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Abstract

Deciding whether two n-point sets A,B ∈ Rd are congruent is a fundamental problem
in geometric pattern matching. When the dimension d is unbounded, the problem is
equivalent to graph isomorphism and is conjectured to be in FPT.

When |A| = m < |B| = n, the problem becomes that of deciding whether A is
congruent to a subset of B and is known to be NP-complete. We show that point sub-
set congruence, with d as a parameter, is W[1]-hard, and that it cannot be solved in
O(mno(d))-time, unless SNP ⊂ DTIME(2o(n)). This shows that, unless FPT = W[1], the
problem of finding an isometry of A that minimizes its directed Hausdorff distance, or its
Earth Mover’s Distance, to B, is not in FPT.
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Geometric Point Set Matching, Congruence, Unbounded Dimension.

1 Introduction

Geometric pattern matching has been a topic of considerable research in computational geom-
etry with applications in computer vision, and is usually modeled as the following optimization
problem: given two sets A and B of geometric primitives, an appropriate distance measure,
and a transformation group, find a transformation of A that minimizes its distance to B;
see the survey by Alt and Guibas [2]. Typical geometric primitives include points, segments,
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disks, while typical transformations include isometries, and scaling, that is, combinations of
translations, rotations, reflection, and scaling.

For sets of points, several distance measures have been extensively studied in this frame-
work, such as, the bottleneck distance [3, 12, 14], the (directed) Hausdorff distance [9, 10, 16]
and the Earth Mover’s Distance [7, 11]. The case of the bottleneck distance with respect to
isometries leads to the fundamental decision problem of whether A is congruent to B or to a
subset of B. A formal definition will be given shortly.

The complexity of these two problems for point sets in unbounded dimensions has been
already studied within the classical complexity theory: the former is graph-isomorphism-hard
and the latter is NP-complete. In this paper we study subset congruence and related problems
from the parameterized complexity point of view, with the dimension as the parameter.

Parameterized complexity theory measures the complexity of hard algorithmic problems
in terms of parameters in addition to the problem input size. A problem of input size n

and a non-negative integer parameter k is fixed-parameter tractable if it can be solved by an
algorithm that runs in O(f(k) ·nc) time, where f is a computable function depending only on
k and c is a constant independent of k. The class of all fixed-parameter tractable problems
is denoted by FPT. Additionally, an infinite hierarchy of classes, the W-hierarchy, has been
introduced for establishing fixed-parameter intractability: a parameterized problem that is
hard for some level of the W-hierarchy, e.g., W[1], is not in FPT (under standard complexity
theoretic assumptions). For an introduction to the field, the reader is referred to the textbook
of Flum and Grohe [15].

Several important geometric optimization problems have been recently shown to be fixed-
parameter tractable with respect to parameters related to properties of the input objects. For
example, Deineko et al. [13] showed that the Euclidean TSP is in FPT when parameterized
with the number of the points inside the convex hull of the input point set. However, there is
only a handful of results regarding the fixed-parameter intractability of certain hard geometric
problems, and these concern only standard parameterizations [15] of optimization problems,
i.e., where the parameter measures the size of the solution; see, for example, Marx [17] for such
results on geometric graph problems. The dimension of the input objects is a “structural”
parameter important to many (apparently) intractable geometric problems, and, thus, a good
candidate for parameterized complexity.

Preliminaries. For a point a ∈ Rd, let a(r) denote its rth component. The origin is
denoted by o. For two points a, b ∈ Rd, let ||a − b|| = (

∑d
r=1(a(r) − b(r))2)1/2 be their

Euclidean distance. A map µ : Rd → Rd is an isometry if it preserves distances, that is, if
||µ(a)− µ(b)|| = ||a− b|| for all a, b ∈ Rd.

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be point sets in Rd with m 6 n; for simplicity,
we will sometimes assume the obvious ordering on the elements of sets defined in this way,
e.g., a1 is the first point in A and so on. We use the notation µ(A) = {µ(a1), . . . , µ(am)}.
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Sets A and B are said to be congruent if there is an isometry µ for which µ(A) = B.
We denote by CONGRUENCE the problem of finding whether two sets A and B are

congruent. When |A| < |B|, the problem becomes the one of finding whether A is congruent
to a subset of B, and is denoted by SUBSET-CONGRUENCE. We are interested in the
parameterized version of these problems, referred to as p-CONGRUENCE and p-SUBSET-
CONGRUENCE, with the dimension d being the input parameter.

Related work. There is a variety of algorithms that solve CONGRUENCE in O(n log n)
time for d = 2, 3; see Alt et al. [3] and references therein. In higher dimensions, the currently
best time bound is O(ndd/3e log n) [5]; Akutsu [1] claims that a bound of O(nd/4+O(1)) (ran-
domized) is possible, but he gives no direct proof. It is conjectured [5] that p-CONGRUENCE
is in FPT. Moreover, for unbounded dimension, CONGRUENCE is polynomially equivalent
to graph isomorphism [1, 19].

Braß [4] shows that SUBSET-CONGRUENCE can be solved in O(mn4/3 log n) time for
d = 2 and in O(mn7/4 log n β(n)) time for d = 3 (randomized, where β(n) is an extremely
slow growing function.) In higher dimensions, the fastest known algorithm runs in O(mnd)
time [12], and the problem is NP-complete when d is unbounded [1]. It is an open question
whether the high-dimensional bound can be improved [4]; see also Braß and Pach [6] for a
survey on computational and combinatorial problems related to geometric patterns.

Model of computation. We assume the standard Turing machine model of computation.
The coordinates of the points used in our reduction are rational, with denominators and
numerators bounded by a polynomial in n.

Results. We show that p-SUBSET-CONGRUENCE is W[1]-hard. Our reduction from
p-CLIQUE, with d being linear in the size of the clique, shows in addition that an O(mno(d))-
time algorithm for the former problem exists only if SNP ⊂ DTIME(2o(n)). Moreover, for
|A| < |B| and any point set distance D for which D(A,B) = 0 if and only if A ⊂ B,
e.g., directed Hausdorff distance, Earth Mover’s Distance, our hardness result implies that
minimizing D under isometries is not in FPT (unless FPT = W[1]).

2 Parameterized subset congruence

First, it is easy to see that p-SUBSET-CONGRUENCE is in W[P]. An accepting certificate
of size O(d log n) for a non-deterministic Turing machine can be given by guessing a bijection
between a d-point subset of A and a d-point subset of B, with log n bits needed to represent
each point. Then, one can check in polynomial time whether the bijection is an isometry and,
if yes, whether this isometry maps the rest of the points of A to points of B.
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We denote by p-CLIQUE the parameterized problem of finding a clique in a given graph,
where the size of the clique is the parameter. In the following, we reduce p-CLIQUE, which
is known to be W[1]-complete [15], to p-SUBSET-CONGRUENCE.

Theorem 1 p-SUBSET-CONGRUENCE is W[1]-hard.

Proof: Let k be the size of the clique being looked for in a graph G({1, . . . , n}, E). We
construct two point sets A and B in R2k with the property that A is congruent to a subset
of B if and only if G has a k-clique.

We first construct a set L = {Li|i = 1, . . . , k} of point sets Li - referred to as level
sets. Each level set lies on a two-dimensional plane in R2k, with all k planes being pairwise
orthogonal, and contains n points that lie on a unit circle centered at the origin o. The
property we exploit is that any two points from different circles are at the same distance, and
therefore they are metrically indistinguishable. Furthermore, each of the k circles can rotate
around the origin independently of the others, which corresponds to the k choices that have
to be made for a k-clique. The construction has to be tuned so that only this type of rigid
motions are relevant. A detailed description of a level set is given below.

Level set Li = {li,j ∈ R2k|j = 1, . . . , n} is constructed as follows. First, we have li,j(r) = 0
for r 6= 2i− 1, 2i and

∑2k
r=1 l2i,j(r) = 1; this implies that ||li,j − li′,j′ || =

√
2 when i 6= i′. It will

be convenient to choose the points on the unit circle from a short arc such that the distance
between any two points is at most

√
2/6, that is, ||li,j − li,j′ || <

√
2/6 for every i, j and j′; see

Fig. 1. This is done according to the following lemma.

1

o

lij(2i)

lij(2i− 1)

lij

Figure 1: The points of each level set lie on a circular arc of length
√

2/6.

Lemma 2 For any n > 0, there exist n distinct points on the unit circle such that they all
have rational coordinates with the numerators and denominators bounded by a polynomial in
n, and the distance between any two points is at most

√
2/6.
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Proof: Each point pi, i = 1, . . . , n, has rational non-zero coordinates generated by Pythagorean
triples αi, βi and γi:

pi(1) = (βi/γi) and pi(2) = (αi/γi)

with
αi = 2(8 + i), βi = (8 + i)2 − 1 and γi = (8 + i)2 + 1.

Defined this way, all points satisfy p2
i (1) + p2

i (2) = 1 and have distinct coordinates because
the sequence pi(2) is monotonically decreasing. Moreover, since

arcsin(pi(2)) 6 arcsin(p1(2)) = arcsin(9/41) <
√

2/6,

all points lie on an arc of length
√

2/6, and so, any two of them can be at most
√

2/6 apart.

The point set A ⊂ R2k is constructed as follows. Define PA = {li,1 | i = 1, . . . , k}, which
has one point per level set. Note that there is nothing special about li,1 here, we could have
chosen any other point per level. The set A consists of the points of PA and the middle-points
between them, that is,

A = {l1,1, l2,1, . . . , lk,1} ∪ { l1,1 + l2,1

2
,
l1,1 + l3,1

2
, . . . ,

l1,1 + lk,1

2
}

∪ { l2,1 + l3,1

2
, . . . ,

l2,1 + lk,1

2
}

. . .

∪ {
lk−1,1 + lk,1

2
}.

The set A consists of k +
(
k
2

)
elements, and it has four distinct inter-point distances:

√
2,√

3/2,
√

2/2 and 1. It is important to note that two points of A are at distance
√

2 if and
only if they both belong to PA.

The point set B ⊂ R2k is constructed as follows. Define PB =
⋃

i Li, that is, Pb contains
all the points of the level sets. For a pair j, j′ ∈ {1, . . . , n}, j 6= j′, define Bj,j′ to be the 2

(
k
2

)
points

Bj,j′ = {
li,j + li′,j′

2
| i, i′ = 1, . . . , k, i 6= i′}.

We set B = PB ∪
(⋃

jj′∈E Bj,j′

)
. Note that if {j, j′} 6= {k, k′}, then Bj,j′ and Bk,k′ do not

have any point in common. This also means that
li,j+li′,j′

2 ∈ B for some i, i′, if and only
if jj′ ∈ E. Therefore, the set B consists of kn + 2|E|

(
k
2

)
elements. The set of inter-point

distances in B has a slightly more complex structure than the set of inter-point distances in
A, but it holds that two points of B are at distance

√
2 if and only if they belong to different
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levels in PB. Any other pair of points of B is strictly less than
√

2 apart.
The construction of A and B is now complete. It remains to show that G has a k-clique

if and only if A is congruent to a subset of B. For the first implication, assume that G has
a k-clique with vertices {j1, j2, j3 . . . , jk}. We have to show that there is an isometry µ such
that µ(A) ⊆ B. The point sets {li,ji | i = 1, . . . , k} ⊂ B and PA are isometric because the
distance between any two of their points is

√
2. Consider an isometry µ that brings li,1 ∈ PA

over li,ji ∈ B, for i = 1, . . . , k. It is clear that µ(PA) ⊂ B. Consider any other point p of
A \ PA, which is of the form

li,1+li′,1
2 . Since µ is an isometry, and therefore a linear mapping,

we have
µ(p) =

µ(li,1) + µ(li′,1)
2

=
li,ji + li′,ji′

2
,

which is an element of Bji,ji′ ⊂ B because jiji′ ∈ E. We conclude that µ(p) ∈ B, and
therefore µ(A) ⊆ B.

Conversely, assume that there is an isometry µ such that µ(A) ⊆ B. We have to show
that G has a k-clique. Consider the k points µ(PA) ⊂ B. Their pairwise distance is

√
2, and

therefore, all points of µ(PA) must belong to PB, and, in particular, there must be one in each
of the k levels. Let l1,j1 , . . . , lk,jk

be the points of µ(PA). We claim that j1, . . . , jk is a clique
in G. Indeed, the middle-point between any two points of PA is part of A, and therefore the
middle-point between any two points of µ(PA) is part of µ(A) ⊆ B. This means that the
middle-point between any two points of l1,j1 , . . . , lk,jk

is in B, which means that every edge
between the vertices j1, . . . jk is in G.

Since in the above fpt-reduction d = 2k, an O(mno(d))-time algorithm for p-SUBSET-
CONGRUENCE implies an O(no(k))-time algorithm for p-CLIQUE, which in turn implies
that SNP ⊂ DTIME(2o(n)) [8].

Corollary 3 p-SUBSET-CONGRUENCE can be solved in O(mno(d)) time, only if SNP ⊂
DTIME(2o(n)).

Consider a point set distance D for which D(A,B) = 0 if and only if A ⊂ B for every
A,B ⊂ Rd with |A| < |B|; this is a desired property for any distance that is used to find small
patterns into larger ones, e.g., directed Hausdorff distance, Earth Mover’s Distance. Then,
minµ D(µ(A), B) = 0 if and only if µ′(A) ⊂ B for some isometry µ′. Hence, we have the
following.

Corollary 4 Given two point sets A,B ∈ Rd, with |A| < |B|, and a distance D for which
D(A,B) = 0 if and only if A ⊂ B, the problem of minimizing D under isometries, when d is
part of the input, is not in FPT, unless FPT=W[1].

The above also implies that one cannot even approximate minµ D(µ(A), B)) in FPT-time
with respect to d, since any such approximation algorithm must return the actual minimum,
i.e., the value 0, in the case where µ′(A) ⊂ B for some isometry µ′.
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3 Concluding remarks

We have studied the parameterized complexity of a fundamental point set pattern matching
problem with respect to the dimension. We proved that subset congruence is W [1]-hard,
which also implies that minimizing under isometries the directed Hausdorff distance, or the
Earth Mover’s Distance between two point sets in unbounded dimension is not in FPT (unless
FPT=W[1]).

There are quite a few other geometric optimization problems whose complexity due to
unbounded dimension has been studied; see, for example, Megiddo [18]. We believe that for
such problems the dimension is an interesting parameter to be studied within the framework
of parameterized complexity theory.
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