
Area-Preserving Approximations of Polygonal Paths ∗

Prosenjit Bose1 Sergio Cabello2 Otfried Cheong3 Joachim Gudmundsson4

Marc van Kreveld5 Bettina Speckmann4

1 School of Computer Science, Carleton University, Canada.
jit@scs.carleton.ca

2 Department of Mathematics, Institute for Mathematics, Physics and Mechanics, Slovenia.
sergio.cabello@imfm.uni-lj.si

3 Division of Computer Science, KAIST, Korea.
otfried@tclab.kaist.ac.kr

4 Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands.
h.j.gudmundsson@tue.nl speckman@win.tue.nl

5 Institute for Information and Computing Sciences, Utrecht University, The Netherlands.

marc@cs.uu.nl

Abstract

Let P be an x-monotone polygonal path in the plane. For a path Q that approximates
P let WA(Q) be the area above P and below Q, and let WB(Q) be the area above Q and
below P .

Given P and an integer k, we show how to compute a path Q with at most k edges that
minimizes WA(Q)+WB(Q). Given P and a cost C, we show how to find a path Q with the
smallest possible number of edges such that WA(Q) + WB(Q) ≤ C.

However, given P , an integer k, and a cost C, it is NP-hard to determine if a path Q with
at most k edges exists such that max{WA(Q), WB(Q)} ≤ C. We describe an approximation
algorithm for this setting.

Finally, it is also NP-hard to decide whether a path Q exists such that |WA(Q) −
WB(Q)| = 0. Nevertheless, in this error measure we provide an algorithm for computing an
optimal approximation up to an additive error.

1 Introduction

Let P be an x-monotone polygonal path. We consider the problem of approximating P by
a “simpler” polygonal path Q. Imai and Iri [11, 12] introduced two different versions of this
problem. In the first one, one is given an integer k and the aim is to compute a polygonal path
Q that has k edges and approximates P in the best possible way according to some measure
that compares P and Q. In the second version, one is given a tolerance ε > 0 and wants to
compute a polygonal path Q that approximates P within ε and has the fewest vertices. Both
versions have been considered for different measures that are based on variations of the notion
of minimum distance between P and Q [1, 2, 3, 4, 8, 9, 10, 11, 12, 15, 16]. These problems have
many applications in map simplification.

In this paper, we consider area-preserving approximations of polygonal paths. Area-preserving
simplifications are particularly meaningful for a path representing the border between two coun-
tries or regions; the approximations simplify such paths without substantially distorting the area
information. In quantitative mapping [6], for instance, preservation of area is more important
than shape fidelity. Although area as a measure for line simplification has been proposed be-
fore [5, 14], the problem has not been studied algorithmically yet. We provide the first efficient
algorithms with performance guarantees on the total area displaced by the simplification.

∗J.G. supported by the Netherlands Organisation for Scientific Research (NWO), S.C. partially supported by
the European Community Sixth Framework Programme under a Marie Curie Intra-European Fellowship.

1

2 1 Introduction

We have two restrictions in our model for line simplification, both of which are quite common:
The original path should be x-monotone and we do not allow Steiner points in the simplifica-
tion. The first assumption is made to avoid that the simplified path has self-intersections, which
leads to topological inconsistency in the output. To avoid this issue, most authors that con-
sider distance error assume that the input is an x-monotone path; certain versions of optimal
simplification without self-intersections are even NP-hard [7]. The second assumption allows
us to reduce the amount of freedom that the simplification has and so enables more efficient
approaches to the problem.

Problem formulation. Let P be an x-monotone polygonal path with vertices p1, . . . , pn and let
Q = (pi0 , . . . , pik) be an approximating path with 1 = i0 < · · · < ik = n. Let WA(Q) be the
area above P and below Q, and let WB(Q) be the area above Q and below P . We consider
three cost functions to measure the quality of the approximation Q.

Sum-area model. In this model the error of the approximation path Q is WA(Q) + WB(Q).
In other words, we wish to minimize the total transfer of area between the regions above and
below P . We show that optimal approximations in this model can be computed in polynomial
time. More precisely, given P and k, we can compute the minimum-error path Q with at most
k edges in time O(kn2 + n2+ε), for any ε > 0. Furthermore, given P and a cost C > 0, we can
compute the path Q with error at most C with the minimum number of links within the same
time bound (here k is the number of edges in the solution). The sum-area model is discussed
in Section 2.

Max-area model. If the regions above and below P are countries and Q is intended as a
border simplification, then each country may feel badly only about the area it gives away. Here
we model this situation: The error of the approximation path Q is max{WA(Q),WB(Q)}. We
show that it is NP-hard to compute the minimum-error k-link approximation path in this model.
However, we also show that given P , k, and δ > 0 one can compute an approximation path Q
whose error is at most a factor 1 + δ from the optimum error in O(k2n2/δ + n2+ε) time. The
max-area model is discussed in Section 3.

Diff-area model. Another error measure that suggests itself is the cost |WA(Q)−WB(Q)| which
measures by how much the area above (or below) the path is changed by the simplification.
This differs from the models above in that area is now “exchangeable”, that is, area displaced
at one spot can be compensated for at another spot. We show that it is NP-hard to decide
whether a path Q exists such that |WA(Q)−WB(Q)| = 0. Nevertheless, given a polygonal path
P whose convex hull has area H, k, and δ > 0 we can compute an approximation path Q whose
error is at most δ · H larger than the optimal error in O(k2n2/δ) time. The diff-area model is
discussed in Section 4.

P

Q

Figure 1: A path P and an approximation Q; WA(Q)— dark grey, WB(Q)—light grey.

Area-Preserving Approximations of Polygonal Paths 3

2 The sum-area model

The following theorem constitutes the main result of this section.

Theorem 1 Given a polygonal path P and an integer k, the optimal approximating path with
at most k edges in the sum-area model can be computed in O(kn2 + n2+ε) time using O(n2+ε)
space, for any ε > 0.

The algorithm consists of two steps. In the first step we construct a directed, weighted graph
GP from P . Its vertices are the vertices of P and it includes a directed edge e = (pi, pj) for each
pair 1 ≤ i < j ≤ n. Each edge e of GP has two weights, wa(e) and wb(e), which correspond to
the area above P and below e, and vice versa (see Fig. 2(a)).

Any path in GP from p1 to pn corresponds to a simplified path Q and we have WA(Q) =
∑

e∈Q wa(e) and WB(Q) =
∑

e∈Q wb(e). We can therefore solve our optimization problem in
the second step by computing a shortest k-link path from p1 to pn in GP , where the cost of an
edge e is wa(e) + wb(e).

Since our approximation path Q will only make use of edges from the graph GP , we can
easily accommodate additional constraints by restricting the set of edges of GP . For instance, if
we require the path Q to stay within a certain Hausdorff-distance of P , or if certain landmark
features may not be displaced, this can be handled by removing the edges of GP that violate
these constraints.

2.1 Constructing GP

The weights wa (and symmetrically wb) of GP are computed as follows:

1. Let R be the polygon formed with the polyline P , two vertical segments at p1 and pn, and
a horizontal segment above P and connecting the two vertical segments (see Fig. 2(b)).

2. Recursively partition R by a vertical straight line segment into two polygons Rl and Rr of
the same complexity. This partition gives a hierarchical decomposition, denoted T , into
O(n) polygons R1, . . . , Rℓ with total complexity O(n log n).

3. The weight wa(e) of an edge e = (pi, pj) can be expressed as the sum over O(log n)
halfplane area queries of the type: given a polygon Ri and halfplane h, determine the
area of Ri ∩ h. Instead of answering each query on-line we save (batch) the queries to
each subpolygon Ri. When all queries have been saved we use the following result by
Langerman:

Fact 1 (Langerman [13]) Given a simple polygon P with n vertices and m lines, the
area of P on both sides of each line can be computed in time O(m2/3n2/3+ε + (n + m)
polylog n) for any ε > 0.

pi

pj
R

p1

p2

pn

(a) (b)

Figure 2: (a) The weights of e = (pi, pj) in GP : wa(e)—dark gray,
wb(e)—light gray. (b) Constructing the polygon R from P .

4 2 The sum-area model

Lemma 2 The graph GP can be constructed in O(n2+ε) time and space.

Proof. Recall that the tree T is a binary tree with O(n) leaves and that the total complexity
of all polygons in T is O(n log n). As mentioned above, each weight wa(e) can be expressed
as the sum over O(log n) halfplane queries to some polygons Ri. Since there are O(n2) edges
there will be O(n2 log n) halfplane area queries to O(n) polygons, i.e., O(n2 log n) queries at the
nodes of T .

The total time-complexity is obtained by summing all the queries using Fact 1. For a node
v in T , let mv be the number of queries batched on it. If |Rv| denotes the complexity of the
polygon Rv, then the total time needed is

O
(

∑

v∈T

(mv + |Rv |) polylog n + m2/3
v |Rv|

2/3+ε
)

.

Since |Rv| = O(n) we have that O
(
∑

v∈T ((mv + |Rv |) polylog n
)

= O(n2+ε). It remains to

bound
∑

v∈T m
2/3
v |Rv|

2/3+ε. Consider a level L in the tree T and let h be the number of nodes
in L. For any node v ∈ L we have |Rv| = O(n/h) and

∑

v∈L mv = O(n2). The cost at level L
is therefore

O
(

∑

v∈L

m2/3
v |Rv|

2/3+ε
)

= O
(

(n/h)2/3+ε ·
∑

v∈L

mv
2/3

)

.

This value is maximized when all the mv’s have the same value, that is, when mv = O(n2/h),
so it follows that at level L the time needed is bounded by

O
(

(n/h)2/3+ε ·
∑

v∈L

(n2/h)2/3
)

= O(n2+ε).

Since T has depth O(log n), we obtain the lemma. �

2.2 Computing the optimum k-link path

We use dynamic programming to find a minimum-cost path in GP from p1 to pn consisting of
at most k edges. Observe that once the last edge (pi, pn) of the simplification path Q has been
fixed, the path from p1 to pi is a minimum-cost path of at most k − 1 edges.

Let L[i, t] be the cost of an optimal path from p1 to pi with at most t edges, for 1 < i ≤ n,
1 ≤ t ≤ k. The values L[i, t] are computed recursively as follows: If t = 1 then L[i, 1] =
wa(p1, pi) + wb(p1, pi). If t > 1 then

L[i, t] = min
{

L[i, t − 1], min
1<j<i

{L[j, t − 1] + wa(pj , pi) + wb(pj , pi)}
}

.

There are O(kn) L-values to compute and each computation takes O(n) time. Theorem 1
follows.

2.3 Minimizing the number of edges

We can use the same approach to minimize the number of edges of Q for a given approximation
error C. We compute L[·, k] for increasing values of k until we find a k such that L[n, k] ≤ C.
Since GP needs to be computed only once, this proves the following result.

Corollary 3 Given a polygonal path P and a cost C, an approximating path in the sum-area
model with cost at most C and the minimum number of edges can be computed in O(kn2+n2+ε)
time using O(n2+ε) space, for any ε > 0, where k is the number of edges in the solution.

Area-Preserving Approximations of Polygonal Paths 5

3 The max-area model

We first show that area-preserving path approximation is NP-hard in the max-area model and
then describe an approximation algorithm.

3.1 NP-hardness

Recall that the following Partition-problem is (weakly) NP-hard: Given a set of natural
numbers A = {a1, . . . , an}, partition it into two disjoint sets A1 and A2 such that A = A1 ∪A2

and
∑

ai∈A1
ai =

∑

ai∈A2
ai.

Theorem 4 Given a polygonal path P , an integer k, and a cost C, it is NP-hard to determine
whether a simplification Q with at most k edges and approximation error at most C exists in
the max-area model.

Proof. The proof is a reduction from Partition. Given an instance of Partition, let S :=
∑

ai∈A ai and set K := 2S +1. For each ai let Pi be the path from pi to pi+1 sketched in Fig. 3.
The precise coordinates of the points are given there as well. Let P be the concatenation of
the pieces P1, . . . , Pn. Each Pi has six edges, hence P consists of 6n edges. Note that the two
triangles △piqiri and △qirisi both have area ai (see Fig. 3 right).

Consider now a simplification Q of P with max-area error at most S/2. Then Q cannot
contain any shortcut in the subpath Pi, except possibly between pi and ri, or between qi and
si; also, Q cannot contain a shortcut between a point in Pi and a point in Pj , for i 6= j. Indeed,
any simplification with such a shortcut e would have max{wa(e), wb(e)} ≥ K/4 and therefore
max{WA(Q),WB(Q)} ≥ K/4 > S/2.

It follows that Q must go through all the points pi, 1 ≤ i ≤ n + 1. Let Qi be the subpath of
Q from pi to pi+1. Each Qi consists of at least 5 edges, and so Q has at least 5n edges.

If Q has exactly 5n edges, it follows that each Qi has exactly 5 edges, and is either of the
form pirisi · · · pi+1, or of the form piqisi · · · pi+1

. In the first case, the approximation error of
Qi is WA(Qi) = 0, WB(Qi) = ai, in the second case, we have WA(Qi) = ai, WB(Qi) = 0. Since
∑n

i=1 ai = S, we can have max{WA(Q),WB(Q)} ≤ S/2 if and only if A can be split into two
disjoint subsets A1 and A2 such that

∑

ai∈A1
ai =

∑

ai∈A2
ai = S/2. �

pi

qi

ri

sisi−1 pi+1

K

K

pi = (3i, 0)

qi = (3i + 1, 2ai + K)

ri = (3i + 1,K)

si = (3i + 2, 0)

< K

Figure 3: Sketch of the reduction for the NP-hardness proof in the max-area
model. Only the shortcuts shown on the right can be used because
all others move too much area from above to below or vice versa.

6 3 The max-area model

3.2 An approximation algorithm

We will make use of rounding to find an approximate solution. We are given P , an inte-
ger k, and a parameter δ, and our goal is to find a path Q with at most k edges such that
max{WA(Q),WB(Q)} ≤ (1 + δ) · T , where T := minQ max{WA(Q),WB(Q)} is the value of the
optimal solution.

We start by running the algorithm of Theorem 1, which constructs the graph GP and computes
the value M := minQ{WA(Q) + WB(Q)}. Clearly we have M/2 ≤ T ≤ M .

Let now ∆ := δM/2k. For each edge e of GP , we compute values wa(e) and wb(e) as follows:
if wa(e) > M , then wa(e) = ∞, otherwise wa(e) := ⌊wa(e)/∆⌋. Similarly wb(e) = ∞ if
wb(e) > M , otherwise wb(e) := ⌊wb(e)/∆⌋.

We observe that all finite values of wa(e) and wb(e) are integers in the range 0, 1, . . . , ⌊M/∆⌋.
This implies that one can avoid to actually use the floor function by replacing it with binary
search. Each floor computation requires log(M/∆) = log(2k/δ) = O(log k + log(1/δ)) search
steps, for a total of O(n2 log k + n2 log(1/δ)) additional time.

Let now Q be a path in GP with max{WA(Q),WB(Q)} ≤ M and with at most k edges. Let
WA(Q) :=

∑

e∈Q wa(e), and WB(Q) :=
∑

e∈Q wb(e). Note that for any e ∈ Q, wa(e) is finite,
and we have

∆wa(e) ≤ wa(e) < ∆wa(e) + ∆.

This implies

∆WA(Q) = ∆
∑

e∈Q

wa(e) ≤
∑

e∈Q

wa(e) = WA(Q),

and

WA(Q) =
∑

e∈Q

wa(e) <
∑

e∈Q

(

∆wa(e) + ∆
)

≤ ∆
∑

e∈Q

wa(e) + k∆ = ∆WA(Q) + k∆

= ∆WA(Q) + kδM/2k = ∆WA(Q) + δM/2 ≤ ∆WA(Q) + δT,

(using M/2 ≤ T in the last step). Similarly, we conclude that

∆WB(Q) ≤ WB(Q) < ∆WB(Q) + δT.

Let now Qapp be a path minimizing T ∗ := max{WA(Qapp),WB(Qapp)} with at most k edges.
We claim that Qapp is the approximate solution we are looking for. Indeed, let Qopt be the
optimal solution. Then ∆WA(Qopt) ≤ WA(Qopt) ≤ T , and ∆WB(Qopt) ≤ WB(Qopt) ≤ T , and
therefore ∆T ∗ ≤ T . This implies

WA(Qapp) ≤ ∆WA(Qapp) + δT ≤ ∆T ∗ + δT ≤ T + δT = (1 + δ)T.

Similarly, WB(Qapp) ≤ (1 + δ)T , which proves the claim.

It remains to show how to compute the path Qapp. Again, we employ dynamic programming.
Let F := ⌊M/∆⌋ and recall that all finite wa(e), wb(e) are integers in the range 0, . . . , F . For
integers i, t, s with 1 < i ≤ n, 1 ≤ t ≤ k, and 0 ≤ s ≤ F , let L[i, t, s] be the minimum value
of WB(Q) for any path Q from p1 to pi with at most t edges and the restriction WA(Q) ≤ s.
We compute L[i, t, s] recursively as follows: if t = 1, then L[i, 1, s] = wb(p1, pi) if wa(p1, pi) ≤ s,
otherwise L[i, 1, s] = ∞. If t > 1, then

L[i, t, s] = min
{

L[i, t − 1, s], min
1 < j < i

wa(pj, pi) ≤ s

{L[j, t − 1, s − wa(pj , pi)] + wb(pj , pi)}
}

.

Area-Preserving Approximations of Polygonal Paths 7

There are O(nkF) = O(nk2/δ) L-values, each of which can be computed in time O(n), for a
total running time of O(n2k2/δ). Once we have computed all values, we can determine the
optimal cost T ∗ using the relation

T ∗ = min
0≤s≤F

max{s, L[n, k, s]}.

Observe that for computing L[·, t, ·] we only use the values L[·, t − 1, ·]. This means that
during the computation of T ∗ we need to store O(nk/δ) values only. To reconstruct the path
Qapp, however, we do need to store the entire table L[·, ·, ·]. We conclude with the following
theorem.

Theorem 5 Given a polygonal path P , an integer k, and a parameter δ > 0, an approximating
path with at most k edges and with max-area cost at most 1 + δ times the optimal can be
computed in O(k2n2/δ + n2+ε) time using O(n2+ε + nk2/δ) space, for any ε > 0.

4 The diff-area model

We first show that area-preserving path approximation is NP-hard in the diff-area model and
then describe an algorithm which computes an approximation within an additive error of the
optimal one.

4.1 NP-hardness

Theorem 6 Given a polygonal path P , it is NP-hard to determine whether an approximation
Q with fewer edges and WA(Q) − WB(Q) = 0 exists.

Proof. The proof is again a reduction from Partition. Given an instance A = {a1, . . . , an} of
Partition where each ai is a positive natural number, let S :=

∑

ai and consider the path P
described in Figure 4. The exact coordinates of the vertices are depicted in the figure. Observe
that for e = (p3i−2, p3i) we have wa(e) = 0, wb(e) = ai. We also have wa(q, s) = S/2 and
wb(q, s) = 0.

It is clear that if there is a subset A1 ⊂ A with S/2 =
∑

ai∈A ai, then the approximation Q
that uses the shortcuts (p3i−2, p3i), for all ai ∈ A1, and the shortcut (q, s) has WA(Q) = WB(Q).
The remainder of the proof is devoted to show that (essentially) this is the only approximation
Q with WA(Q) = WB(Q).

We first make some observations regarding possible approximations of the initial part of P .

a2
an

. . .

S3

a1

2 2 2 S35S 5S

p3i−2 = (i · (5S + 2), 0)
p3i−1 = (i·(5S+2)+1, ai)
p3i = (i · (5S + 2) + 2, 0)

s

r

p4

p5

p6
p1

p2

p3 p3n

q

q = p3n + (S3, 0)
r = q + (1/(2S2),−S3)
s = q + (1/S2, 0)

P ′

1/S2

. . .

Figure 4: Sketch of the reduction for the NP-hardness proof in the diff-area model.

8 4 The diff-area model

Claim 1 Let p′ be a vertex of P different from r or s, and let P ′ be the subpath of P from p1

to p′. For any approximation Q′ of P ′, we have

(1) WB(Q′) ≤ S,

(2) WA(Q′) − WB(Q′) < 8S4, and

(3) if WA(Q′) > 0, then WA(Q′) − WB(Q′) > S.

The maximum possible value of WB(Q′) is the area below P ′ but above the convex hull of P ′.
This is the total area of all the peaks, proving (1). To show (2), observe that the convex hull of
P ′ has area bounded by (n · (5S + 2) + S3) · maxi{ai} < (S · (5S + 2) + S3) · S < 8S4. Finally,
if Q′ has a shortcut e ∈ Q′ with wa(e) 6= 0, then wa(e) > 2S, and hence WA(Q′) > 2S. Since
WB(Q′) ≤ S by (1), we conclude that WA(Q′) − WB(Q′) > 2S − S = S. This proves Claim 1.

Assume now that an approximation Q of P with WA(Q) − WB(Q) = 0 exists. We will show
that the answer to the partition instance is yes. We distinguish two cases, depending on whether
r ∈ Q or r 6∈ Q.

If r ∈ Q, let p′ be the vertex in Q before r, and let Q′ be the subpath of Q from p1 to p′. If
p′ = q, then 0 = WA(Q)−WB(Q) = WA(Q′)−WB(Q′). Since Q 6= P , this implies WA(Q) > 0,
and so by Claim 1 (3) WA(Q′) − WB(Q′) > S > 0, a contradiction. If p′ 6= q, then note that
0 = WA(Q) − WB(Q) = WA(Q′) − WB(Q′) + wa(p

′, r) − wb(p
′, r). Since wb(p

′, r) > S6/2,
wa(p

′, r) < 8S4 and Claim 1 (2), this implies 8S4 > WA(Q′)−WB(Q′) = wb(p
′, r)−wa(p

′, r) >
S6/2 − 8S4 > 8S4, a contradiction for S > 5.

If r 6∈ Q, let p̃ be the vertex in Q before s, let R be the subpath of Q from p1 to p̃ concatenated
with q, s, and let R′ be the subpath of R from p1 to q. We observe that 0 = WA(Q)−WB(Q) =
WA(R) − WB(R) + area(△p̃qs) = WA(R′) + S/2 − WB(R′) + area(△p̃qs).

If the y-coordinate of p̃ is non-zero (and therefore positive), then WA(R′) > 0. By Claim 1 (3)
with p′ = q, we have 0 = WA(R′)+S/2−WB(R′)+area(△p̃qs) > S +S/2 > 0, a contradiction.

Finally, if the y-coordinate of p̃ is zero, then area(△p̃qs) = 0, and so WA(R′) − WB(R′) =
−S/2 < 0. By Claim 1 (3) with p′ = q, this is impossible if WA(R′) > 0, and so WA(R′) = 0,
implying WB(R′) = S/2. This means that there is a subset A1 ⊂ A with

∑

ai∈A1
ai = S/2, and

the answer to the partition problem is indeed yes. �

Since it is NP-hard to decide if the optimum is 0, we cannot approximate P within a multi-
plicative factor of the optimum. That is, for any function f(n) it is NP-hard to compute an
f(n)-approximation of P in the diff-area model.

4.2 A bounded-additive-error algorithm

We describe an algorithm that constructs an approximation of P within an additive error with
respect to the optimal approximation. We follow the blueprint of Section 3.2.

pi

pj

qi qj

Ri,j

Figure 5: Computing w(pi, pj).

For an edge e = (pi, pj) of the graph GP (see Sec-
tion 2), let w(e) = wa(e) − wb(e). We first show how
the weights w(e) can be computed efficiently, without
the need to compute wa and wb as in Section 2.1.

Consider a polygon R above P as in Section 2.1.
Let qi be the intersection of the horizontal segment
at the top of R with the vertical line through pi;
see Fig. 5. Let Ri,j be the area of the polygon de-
scribed by pi, pi+1, . . . , pj , qj, qi, pi, and let Ti,j be the
area of the trapezoid described by pi, pj , qj , qi. We ob-
serve that Ti,j = Ri,j + wb(pi, pj) − wa(pi, pj), and so

Area-Preserving Approximations of Polygonal Paths 9

w(pi, pj) = Ri,j − Ti,j = R1,j − R1,i − Ti,j. It follows that after precomputing and storing the
values R1,i, for 1 < i ≤ n, we can return the weight w(e) for any edge in constant time. The
computation can be done in linear time in a single scan of p1, . . . , pn.

We are given P , an integer k, and a parameter δ > 0, and our goal is to find a path Qapp with
at most k edges such that |WA(Qapp) − WB(Qapp)| ≤ minQ{|WA(Q) − WB(Q)|} + δH, where
H is the area of the convex hull of P .

Let ∆ := δH/2k. For an edge e of GP , let w(e) := ⌊w(e)/∆⌋. Since −H ≤ w(e) ≤ H, the
value of w(e) is an integer in the range ⌊−2k/δ⌋, . . . , ⌊2k/δ⌋. As in Section 3.2, we can avoid
the use of the floor function by using binary search.

For a path Q, let W (Q) := WA(Q) − WB(Q) =
∑

e∈Q w(e) and W (Q) :=
∑

e∈Q w(e). We
have ∆w(e) ≤ w(e) ≤ ∆w(e) + ∆, and summing over e ∈ Q gives

∆W (Q) ≤ W (Q) ≤
∑

e∈Q

(∆w(e) + ∆) = ∆W (Q) + k∆ ≤ ∆W (Q) + δH/2.

This implies |W (Q) − ∆W (Q)| ≤ δH/2 for any approximating path Q, and therefore also
∣

∣|W (Q)| − ∆|W (Q)|
∣

∣≤ δH/2.
We will compute a path Qapp minimizing |W (Qapp)|. Let us first argue that this is the desired

approximate solution. Indeed, let Qopt be a path minimizing |W (Qopt)|, that is, a true optimal
solution. We then have

|W (Qapp)| ≤ ∆|W (Qapp)| + δH/2 ≤ ∆|W (Qopt)| + δH/2 ≤ |W (Qopt)| + δH.

It remains to show how to compute Qapp. Once more, we employ dynamic programming. For
integers i, t, s with 1 < i ≤ n, 1 ≤ t ≤ k, and ⌊−2k/δ⌋ ≤ s ≤ ⌊2k/δ⌋, let L[i, t, s] be a boolean
value that encodes if there is a path Q from p1 to pi with at most t edges and W (Q) = s.
We compute L[i, t, s] recursively as follows: if t = 1, then L[i, 1, s] = true if w(p1, pi) = s, and
otherwise L[i, 1, s] = false. If t > 1, then

L[i, t, s] := L[i, t − 1, s] ∨
∨

1<j<i

L[j, t − 1, s − w(pj , pi)].

There are O(nk2/δ) L-values, each of which can be computed in time O(n), for a total running
time of O(n2k2/δ). Once we have computed all values, we can determine the approximately
optimal cost W (Qapp) using the relation

W (Qapp) = min{|s| | L[n, k, s] = true}.

From the table L[·, ·, ·] it is easy to reconstruct the path Qapp itself. We conclude with the
following theorem.

Theorem 7 Given a polygonal path P whose convex hull has area H, an integer k, and a
parameter δ > 0, an approximating path with at most k edges and with diff-area cost at most
δH larger than the optimal can be computed in O(k2n2/δ) time using O(nk2/δ) space.

5 Conclusions

We studied the complexity of polygonal path approximation under error measures that involve
the displaced area. We discussed three models, provided a polynomial time algorithm for
minimum link approximation in the first model, and showed NP-hardness for the other two
models. For those models, we presented approximation algorithms. All algorithms are based on
dynamic programming. Improving the efficiency of the algorithms is the main open problem.
Another topic worth investigating is polygonal path approximation based on multiple criteria.

10 References

References

[1] H. Alt, J. Blömer, M. Godau, and H. Wagener. Approximation of convex polygons. In
Proceedings of the 17th International Colloquium on Automata, Languages and Program-

ming, volume 443 of Lecture Notes in Computer Science, pages 703–716, Berlin, 1990.
Springer-Verlag.

[2] G. Barequet, M. T. Goodrich, D. Z. Chen, O. Daescu, and J. Snoeyink. Efficiently approx-
imating polygonal paths in three and higher dimensions. In Proceedings of the 14th Annual

ACM Symposium on Computational Geometry, pages 317–326, 1998.

[3] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. Intern. Journal Comp. Geometry & Appl., 6:59–77, 1996.

[4] D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating polygonal curves
in two-dimensional space. Intern. Journal Comp. Geometry & Appl., 13:95–111, 2003.

[5] R. G. Cromley. Digital Cartography. Prentice Hall, Englewood Cliffs, 1992.

[6] B. D. Dent. Cartography - thematic map design. McGraw-Hill, 5th edition, 1999.

[7] R. Estkowski and J. Mitchell. Symplifying a polygonal subdivision while keeping it simple.
In Proc. 17th Symp. Comp. Geometry, pages 40–49, 2001.

[8] M. T. Goodrich. Efficient piecewise-linear function approximation using the uniform metric.
Discrete & Computational Geometry, 14:445–462, 1995.

[9] J. Gudmundsson, G. Narasimhan, and M. Smid. Distance-preserving simplification of
polygonal paths. In Proc. 23rd Conf. Found. Software Techn. Theor. Comp. Science, 2003.

[10] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating
polygons and subdivisions with minimum link paths. Intern. Journal of Comp. Geometry

& Appl., 3:383–415, 1993.

[11] H. Imai and M. Iri. Computational-geometric methods for polygonal approximations of a
curve. Computer Vision, Graphics and Image Processing, 36:31–41, 1986.

[12] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In
G. T. Toussaint, editor, Computational Morphology, pages 71–86. North-Holland, Amster-
dam, Netherlands, 1988.

[13] S. Langerman. The complexity of halfspace area queries. Discrete & Computational Ge-

ometry, 30:639–648, 2003.

[14] R. B. McMaster and K. S. Shea. Generalization in Digital Cartography. Association of
American Cartographers, Washington D.C., 1992.

[15] A. Melkman and J. O’Rourke. On polygonal chain approximation. In Computational

Morphology, pages 87–95. North-Holland, Amsterdam, 1988.

[16] K. R. Varadarajan. Approximating monotone polygonal curves using the uniform metric.
In Proceedings of the 12th Annual ACM Symposium on Computational Geometry, pages
311–318, 1996.

