there is a liflec L in compliance withEx U Wa. If p(¢) is a vertex of
A, then/ touches two of the vertical edges &f\. Since/ intersects an edge of eagh, we can
move/ in the vertical plane containingso that it touches two edges B8t U Wa. Hence, ifp(¢)
is a vertex, then we may assume th&uhces at least four edges®f , otherwise we may assume
that it touches at least two edges®h. Next, we movel around while keeping it in compliance
with EA U W, keepingp(¢) in A, and not losing any contact with an edgeXi until we reach a
critical position of¢ at which B(¢) is maximal. We call a line in such position as#tical line. If
©(¢) reaches a boundary edgeof A during this motion, therd touches the corresponding vertical
line n;. If Ais unbounded, theAmay become parallel to the:-plane. In other words, if there is a
line ¢ € ILa in compliance withEA U Wa, then there is another ling such that’ is in compliance
with Ea U Wa, ¢(¢) € A (possibly at infinity),B(¢) C B(¢'), and either’ € L, is a critical line
or/ € L,.. We focus on the case whéhe L and assume thdt cannot be moved to infinity in
the above motion without violating one of the constrainee(also the remark below).

Using the fact that a line ilR3 has four degrees of freedom and the above argument, it can be
verified that a critical line touches at least four edgeXaf. We next show that each critical lirfe
has a subseti(¢) C B(¢) of four edges that defings in the precise sense stated in the following
lemma. This is easily seen to be the case when the segmeXitséne in general position. However,
in our scenario many of these edges might be coplanar, so@acaceful argument is needed.

Lemma 2.7 If ¢ € L is a critical line, then there exists a subsét/) C B(¢) consisting of four
edges such thgf){w(e) | e € A(¢)} is not contained ilI and = (¢) is one of the (at most two)
pointsII N ((N{w(e) | e € A(€)}).

Proof: Let F'(¢) = (\{w(e) | e € B({)} be the flat in Plucker space that contains (the Plucker
points of) all lines that meeB(?).

We first claim thatf"(¢) cannot be a 1-flat containedlify nor canF'(¢) contain a 2-flat. Indeed,
in either of these cases(¢) would contain (points representing) a 1-parameter coatiatfamily
of lines, including/, so that all lines in this family toucl(¢). We can then mové within this
family until it touches another edge ofa or becomes parallel to thgz-plane. In either caséis
not critical.

If F(¢) is a 1-flat not contained ifl, then F'(¢) and the (quadratic) Plucker hypersurfdde
intersect in at most two points. Moreover, there must exigt dges:, eo, e3, ¢4 in B(¢) such
that F(¢) = N{w(e) | e € B()} = i, @(e:). The subser(¢) := {ey, ..., es} has the desired
properties.



If F(¢) is a0-flat, then there must exist five edges. . ., e5 € B(¢) suchthat’'(¢) = ({w(e) |
e € B(f)} = N>, @w(e;). The Plicker hypersurfacd cannot contain the five different 1-flats
obtained by intersecting any four of the hyperplane&;),...,w(es), because they spaR®.
Therefore, there exists a subset of four edggg) := {¢/|,...,e}} C {e1,...,e5} € B(¢)
such thatﬂf:1 w(e}) is a 1-flat not contained ifl and(¢) is one of the (at most two) points

1N (N =(e). =

Remark. We can define the notion of “critical” lines for lines In,. as well. Since these lines
have three degrees of freedom, an argument similar to théndoemma 2.7 shows that a critical
line ¢ € L, is defined by a sed(¢) C B(¢) of three segments iX 5. For each tripl& of segments
in XA, we can compute the set 6f(1) “candidate” lines. The number of such candidate lines is
O(n?), which we add to the overall set of candidate lines. In the skthe section, we focus on
generating critical lines ifLa.

For each critical linel € La we choose and fix a set(¢) with the properties stated in
Lemma 2.7, which contains as many edges from, 72,73} as possible. We classify each criti-
cal linef € L into one of the following types:

(E1) A(¢) contains two elements dfy;, 72,73 }. In this casep({) is a vertex ofA.

(E2) A(¢) contains one element f);, 72,73} In this casep(?) lies in the relative interior of an
edge ofA.

(E3) A(¥) is disjoint from{ny,n2,n3}. In this casep(¢) may lie anywhere in the interior ak.

Note that in cases (E2), (E3)(¢) can contain additional edges not included inA(¢). Since
in cases (E1), (E2A(¢) contains at most three edges Bi U W, we can generate a set that
contains all the critical lines of type (E1) or (E2) as folewFor each 4-tuplée;, es, e3,e4) Of
distinct edges, witle; € {n1,12,13}, e2 € Xa, andes,eq € Ea U Wa, we computeﬁf:1 w(e;)
and, if this space is a 1-flat not containedlin we add the (at most two) lines corresponding to
IIN ﬂle w(e;) to the candidate set. This procedure takgs?) time.

It remains to construct the s€tA, Ea, W) of critical lines of type (E3). Each such lirfes
in compliance withEA U WA, and is associated with a subsgt) C Ex U W of four edges such
that(\{w(e) | e € A(¢)} is a 1-flat not contained il andx(¢) € IIN (({w(e) | e € A({)}). We
will compute a superset @f(A, Ea, Wa) using a divide-and-conquer algorithm. Our approach for
generating candidate lines is very similar to that used begreni [23] (see also [25]).

We choose a sufficiently large constantand construct &1/(6r))-cutting 7" of (A(Ea), A).
As in the filtering stage, we define, for eacke T', £, C E to be the set of short edgesinand
F. C En to be the set of long edges in We have|E;| < 3|A(EA)|/6r < |Eal/r. SetW, =
F; UWa. Definell; = {£ € La | ¢(¢) € 7}, and note that J__ L. = La. For eachr € T', we
compute a set ofandidatelines C; C L., with the property tha€(A, Ex, Wa) € U, <7 Cr.

Consider a triangle € T. We want to construct a set of candidate lifiizsthat includes the
lines inlL of type (E3). Hence, it suffices to consider only the edfes) IV in its construction.
The line/ is in compliance with an edgee W.. if w(¢) lies in one specific halfspadé. bounded



by w(e). T'. depends on the functiop(e) and on the clockwise order éfandé (when oriented in
the positivez-direction). Sincer is a subset of a fixed wedge ofe), this clockwise order is the
same for all lineg € LL,; hencel'. is the same halfspace for all linesliny. SetX := ﬂeeWT T..
X is a convex polyhedron iR’ with O(n) facets, so its overall combinatorial complexityQ$n?),
and it can be constructed i (n?) time [8]. Note that if¢ € L, is a critical line in compliance with
W, then\{w(e) | e € A(¢) N W,} supports g5 — j)-face of X, wherej = |A(¢) N W;|. There
are four cases, depending on how many edgé¥ oére in A(?).

A(L) € W,. Inthis case the 1-flgf){w(e) | e € A(¢)} supports an edge 6€. Therefore, we find
critical lines of this type as follows: For each edgekothat is not contained ibl, add the (at
most) two lines corresponding to the intersection pointthefedge andlI to the candidate
setC,. The total time spent i® (n?).

|A(¢) N W;| = 3. In this caser(¢) lies in the intersection of the 2-fldto(e) | e € A(¢) N W}
with X, sox(¢) lies on the intersection edge of some 2-fac@%fand the Plicker hyperplane
w(e) for somee € E.. We find critical lines of this type as follows: For each pdiaa edge
e € E, and a2-face ¢ of X, compute the intersectiof N w(e) and, if it is not contained
in II, add the (at most) two lines corresponding to the intergeqgtioints¢ N w(e) N II to
the candidate set,. Since the polyhedroK hasO(n?) 2-faces, the total number of lines
generated in this case@(n?|E,|) = O(n3/r), and their construction tak&3(n?3/r) time.

|A(() N W;| =2. Letej,ea € E; be the two edges that belong #1¢). The Pliicker subspace
of lines (in L) that touche; and ey lies in the 3-dimensional flaf" = w(e;) N w(e2).
Therefore, since is in compliance withiV;, we haver(¢) € F N X. Note thatF’ N X
is a convex 3-polyhedron with)(n) facets, and therefore it has onfy(n) edges. We find
critical lines/ of this type withey, e2 € A(¢), as follows: For each edge éf N X that is not
contained in the Pliicker surfack add the (at most two) lines correspondingitoy X N 11
to the candidate set,. This has to be done for each pair of edgeses € E,. The total
number of lines generated in this casel§ E.|?n) = O(n?/r?), and their computation
takesO(|E,|?>nlogn) = O((n3/r?)logn) time, where the costliest step is the construction,
repeated) (| E,|?) times, of convex 3-polyhedra, each defined by at mdsequalities.

|A(0) N W;| < 1. We partition W, (arbitrarily) intou = O(r) subsetsivV, ... W so that
|WT(i)| < n/r for eachi. We recursively compute the set of candidate lifés, £, WT(i)),
for1 < i < wandforr € T. We thus recursively solv®(r) subproblems, all of whose
outputs are added to our candidate Get Clearly, all lines of this type (and perhaps more)
are found by this recursive procedure.

The correctness of the procedure is fairly straightforwaret 7'(n) denote the maximum time
needed to compute) . C-, which is a superset (A, Ea, Wa), when|Ea|, [Wa| < n. For
eachr € T, we spendO(n? + n/r + (n3/r?)logn) time plus the time needed to sol(r)
recursive calls where the size of each of the two sets of edgatsmostn/r. Since the cutting”
consists ofD(r?) triangles, we obtain the following recurrence.

T(n) = O(r3)T(n/r) + O(n*r? +n3r + n3logn).
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The solution of this recurrence B(n) = O(n3*¢), for anye > 0 (for which we need to choose
sufficiently large, as a function @). The size of2(A, Ea, Wa) is also bounded by this quantity.

Repeating this procedure for tiig(m?/n?) subproblems generated by the filtering stage and
adding the set of critical lines ib,,,, we construct, it (m?n'*¢) overall time, a se€ of O(m?n!**)
candidate lines, guaranteed to contain a center-traravars for Py, P;.

The verification stage. To complete the algorithm, we test which of the line€iis in compliance
with E. Using the data structure described in [11], we can prepsdaO(m?*¢) time, eachE;
into a data structure of siz@(m?+¢) so that we can determine @(log n) time whether a liné € L.
passes above or below the terralp or, equivalently, whethefis in compliance withE;. Querying
each line inC with this data structure for every;, we can determine, i®(m?*¢ + m?n'*¢logn)
time, which of the lines inC are in compliance withF. With an appropriate calibration of the
parameters, we can rewrite this bound &(m?n!*¢), for anye > 0.

Since a center-transversal line always exists, it belon@s by construction, and will be found
by this procedure. Putting everything together, and recathatm < 4x(n), wherex(n) is the
maximum complexity of a level in an arrangement:gilanes inR?, we obtain the following main
result of the paper. For the concrete time bound, we use threrdly best known upper bound
r(n) = O(n®?) of [28].

Theorem 2.8 A center-transversal line for two sef), P; with a total ofn points inR? can be
constructed irO(n'*¢x2(n)) time, for anyz > 0. This bound iO(n*¢), for anye > 0.

Remarks. (1) It is strongly believed that(n) = O(n?*¢), for anyes > 0, in which case our
algorithm would take only)(n5+¢) time, for anys > 0.

(2) The general-position assumption Bn and P; was only used for bounding the size Bi
(or E;). If the points are not in general position, we can assigre@htto each linep(v) € A(E),
which is the number of edges &f incident uporw, and computeveighted(1/r)-cuttings [10], to
obtain the same bound on the sizeF) (or E.).

(3) Let U (P, P;) be the set of Plucker points of center transversal lineg,0and P;. The
above algorithm also proves that the combinatorial conitlet ¥ (P, P;) is O(n'*°x2%(n)), for
anye > 0.

Terrains with many coplanar faces. Pellegrini [23] and Halperin and Sharir [16] have shown
that the complexity of the envelope of lines lying above aypetral terrain of complexity: is
O(k3+¢), for anye > 0. The complexity of this envelope is measured in terms of tinalwer

of critical lines that are tangent to the terrain while ottise lying above it. In our scenario, we
have taken advantage of the fact that the faces of our terem@contained in relatively few planes.
This observation can be extended to more general scendfming the ideas of witness sets and
the filtering stage, as in our analysis, we directly obtaia fbllowing result, which may be of
independent interest.

Theorem 2.9 Let Y. be a terrain of complexity in R3, all of whose facets lie on different planes.
Then the complexity of the envelope of lines that pass abios® (n!+<k?), for anys > 0.
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3 Center-Transversal Line in a Given Direction

In this section we present a randomized algorithm for dagidivhether there exists a center-
transversal line of?, and P; in a given direction, say, the-direction. LetP, (resp.,P;) be the
xy-projection of Py (resp.,P;). A center-transversal line dfy and P; exists in thez-direction if
and only if the intersection of the center regionsifand P, is nonempty. Since each of these
center regions can be computedn log® n) randomized expected time [7] and their intersection
can be computed in linear time, we can compute a centervigesd line in thez-direction, if it
exists, inO(n log® n) expected time. Here we improve the expected running tingg(iolog ).

Fori = 0,1, let H; be the set of lines dual t&;, and, for an integek, let Ly (H;) (resp.,
Uk (H;)) be the set of points whose levelt( H;) is at mostk (resp., at least;| — k). In the dual
setting, the problem of computing a center-transversalitirthez-direction reduces to determining
whether there exists a line in the dual plane that lies aliqyéH,)ULy, (H1) and belowlly, (Ho)U
U, (H1), wherek; = [|P;|/3] fori =0, 1.

Let L be the set of all lines ifR%. Suppose we have a (possibly infinite) Sedf points inR?,
in which each point is colored red or blue. We wish to compute

w(S) = min slope(?)

s.t.Z lies above the red points &f
and/ lies below the blue points of Q)

As argued by Chan [7], this is an instance of linear programgmiBy settingS = L (Hy) U
L (H1) UUg(Ho) UUg(H1), where the points of;,(Hy) U L, (H;) are colored red and the points
of Uy (Hp) U Ui (H,) are colored blue, we can reduce our problem to an instanch.oA(though
the setS is infinite in our case, it suffices to consider the verticesLgfH;) and U (H;), for
i = 0, 1. However we cannot afford to compute the vertices of theléemeplicitly if we are aiming
for an O(nlogn)-time algorithm, as the best known upper bound on the coriiplek a level in
A(H;) is O(n*/3) [14], and a lower bound of - 2(v1°e™) exists [30]. We use Chan’s randomized
technique for solving LP-type problems in which the conateaare defined implicitly by a set of
input objects, and which satisfy certain properties (searba 3.1 below).

Given a sefH of constraints and a totally ordered 3$&t, a weight functionw : 22 — W is
calledLP-typeof dimension at mosf if the following three conditions are satisfied for every setb
H C H and each constrairt € H:

e There exists a subsét of size at most/, called abasisof H, so thatv(H) = w(B).
o w(HU{h}) > w(H).
e Let /' C H such thatw(F) = w(H). Thenw(H U {h}) > w(H) < w(F U{h}) > w(F).

Since linear programming, with being the corresponding linear objective function, is an LP
type problem of dimensiod + 1, (1) is an LP-type problem. See [29] for more details. The
following lemma is the main result behind Chan'’s technique.
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Lemma 3.1 (Chan [7]) Letw : 2 — W be an LP-type function of constant dimensihrand let
a < 1 ands be fixed constants. Suppoge P — 2 is a function that maps inputs from some set
P to sets of constraints with the following properties:

(C1) ForinputsPy, ..., P; € P of constant size, a basis fgi(P,) U --- U f(P;) can be computed
in constant time.

(C2) For any inputP € P of sizen and any basisB C f(P), we can decide iD(D(n)) time
whetherB satisfiesf (P), i.e.,w(f(P)) = w(B).

(C3) For any inputP € P of sizen, we can construct, it¥(D(n)) time, inputsPy,...,P; € P
each of size at mostwn |, so thatf(P) = f(P1)U--- U f(Ps).

Then we can compute a basis f6(P) in O(D(n)) expected time, assuming th&X(n)/n° is
monotonically increasing.

This lemma is a multidimensional version of an earlier téghe that Chan proposed in [6]; he used
this technique to compute the Tukey depth of a point set. A géght (straightforward) variant
of this algorithm can be used to solve our problem. For the sdlcompleteness, we sketch the
algorithm here.

We formulate the problem in a slightly more general framéwdFhe set of input® that we
consider is the set of tuplé¢sy, G1, 7, ag, a1, bo, b1 ), whereG; C H;, fori = 0,1, 7 is a triangle
in the plane, andy, a1, by, by are nonnegative integers. The functipn P — 2R s given by

f(Go, G1,T,a9,a1, by, bl) =7N (Lao (Go) U }:’a1 (Gl) U ubO(Go) U ubl (Gl)) 2)

The points ofL = (L4,(Go) U L4, (G1)) N 7 are colored red, and the points Gf= (U, (Go) U
Uy, (G1)) N 7 are colored blue. We wish to computg f (Go, G1, 7, ag, a1, b, b1)), as defined in
(2).

We show that (2) satisfies (C1)—(C3). Condition (C1) is #iiecause we can solve the problem
explicitly in O(1) time for constant-size inputs, by constructing the fulkagement of the input
lines.

As for (C2), let? be the line defined by a basi$. We need to determine whethéties above
L and belowU. We describe how to determine whetlfdies abovelL. Let 7" be the portion of-
lying above/, then/ lies aboveL if and only if 7™ N L = §; the latter holds if and only if none of
the edges of * intersectsL. Let e be an edge of 7. We compute the intersection pointseofvith
the lines inGy U GG1 and sort them along. By computing the level of an endpoint efvith respect
to Gy andG; and then traversing the list of the intersection points, aeaetermine in linear time
whetherL intersects:. Hence (C2) holds witlD(n) = O(nlogn).

As for (C3), we choose a constanand compute in linear-time @ /r)-cutting = of Gp U Gy
of sizeO(r?) within 7 [10]. For a triangleA € =, let G2 C G; be the set of lines that interseft
Let aiA (resp.,biA) be the number of lines aF; that lie below (resp., above). Then

f(GOaG17T7 a07a17b07b1) - U f(G07G17A7a07a17b07b1)
A€E
= U f(GOA,GlA,A,aO—aOA,al—alA,bo—bOA,bl—blA).
A€E
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Since|G4 U GL| < |Go U Gy|/r, condition (C3) is satisfied.
Hence, we can compute a basis foiy, H1, R?, ko, k1, ko, k1) in randomized expected(n log n)
time. Putting everything together, we conclude the folluyvi

Theorem 3.2 Given two finite point setBy, P; in R? with a total ofn points and a direction:, we
can compute a center-transversal line f@y, P; in directionu, or decide that no such line exists, in
O(nlogn) expected time.

4 Variations

Bichromatically deepest line. The algorithm that we have presented in Section 2 can bededien
so that, for any given number € [0, 1], it finds a line/ with the property that any closed halfspace
containing? also contains at leasty| P;|| points of P;, for i = 0, 1, or determines that no such line
exists. The running time remaiig(n'x2(n)), for anye > 0.

We define thédichromatic deptlof a line ¢ with respect taP,, P, as follows:

. X |P0ﬂh| |P1ﬂh|}}
DEPTH(¢; Py, P1) = min < min , € |0,1],
(65 Fo, Br) = ) { { [P |1 0.1

where the minimum is taken over all closed halfspdcesntainingl. Equivalently, DEPTH(¢; Py, Py) >
a means that any closed halfspace containirgso contains at leagiv|F;|] points of P;, for

i = 0,1. Aline ¢y is abichromatically deepest ling it has maximum bichromatic depth. The
center-transversal theorem (Theorem 1.1) implies thatthkvays exists a line of depth at least
1/3. By conducting a binary search and using the extended veddithe algorithm of Section 2,
we can easily find a line with maximum depth. We thus obtairféHewing.

Theorem 4.1 Given two finite point set®,, P; in R? with a total ofn points, we can compute a
bichromatically deepest line fafy, P in O(n!™¢k%(n)) time, for anys > 0.

Computing an almost-deepest line. We next observe that, for any fixéd> 0, we can compute
in linear time a line/ whose bichromatic depth with respect®y, P; is at leastl — § times the
maximum depth of a line. Am-approximationof a point setP (with respect to closed halfspace
ranges) is a subset C P such that, for any closed halfspakeve have

ANK [PAR
A 1P|

As is well known [10], for any fixedt, ans-approximation of siz& (4 log 1) can be computed
deterministically inO(n) time.

We fixe = % and compute for each; ane-approximation subset; C P; as above. We then
compute a bichromatic deepest liag for A; and A; in O(1) time and returr/ 4. We now argue
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that?4 is an almost-deepest line. Observe that for anydine have (wheré ranges over all closed
halfspaces containing

DEPTH((; Py, P1) = min min{|P; N Al/|Pil} = min min{|A; 0 hl/|Ail} -
= DEPTH(/; Ap, A1) — ¢,

and similarly
DEPTH(¢; Py, Py) < DEPTH(¢; Ag, A1) + €.

Let /,,+ be a bichromatically deepest line f6¥, P;. Since DEPTH({ope; Po, P1) > =, we have

1
31
DEPTH({4; Py, P1) > DEPTH({ 4; Ag, A1) — € > DEPTH({ops; Ao, A1) — €

> DEPTH(opt; Po, P1) — = > (1 — 6)DEPTH(Lopt; Po, Pr).

Wl ™

We thus conclude the following.

Theorem 4.2 For a fixed parameted > 0, and two finite point set&,, P, C R3 with a total ofn
points, we can compute i@(n) time a line/ whose bichromatic depth is at least- § times the
maximum bichromatic depth.

5 Conclusions

The efficiency of our algorithm in Section 2 depends on thestvoase complexity:(n) of a k-
level in an arrangement of planes in three dimensions. The currently best known beyng =
O(n5/2) of [28] is probably not tight, and reducing it would have direnpact on the running time
bound of our algorithm. Also, it is not clear that our appiohest exploits the geometric structure
of the problem inR3. For example, in Section 3 we note that a center-transvérgakxists in a
given direction if and only if the projections of}, and P, onto a plane orthogonal @ have a
common center point. Can we find an efficient characterimatid'‘candidate” directions, and then
test each of them efficiently? Finally, it is unclear whettier tools that we use can be extended to
yield any improvement over the algorithm in [5] for consting center-transversal flats in higher
dimensions.
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