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Abstract

We show that, for any fixed constant k ≥ 3, the sum of the distances between all pairs of
vertices of an abstract graphs with n vertices and treewidth at most k can be computed in
O(n logk−1 n) time.

We also show that, for any fixed constant k ≥ 2, the dilation of a geometric graph (i.e., a
graph drawn in the plane with straight-line segments) with n vertices and treewidth at most
k can be computed in O(n logk+1 n) expected time. Recall that the dilation (or stretch-factor)
of a geometric graph is the largest ratio, taken over all pairs of vertices, between the distance
measured along the graph and the Euclidean distance.

The algorithms for both problems are based on the same principle: data structures for
orthogonal range searching in bounded dimension provide a compact representation of distances
in abstract graphs of bounded treewidth.

1 Introduction

Let G = (V,E) be a graph with n vertices and assume that each edge of E has an associated
nonnegative abstract length `(e). We can define the length of a path in G as the sum of the lengths
of its edges. The shortest path distance dG(u, v) between any pair of vertices u, v is defined as the
minimum length over all walks in G between u, v. We are interested in the sum over all ordered
pairs of vertices of their distance, that is,

Σ(G) =
∑

(u,v)∈V 2

dG(u, v).

If the length of each edge is one, the value 1
2Σ(G) is known as the Wiener index of G, which

is a generalization of the original definition given by Wiener in 1947 [23]. Molecular topological
indices are values defined by the graph-model of a molecule with the hope that they correlate with
physical and chemical properties of the molecules [22]. The Wiener index is probably the most
studied molecular topological index, with over thousand publications.

From the algorithmical point of view, the main question is what classes of graphs do not require
to compute all the pairwise distances to obtain the Wiener index, or more generally, the value
Σ(G). Linear time algorithms are known for trees [18], cacti [25], and benzenoid systems1 [11, 12].
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One of the main algorithmical open problems in this context concerns the existence of subquadratic
algorithms for computing the Wiener index of planar graphs.

The average distance of a graph and Σ(G) are essentially the same object, and have been studied
in other models. For abstract discrete metric spaces, given by a matrix of distances, Indyk [16]
gives a sublinear (1 + ε)-approximation algorithm based on sampling; see also Barhum et al. [3].
Note that this model is substantially different, since it assumes that any distance is available at
constant time, which does not hold in general graphs. The well-separated pair decomposition [8]
can be used to obtain deterministic (1 + ε)-approximations to the average distance in Euclidean
spaces or, more generally, in spaces of bounded doubling dimension [15]. Expanders can also be
used to design deterministic (1 + ε)-approximation algorithms for computing the average distance
in Euclidean metric spaces [3].

A geometric graph is a graph whose vertex set is a finite set of points, and where the weight/length
of each edge equals the Euclidean distance between its vertices. The dilation ∆(G) of a geometric
graph G is the largest ratio between the distance dG and the Euclidean distance:

∆(G) := max
u,v∈V (G),u 6=v

dG(u, v)
||u− v||

.

Substantial research has been done about constructing so-called geometric spanners: geometric
graphs with small dilation, few edges, and other additional properties; see the monograph [20].
Here, we turn our attention to a different problem: computing the dilation of a given geometric
graph.

One can trivially compute the distance between all pairs of vertices, and then compute the
dilation. However, this approach neglects all the geometry of the problem, and the question of
whether one actually needs to compute all distances naturally arises. Agarwal et al. [2] give near-
linear time algorithms for computing the exact dilation of geometric paths, cycles, and trees. For
computing a (1 + ε)-approximation to the dilation, assuming that ε > 0 is constant, Narasimhan
and Smid [19] show that the problem reduces in O(n log n) time to compute the graph distance
between O(n) pairs of vertices. Combining this result with the data structure of Chaudhuri and
Zaroliagis [10], one obtains, for any fixed ε > 0, a (1 + ε)-approximation algorithm for the dilation
that runs in O(n log n) time.

Our results. We show that the sum of distances of an abstract graph and the dilation of a
geometric graph can be computed in near-linear time when the graphs have bounded treewidth.
More precisely:

• for any fixed constant k ≥ 3, the sum of distances Σ(G) can be computed in O(n logk−1 n)
time for any abstract graph with n vertices and treewidth at most k. See Section 4.

• for any fixed constant k ≥ 2, the dilation ∆(G) can be computed in O(n logk+1 n) expected
time for any geometric graph with n vertices and treewidth at most k. See Section 5.

Similar results were only known for graphs of treewidth 1 (trees) and some subclasses of graphs
with treewidth 2 (cycles and cacti), c.f. [2, 25]. Our algorithms are based on divide-and-conquer,
using the fact that graphs with bounded treewidth have balanced small separators. Although most
algorithms that use treewidth are based on dynamic programming, this approach does not seem
appropriate here.

The approach in both cases is the same: distances in abstract graphs of treewidth k are closely
related to orthogonal range searching in Rk−1; see Section 3. This approach is implicit in [4] and

2



more explicitly mentioned by Shi [21]. This relation allows to use techniques from computational
geometry to design efficient algorithms for problems involving distances in graphs of bounded
treewidth.

2 Toolbox

2.1 Treewidth

Treewidth is a parameter measuring, in some sense, the complexity of a graph. We next give its
definition; see Bodlaender [7] for an overview.

Definition 1. A tree decomposition of a graph G is a pair (X, T ), where X = {Xi ⊆ V (G) | i ∈ I}
is a collection of subsets of V (G) (called bags), and a tree T = (I, F ) with a node set I such that:

(i) V (G) =
⋃

i∈I Xi;

(ii) for every edge uv ∈ E(G) there is some bag Xi such that u, v ∈ Xi;

(iii) for all u ∈ V (G), the nodes {i ∈ I | u ∈ Xi} form a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T ) is maxi∈I |Xi| − 1. The treewidth of G is the
minimum width over all tree decompositions of G.

It is known that graphs of treewidth k have O(kn) edges, an thus graphs of bounded treewidth
have O(n) edges. Computing the treewidth of a graph is NP-hard. However, for any fixed constant
k > 0, we can decide in linear time if a given graph has treewidth at most k, and in such case,
construct a tree decomposition of linear size and width k in linear time [6]. Our main results apply
assuming that we have graphs of bounded treewidth.

Our approach will be based on divide-and-conquer. We will use the following concept, closely
related to separators.

Definition 2. Let A be a subset of vertices of the graph G. The portals of A are the vertices of A
that have some edge incident to V (G) \A.

A standard result for graphs with treewidth at most k is the existence of (2/3)-separators of
size k + 1. In our approach, the number of vertices in the separator is very relevant, and therefore
we will reduce the size of the separator by making the separation more unbalanced. A sketch of
the following result can be found in the notes of Biedl [5].

Lemma 3. Let k ≥ 1 be a constant. Given a graph G with n > k + 1 vertices and treewidth at
most k, we can find in linear time a subset of vertices A ⊆ V (G) such that:

(i) A has between n
k+1 and nk

k+1 vertices;

(ii) A has at most k portals;

(iii) adding edges between the portals of A does not change the treewidth.

Proof. Consider a tree decomposition of G with width k, and transform it into another tree de-
composition ({Xi | i ∈ I}, T ) whose tree T has maximum degree at most k + 1 and such that any
two adjacent bags in T differ by at least one vertex.

Assign each vertex of G to one and only one bag where it appears, and define the weight of
a bag to be the number of vertices that were assigned to it. In such vertex-weighted tree T of
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maximum degree at most k + 1 there exists always an edge ij whose removal leaves two connected
components, each with weight at most k/(k + 1) of the total. The vertices in the bags of one of
the connected components of T − ij is the set A we want. Note that S = Xi ∩Xj has at most k
vertices and it is a superset of the portals of A. Moreover, since S is a subset of a bag, adding the
edges between the portals of A does not change the treewidth of the graph.

This procedure can be implemented in linear time if k is bounded by a constant: constructing a
tree decomposition of linear size takes linear time [6], making the transformation to obtain (X, T )
takes linear time, and finding the edge ij of T to remove takes linear time.

Assume that we have a graph G with treewidth k and a subset of vertices A with the properties
stated in Lemma 3. Let S be the set of portals of A and let B = (V (G) \A)∪S. Note that the set
of portals of B is a subset of S.

Consider the graph G′ obtained from G by adding an edge ss′ with weight dG(s, s′) between
each pair s, s′ ∈ S. If G′ has multiple edges, we only keep the edges with minimum weight. Finally,
let GA denote the subgraph of G′ induced by A. From the property (iii) of A, we know that G′

has treewidth k, and thus GA has treewidth at most k. Furthermore, it is straightforward to see
that dG(a, a′) = dGA

(a, a′) for any a, a′ ∈ A. Using the notation B = (V (G) \ A) ∪ S, the same
argument applies to GB: it has treewidth at most k and dG(b, b′) = dGB

(b, b′) for all b, b′ ∈ B.

2.2 Orthogonal range searching

Let P be a set of points in Rd. Assume we are given a function w : P → R that assigns a
weight w(p) to each point p ∈ P . We extend the weight function to any subset Q of points by
w(Q) :=

∑
p∈Q w(p). A rectangle R in Rd is the Cartesian product of d intervals, R = I1×· · ·× Id,

where each interval Ii can include both extremes, one of them, or none.
Orthogonal range searching deals with the problem of preprocessing P such that, for a query

rectangle R, certain properties of P ∩R can be efficiently reported. We will use the following two
results.

Theorem 4 ([24]). Let d ≥ 2 be a constant. Given a set of n points P ⊂ Rd and a weight function
w : P → R, there is a data structure that can be constructed in O(n logd−1 n) time such that, for
any query rectangle R, the weight w(P ∩R) can be reported in O(logd−1 n) time.

Theorem 5 ([1], [13, Chapter 5]). Let d ≥ 1 be a constant. Given a set of n points P ⊂ Rd, there
is a family P = {Pj ⊆ P | j ∈ J} of canonical subsets of P and a data structure DS(P ) with the
following properties:

(i) DS(P ) and P can be constructed in O(n logd n) time;

(ii) |J | = O(n logd−1 n), that is, P consists of O(n logd−1 n) subsets;

(iii)
∑

j∈J |Pj | = O(n logd n), that is, counting multiplicities P has O(n logd n) points;

(iv) for any rectangle R, there exists a set of O(logd n) indices J(R) ⊂ J such that P ∩ R =⋃
j∈J(R) Pj;

(v) for any query rectangle R, the data structure DS(P ) provides the set of indices J(R) in
O(logd n) time.
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3 Distances and orthogonal range searching

Let G be a graph and let A be a subset of its vertices with k portals S, enumerated as s1, . . . , sk.
Let B = (V (G) \A)∪S. We use the notation [k] = {1, . . . , k}. For any vertex b ∈ B and any index
i ∈ [k], let A(b, i) be the subset of vertices a ∈ A such that:

(i) There exists a shortest path from b to a through si, that is, dG(a, b) = dG(a, si) + dG(si, b).

(ii) There is no shortest path from b to a through sj for j < i, that is, dG(a, b) < dG(a, sj) +
dG(sj , b) for all j ∈ [i− 1].

For any b ∈ B, the union of A(b, 1), . . . , A(b, k) is the whole A. We include (ii) to ensure
that the sets A(b, 1), . . . , A(b, k) are pairwise disjoint, which will be relevant for not over counting
in Section 4. Note that different enumerations of the portals may give completely different sets
A(b, 1), . . . , A(b, k), not just a reordering.

Assume that we have a weight function φ : A→ R assigning a weight to each vertex of A. We
extend the weight function to any subset A′ ⊆ A by φ(A′) :=

∑
a∈A′ φ(a). For each i ∈ [k], we

can use orthogonal range searching to preprocess the graph G so that, for any query vertex b ∈ B,
information concerning A(b, i) can be reported quickly and in a compact form. Note the similarity
between the following result and Theorem 4.

Theorem 6. Let k ≥ 3 be a constant. Assume we are given a graph G with n vertices and m edges,
a subset of vertices A with k portals S enumerated s1, . . . , sk, a weight function φ : A → R, and
let B = (V (G) \ A) ∪ S. For any given i ∈ [k], there is a data structure that can be constructed in
O(m+n logk−2 n) time such that, for any query vertex b ∈ B, the weight φ (A(b, i)) can be reported
in O(logk−2 n) time.

Proof. We first construct a shortest path tree from each of the portals s1, . . . , sk and store the
values dG(sj , v) for all j ∈ [k] and v ∈ V (G). Since we assume k = O(1), we spend O(m + n log n)
time for computing these shortest path trees.

For each vertex a ∈ A we define a point pa ∈ Rk with coordinates pa(j) = dG(a, si)− dG(a, sj),
where pa(j) denotes the j-th coordinate of point pa. Let P be the set of points pa, a ∈ A. Note
that the i-th coordinate of the points in P is always 0, and therefore we can regard P as a set of
|A| points in Rk−1. We define a weight function for each point pa ∈ P by w(pa) := φ(a). Clearly,
we have φ(A′) = w ({pa ∈ P | a ∈ A′}). Finally, we preprocess the point set P with weight w into
a data structure as described in Theorem 4, where d = k − 1. This finishes the description of the
data structure. Preprocessing P takes O(|A| logk−2 |A|) = O(n logk−2 n) time, and hence we spend
O(n logk−2 n) time to construct the data structure.

When we receive a query b ∈ B, we proceed as follows. For j ∈ [k] define the interval Ij(b) by

Ij(b) =


(−∞, dG(sj , b)− dG(si, b)) if j < i,
(−∞, +∞) if j = i,
(−∞, dG(sj , b)− dG(si, b)] if j > i.

Consider the rectangle R(b) = I1(b)× · · · × Ik(b).
Any path from a ∈ A to b has to use some portal of A, and hence the condition dG(a, b) =

dG(a, si) + dG(si, b) can be rewritten as

dG(a, si) + dG(si, b) ≤ dG(a, sj) + dG(sj , b) for all j ∈ [k].
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Therefore

A(b, i) =
{

a ∈ A

∣∣∣∣ dG(a, b) = dG(a, si) + dG(si, b)
dG(a, b) < dG(a, sj) + dG(sj , b) for j ∈ [i− 1]

}
=

{
a ∈ A

∣∣∣∣ dG(a, si) + dG(si, b) ≤ dG(a, sj) + dG(sj , b) for j ∈ [k]
dG(a, si) + dG(si, b) < dG(a, sj) + dG(sj , b) for j ∈ [i− 1]

}
=

{
a ∈ A

∣∣∣∣ dG(a, si)− dG(a, sj) ≤ dG(sj , b)− dG(si, b) for j ∈ [k]
dG(a, si)− dG(a, sj) < dG(sj , b)− dG(si, b) for j ∈ [i− 1]

}
=

{
a ∈ A

∣∣∣∣ pa(j) ≤ dG(sj , b)− dG(si, b) for j ∈ [k] \ [i− 1]
pa(j) < dG(sj , b)− dG(si, b) for j ∈ [i− 1]

}
=

{
a ∈ A

∣∣∣∣ pa(j) ∈ Ij(b) for j ∈ [k] \ [i− 1]
pa(j) ∈ Ij(b) for j ∈ [i− 1]

}
= {a ∈ A | pa ∈ R(b)} .

We conclude that A(b, i) = {a ∈ A | pa ∈ R(b)}. Since

φ (A(b, i)) = φ ({a ∈ A | pa ∈ R(b)}) = w (P ∩R(b)) ,

we can obtain φ(A(b, i)) in O(logk−2 n) time by querying the data structure storing P for the value
w(P ∩R(b)).

In the previous proof we could use the data structure from Theorem 5, instead of that from
Theorem 4. We next state the result in a slightly more general form, which is the one we will use
in Section 5.

Theorem 7. Let k ≥ 2 be a constant. Assume we are given a graph G with n vertices and m
edges, a subset of vertices A with k portals S enumerated s1, . . . , sk, and let B = (V (G) \ A) ∪ S.
Furthermore, assume that G has been preprocessed so that any distance dG(v, s) can be obtained in
constant time when (v, s) ∈ V (G) × S. For any given i ∈ [k] and any given A′ ⊆ A, there is a
family A = {Aj ⊆ A | j ∈ J} of canonical subsets of A and a data structure DS with the following
properties:

(i) DS and A can be constructed in O(|A′| logk−1 n) time;

(ii) |J | = O(|A′| logk−2 n), that is, A consists of O(|A′| logk−2 n) subsets;

(iii)
∑

j∈J |Aj | = O(|A′| logk−1 n), that is, counting multiplicities A has O(|A′| logk−1 n) points;

(iv) for any b ∈ B, there exists a set of O(logk−1 n) indices J(b) ⊂ J such that A(b, i) ∩ A′ =⋃
j∈J(b) Aj;

(v) for any query b ∈ B, the data structure DS provides J(b) in O(logk−1 n) time.

Proof. The proof is almost identical to the proof of Theorem 6. Each vertex a ∈ A′ is identified
with a point pa ∈ Rk whose j-th coordinate is given by dG(a, si)− dG(a, sj). For each point a ∈ A′

we can compute the coordinates of pa in O(k) = O(1) time because we assume that each distance
from a portal is available in constant time. Therefore, we can construct the set of |A′| points
P = {pa | a ∈ A′} in O(|A′|) time. The set P can be regarded as a point set in Rk−1 because the
i-th coordinate is always zero.
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We apply Theorem 5 to P , where d = k − 1, and obtain in O(|A′| logk−1 n) time the family
P = {Pj ⊆ P | j ∈ J} and the data structure DS(P ). The family A we seek is defined from P by
the identification a ↔ pa. The set of indices J and the data structure DS we want are precisely
J and DS(P ), as obtained from Theorem 5. The properties (i-iii) already hold. For property (iv),
note that for any query b we have J(b) = J(R(b)), where R(b) is the rectangle defined in the proof
of Theorem 6. As for the remaining property (v), note that the intervals defining the rectangle
R(b) can be computed in O(k) = O(1) time because they only involve distances from portals, and
therefore we can obtain J(b) = J(R(b)) in O(logk−1 n) by querying DS(P ) for J(R(b)).

4 Sum of distances

We are interested in computing Σ(G) for a weighted graph G whose treewidth is bounded by a
constant k ≥ 3. Let A be a set of vertices of G obtained by Lemma 3. Like before, we enumerate
the (at most) k portals S of A by s1, . . . , sk, and set B = (V (G) \ A) ∪ S. Recall the definition of
GA and GB, given after Lemma 3. Using the notation Σ(C,C ′) =

∑
c∈C

∑
c′∈C′ dG(c, c′) for any

C,C ′ ⊆ V (G), we have the following relation.

Lemma 8.
Σ(G) = Σ(GA) + Σ(GB) + 2 · Σ(A,B)− 2 · Σ(S, A)− 2 · Σ(S, B).

Proof. Let V = V (G) and let t denote the disjoint union. Since V = A t (B \ S) we have

V 2 = A2 t (A× (B \ S)) t (B \ S)2 t ((B \ S)×A) ,

and therefore

Σ(G) = Σ(V, V ) = Σ(A,A) + 2 · Σ(A,B \ S) + Σ(B \ S, B \ S). (1)

Since B2 = (B \ S)2 t (S ×B) t (B × S) and A×B = (A× (B \ S)) t (A× S) we have

Σ(B \ S, B \ S) = Σ(B,B) − 2 · Σ(S, B) and Σ(A,B \ S) = Σ(A,B) − Σ(A,S).

Substituting in (1) we obtain

Σ(G) = Σ(A,A) + 2 · Σ(A,B)− 2 · Σ(A,S) + Σ(B,B)− 2 · Σ(S, B),

and noting that Σ(A,A) = Σ(GA), Σ(B,B) = Σ(GB) the result follows.

Lemma 9. We can compute Σ(A,B) in O(n logk−2 n) time.

Proof. For any b ∈ B, we know that A is the disjoint union of A(b, 1), A(b, 2), . . . , A(b, k). Therefore

Σ(A,B) =
∑
b∈B

∑
a∈A

dG(a, b)

=
∑
b∈B

k∑
i=1

∑
a∈A(b,i)

dG(a, b)

=
∑
b∈B

k∑
i=1

∑
a∈A(b,i)

(dG(a, si) + dG(si, b))

=
∑
b∈B

k∑
i=1

|A(b, i)| · dG(si, b) +
∑

a∈A(b,i)

dG(a, si)

 .
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Define weight functions φ0, φ1, . . . φk : A→ R by φ0(a) = 1 for all a ∈ A and by φi(a) = dG(si, a)
for a ∈ A, i ∈ [k]. We can then rewrite

Σ(A,B) =
∑
b∈B

k∑
i=1

[φ0(A(b, i)) · dG(si, b) + φi(A(b, i))] . (2)

We now use Theorem 6 several times: for each i ∈ [k] we make a data structure DS
(i)
0 for weight φ0

and a data structure DS
(i)
1 for weight φi. We construct 2k = O(1) data structures, and each one

takes O(n logk−2 n) preprocessing time. Any value φ0(A(b, i)) or φi(A(b, i)) can now be obtained
in time O(logk−2 n) by querying the appropriate data structure. Therefore, we can get the values
φ0(A(b, i)) and φi(A(b, i)) for all (b, i) ∈ B × [k] in time O(k|B| logk−2 n) = O(n logk−2 n). Finally,
the values dG(si, b) for all (si, b) ∈ S×B can be obtained in O(n log n) time constructing a shortest
path tree from each portal si ∈ S, and thus we can compute Σ(A,B) using (2).

Theorem 10. Let k ≥ 3 be a constant. Given a graph G with n vertices and treewidth at most k,
we can compute Σ(G) in O(n logk−1 n) time.

Proof. We make an algorithm based on divide-and-conquer. If G has fewer than k + 1 = O(1)
vertices, we compute Σ(G) by brute force in O(1) time. Otherwise we find a set A as described in
Lemma 3. The values Σ(S, A) and Σ(S, B) are computed using shortest path trees from each portal
s ∈ S, while Σ(A,B) is computed using Lemma 9. The graphs GA and GB can be constructed
using shortest path trees from each s ∈ S, and we can then recursively compute Σ(GA) and Σ(GB).
Finally, we use the relation from Lemma 8 to compute the value Σ(G). This finishes the description
of the algorithm.

If T (n) denotes the worst-case time used by the algorithm when G has n vertices, then property
(i) in Lemma 3 implies the recurrence

T (n) ≤

{
O(1) if n ≤ k + 1.
O(n logk−2 n) + T (|A|) + T (n− |A|+ k) otherwise, where n

k+1 ≤ |A| ≤
nk

k+1 .

Since k is a constant, this recurrence solves to O(n logk−1 n) by induction on n, and the result
follows.

Since graphs of treewidth 2 can be seen as graphs of treewidth 3, we obtain the following.

Corollary 11. Given a graph G of treewidth at most 2, we can compute Σ(G) in O(n log2 n) time.

The underlying reason why we get the same time bounds for k = 2 and k = 3 is that the
orthogonal range queries considered in Theorem 4 have the same complexity in dimensions 1 and
2.

5 Dilation

A weighted geometric graph G = (V,E) is a graph whose vertex set is a finite set of points in the
plane, where each edge e ∈ E has a nonnegative weight `(e) ∈ R. When the weight of each edge
{u, v} is equal to the Euclidean distance ||u− v||, the graph G is called a geometric graph.

The dilation between two vertices x 6= y of G is defined as

∆G(x, y) :=
dG(x, y)
||x− y||

,

8



where dG(x, y) denotes the length (wrt. `) of a shortest path in G connecting x to y. For convenience
we define ∆G(x, x) := 1. The dilation between two sets of vertices X, Y of G is defined as

∆G(X, Y ) := max
(x,y)∈X×Y

∆G(x, y),

the dilation of a set of vertices X of G is defined as

∆G(X) := ∆G(X, X), and

the dilation (or stretch factor) of G is defined as

∆(G) := ∆G(V ).

Henceforth, let G be a weighted geometric graph with n vertices and treewidth bounded by a
constant k ≥ 2. We will describe how to compute ∆(G) in O(n logk+1 n) expected time. As above,
let A be a subset of V (G) obtained by Lemma 3. We enumerate the k portals of S by s1, . . . , sk,
and set B = (V (G) \ A) ∪ S. We compute a shortest path tree in G from each portal s ∈ S
in linear time [10], and store together with each vertex v ∈ V the values dG(s1, v), . . . , dG(sk, v).
With this preprocessing, any distance dG(v, s) can be recovered in constant time for any pair
(v, s) ∈ V × S. Also, the distance dG(a, b) for (a, b) ∈ A × B can be recovered in constant time
because dG(a, b) = mini {dG(a, si) + dG(b, si)}.

Recall the definition and properties of GA and GB, given after Lemma 3. Note that GA, GB

are also weighted geometric graphs2. Since for any pair of vertices a, a′ ∈ A we have dG(a, a′) =
dGA

(a, a′), and similarly, dG(b, b′) = dGB
(b, b) for any b, b′ ∈ B, we get

∆(G) = max(∆(GA),∆(GB),∆G(A,B)). (3)

Consider a fixed i ∈ [k], and recall from Section 3 the definition of A(b, i) ⊆ A for any b ∈ B.
For any subset A′ ⊆ A we define the function β

(i)
A′ : B → R as

β
(i)
A′ (b) := ∆G(A(b, i) ∩A′, b).

Lemma 12. Let δ ≥ 1 be a given value. For any given A′ ⊆ A we can compute in O(|A′| logk n)
time a data structure DB

(i)
A′ that can decide in O(logk n) time for any query b ∈ B if β

(i)
A′ (b) ≤ δ.

Proof. According to Theorem 7 there is a family A = {Aj | j ∈ J} of |J | = O(|A′| logk−2 n)
canonical subsets of A of total size

∑
j∈J |Aj | = O(|A′| logk−1 n) and a data structure DS that can

be constructed in O(|A′| logk−1 n) time with the following properties:

• for any b ∈ B, there exists a set of O(logk−1 n) indices J (b) such that A(b, i)∩A′ =
⋃

j∈J (b) Aj ,
and

• for any query b ∈ B the data structure DS provides the set of indices J (b) in O(logk−1 n)
time.

2When G is a geometric graph, it may happen that GA, GB are not geometric graphs, but weighted geometric
graphs. This is the reason why we also need weighted geometric graphs when computing the dilation of geometric
graphs.
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Therefore, we can write
β

(i)
A′ (b) = max

j∈J (b)
∆G(Aj , b),

and thus
β

(i)
A′ (b) ≤ δ ⇐⇒ ∀j ∈ J (b) : ∆G(Aj , b) ≤ δ.

We now describe a lifting transformation that rephrases the problem of deciding for Aj ⊆ A(b, i)∩A′

if ∆G(Aj , b) ≤ δ, into a point-cone incidence-problem in R3 (a similar approach is used in [2]).
Recall that si is the i-th portal of A so that dG(a, b) = dG(a, si) + dG(si, b) for any vertex

a ∈ A(b, i). For a vertex v ∈ V (G), we define the si-weight of v to be ω(v) := dG(v, si)/δ. We
map each vertex v = (xv, yv) ∈ R2 of G to the point h(v) := (xv, yv, ω(v)) ∈ R3. Let C denote the
three-dimensional cone {(x, y, z) ∈ R3 | z2 = x2 + y2}. We map each vertex v ∈ V (G) to the cone
C (v) := C 	 h(v) = {(x, y, z) − h(v) | z2 = x2 + y2}. Since Aj ⊆ A(b, i) we have for any vertex
a ∈ Aj that

∆G(a, b) ≤ δ ⇐⇒ dG(a, b)
||a− b||

≤ δ

⇐⇒ dG(a, si) + dG(si, b)
||a− b||

≤ δ

⇐⇒ dG(si, b)
δ

≤ ||a− b|| − dG(a, si)
δ

⇐⇒ ω(b) ≤ ||a− b|| − ω(a).

In other words ∆G(a, b) ≤ δ if and only if h(b) lies on or below C (a). If we extend the lifting map
to sets of vertices X ⊆ V (G) by setting h(X) := {h(v) | v ∈ X} and C (X) := {C (v) | v ∈ X},
we immediately get that ∆G(Aj , b) ≤ δ if and only if h(b) lies on or below L(C (Aj)), the lower
envelope of the cones C (Aj).

The minimization diagram of C (Aj), i.e., the projection of the lower envelope L(C (Aj)) onto
the xy-plane, is the additively weighted Voronoi diagram Vor(Aj) of Aj with respect to the weight
function −ω. If b is located in the Voronoi region of a point a ∈ Aj we have that h(b) is on or
below L(C (Aj)) if and only if h(b) is on or below C (a).

The data structure DB
(i)
A′ is constructed as follows:

1. Compute the data structure DS and the family A according to Theorem 7 for A′. This takes
in O(|A′| logk−1 n) time because G has been preprocessed for distance queries, as required.

2. For each set Aj in the family A = {Aj | j ∈ J} of |J | = O(|A′| logk−2 n) canonical subsets
of A compute the additively weighted Voronoi diagram Vor(Aj) of Aj with respect to the
weight function −ω.

The diagram Vor(Aj) can be computed in O(|Aj | log |Aj |) time, c.f. [14]. Within the same
time bound it can be preprocessed into a linear size data structure that supports point-
location queries in O(log |Aj |) = O(log n) time, c.f. [17]. Since

∑
j∈J |Aj | = O(|A′| logk−1 n)

the total time for computing all these diagrams and their associated point-location structures
is O(|A′| logk n).

The total preprocessing time is O(|A′| logk n).
To verify for b ∈ B if β

(i)
A′ (b) ≤ δ we proceed as follows:

1. We query DS with b to determine the set J (b) of O(logk−1 n) indices with A(b, i) ∩ A′ =⋃
j∈J (b) Aj in O(logk−1 n) time.
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2. For each j ∈ J (b)

• perform a point-location query with b in Vor(Aj) in O(log n) time to determine which
point a ∈ Aj contains b in its Voronoi cell and check if h(b) is on or below C (a) in O(1)
time. If h(b) lies above C (a) terminate with a “no” answer.

3. Terminate with a “yes” answer.

The correctness of this approach follows from the preceding discussion. It requires O(logk n) time
per query.

Lemma 13. Given a value δ ≥ 1 and subsets A′ ⊂ A, B′ ⊆ B, we can decide in O(|A′| logk n +
|B′| logk n) time if ∆G(A′, B′) ≤ δ.

Proof. For any b ∈ B, we know that A is the union of A(b, 1), A(b, 2), . . . , A(b, k). Therefore, for
any subsets A′ ⊆ A, B′ ⊆ B we have

∆G(A′, B′) = max
b∈B′

∆G(A′, b) = max
b∈B′

max
i∈[k]

∆G(A(b, i) ∩A′, b) = max
i∈[k]

max
b∈B′

β
(i)
A′ (b).

and thus
∆G(A′, B′) ≤ δ ⇐⇒ ∀i ∈ [k], b ∈ B′ : β

(i)
A′ (b) ≤ δ.

For each i ∈ [k] we construct the data structure DB
(i)
A′ of Lemma 12 for the given δ, and then query

DB
(i)
A′ with each b ∈ B′ to decide if β

(i)
A′ (b) ≤ δ. The construction of DB

(i)
A′ takes O(|A′| logk n) time

and all queries together take O(|B′| logk n) time. The result follows.

Lemma 14. In O(n logk n) expected time we can compute ∆G(A,B)

Proof. We use the technique developed by Chan [9] to obtain an algorithm that solves the optimiza-
tion problem once we have an algorithm that solves the decision problem (Lemma 13). Consider
the following randomized algorithm to compute ∆G(A′, B′) for given input A′ ⊆ A, B′ ⊆ B.

Algorithm (A,B)-Dilation
Input: A′, B′

Output: ∆G(A′, B′)
1. if A′ and B′ have O(1) vertices
2. then compute ∆G(A′, B′) directly in O(1) time and return it
3. else partition A′ into three subsets A1, A2, A3 whose cardinality differ by at most one
4. partition B′ into three subsets B1, B2, B3 whose cardinality differ by at most one
5. let (X1, Y1), (X2, Y2), . . . , (X9, Y9) be a random permutation of (Ai, Bj), i, j ∈ [3]
6. δ←∞
7. for i = 1, . . . , 9
8. do use Lemma 13 to check if ∆G(Xi, Yi) ≤ δ
9. if ∆G(Xi, Yi) > δ
10. then δ←(A,B)-Dilation(Xi, Yi)
11. return δ

The correctness of the algorithm follows by induction because

∆G(A′, B′) = max {∆G(Ai, Bj) | i, j ∈ [3]} = max {∆G(Xi, Xi) | i ∈ [9]} ,

and we can therefore compute ∆G(A,B) by calling (A,B)-Dilation(A,B).
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For analyzing the running time, let T (m) denote the worst-case expected running time of (A,B)-
Dilation(A′, B′) when m = max{|A′|, |B′|}. Excluding the time used in step 10, the algorithm
takes O(|A′| logk n+|B′| logk n) = O(m logk n) time. As observed by Chan [9], the expected number
of times that step 10 is performed is bounded by 1+1/2+1/3+· · ·+1/9 ≤ 2, 83. The expected time
used in each execution of step 10 is bounded by T (max{|Xi|, |Yi|}) = T (m/3), and therefore T (m)
satisfies the recursion T (m) ≤ O(m logk n) + 2, 83 T (m/3). This recursion solves by induction to
T (m) = O(m logk n), and thus (A,B)-Dilation(A,B) computes ∆G(A,B) in O(n logk n) expected
time.

Theorem 15. Let k ≥ 2 be a constant. Given a weighted geometric graph G with n vertices and
treewidth at most k, we can compute its dilation ∆(G) in O(n logk+1 n) expected time.

Proof. We proceed as in the proof of Theorem 10 with an algorithm based on divide-and-conquer.
If G has fewer than k+1 = O(1) vertices, we compute ∆(G) by brute force in O(1) time. Otherwise
Lemma 3 tells us that we can find in linear time a subset A ⊆ V (G) with k portals S such that
A has between n

k+1 and nk
k+1 vertices. We compute ∆G(A,B) in O(n logk n) expected time using

Lemma 14. The graphs GA and GB can be constructed in O(n) time once we have the shortest
path trees for the portals s ∈ S, and we can then recursively compute ∆(GA) and ∆(GB). Finally,
we use the relation (3) to compute ∆(G). Since k is a constant and n

k+1 ≤ |A| ≤
nk

k+1 , the recursion
is balanced and the algorithm uses O(n logk+1 n) time.
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