
Many distances in planar graphs∗

Sergio Cabello†

October 1, 2010

Abstract

We show how to compute in O(n4/3 log1/3 n + n2/3k2/3 logn) time the distance be-
tween k given pairs of vertices of a planar graph G with n vertices. This improves
previous results whenever (n/ logn)5/6 ≤ k ≤ n2/ log6 n. As an application, we speed up
previous algorithms for computing the dilation of geometric planar graphs.

1 Introduction

Let G = (V,E, `) be a graph, where ` : E → R+ assigns an abstract non-negative length1

to each edge. The edge-lengths define a distance dG(·, ·) between the vertices of the graph,
where dG(u, v) is defined as the minimum of the lengths of the paths connecting the vertices
u, v. Consider the following natural problem.

Many distances
Given a graphGwith abstract edge-lengths and k pairs of vertices (s1, t1), . . . , (sk, tk),
find the distances dG(s1, t1), . . . , dG(sk, tk).

In this work, we present new algorithms and data structures for solving the many distances
problem in planar graphs. Through the paper we will always use k to denote the number
of pairs of vertices for which we want to compute the distance. Henceforth, we confine the
discussion to planar graphs, and use n to denote the number of vertices. An appealing version
of the many distances problem is when k = n, since in this case each vertex may participate
in some pair. For this version of the problem, we reduce the best previous running time from
O(n3/2) to O(n4/3 log n). In general, we show how to solve the many distances problem in
O(n4/3 log1/3 n + n2/3k2/3 log n) time, which improves previous results for a large range of
values of k. (See the discussion below.) Our results rely on topological properties and the
existence of cycle-separators in planar graphs.

Like previous approaches, we construct a data structure that can answer queries concern-
ing the distance between any pair of vertices, and then repeatedly query the data structure
with the k pairs. For many queries, our data structure has a better trade-off between con-
struction and query time than previous ones. Using rebuilding techniques for the data struc-
ture, we can also solve in the same time bound the many distances problem when the pairs

∗A preliminary version was presented at the 17th Annual ACM-SIAM Symposium on Discrete algo-
rithms [2].

†Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Slove-
nia, and Department of Mathematics, Institute for Mathematics, Physics and Mechanics, Slovenia.
sergio.cabello@fmf.uni-lj.si. Partially supported by the European Community Sixth Framework Pro-
gramme under a Marie Curie Intra-European Fellowship and by the Slovenian Research Agency, project
J1-7218 and program P1-0297.

1Other authors use the term edge-weights.

1

are not known in advance or the value k is unknown beforehand. On the other hand, when
the k pairs are known in advance, we can avoid constructing the data structure explicitly
and reduce the space that is used.

As an application of our results, we speed up previous results to compute the stretch
factor of a geometric planar graph. In a previous version of this work [2], we also discussed
improvements on previous algorithms for finding a shortest non-contractible cycle in a graph
embedded in a surface of bounded genus, orientable or not. For orientable surfaces, these
results have been already improved [3, 17] using different techniques. The full version of [3]
shall also treat non-orientable surfaces.

1.1 Our results and roadmap

Let G be a planar graph with n vertices and non-negative edge-lengths. Our main contribu-
tions are as follows.

• For any value S in the interval [n4/3 log1/3 n, n2], we construct in O(S) time a data
structure of size O(S) that answers distance queries in O((n/

√
S) log3/2 n) time per

query. See Theorem 12.

• The many distances problem in G can be solved in O(k2/3n2/3 log n + n4/3 log1/3 n)
time, even when we do not know the value k or the pairs beforehand. See Theorem 13.

• The many distances problem in G can be solved in O(k2/3n2/3 log n + n4/3 log1/3 n)
time and O(n+ k) space when we know the pairs beforehand. See Theorem 14.

• We show the following application: Let G be a planar, Euclidean graph with n vertices
in R

d for some fixed d. Let 3 ≥ ε > 0 be a constant, and let tG be the stretch factor of
G. We can compute in O(n4/3 log n) time a value t such that t ≤ tG ≤ (1 + ε)t.

Model. We use an addition/comparison model of computation, that is, the edge-lengths
can be arbitrary real, non-negative values and we only compare values that come from sums
of edge-lengths. In the RAM model of computation, some logarithmic improvements may
be possible; see Zwick [25] for a discussion. For the last application, computing the stretch
factor of geometric graphs, we have to compare sums of square roots. Therefore, we assume
a Real RAM model of computation, as it is standard in the context of geometric spanners.

Roadmap. In the next subsection we review results concerning distances in graphs and
compare them to our results when applicable. In Section 2 we introduce notation and give
a toolbox that will be used through the paper. In Section 3 we show how to compute the
distances from the boundary of a subgraph to all the vertices of the subgraph. In Section 4
we describe the data structure for answering distance queries in planar graphs and analyze it.
In Section 5 we describe solutions to the many distances problem, and in Section 6 we discuss
the application to computing the stretch factor. We finish with a discussion in Section 7.

1.2 Previous results and comparative

We review previous data structures for distances in planar graphs that are relevant for the
many distances problem and compare it to ours. We also compare our solution with the
following generic approach: if there is a data structure that answers distance queries in Q
time per query after T preprocessing time then this data structure can be used to solve the
many distances problem in T + kQ time. When T and Q depend on a parameter, we choose
it so as to minimize T + kQ as a function of k.

2

• Djidjev [6] uses planar separators to give the following data structures:

– For a parameter S ∈ [n3/2, n2] there is a data structure of size O(S) that answers
distance queries in O(n2/S) time per query after O(S) preprocessing time. The
case S = n3/2 was also described by Arikati et al. [1]. Our data structure is
better when S = o(n2/ log3 n). Using this data structure, the many distances
problem can be solved in O(n3/2 + nk1/2) time. Our approach is better when
k = o(n2/ log6 n).

– For a parameter S ∈ [n, n3/2] there is a data structure of size O(S) that answers
distance queries in O(n2/S) time per query after O(nS1/2) preprocessing time.
Our data structure is better when S ≥ n4/3 log1/3 n (and undefined otherwise).
Using this data structure, the many distances problem can be solved in O(n3/2 +
n4/3k1/3) time if k ≤ n5/4 and in O(kn1/2) time otherwise. Our result is better
for any k.

– For a parameter S ∈ [n4/3, n3/2] there is a data structure of size O(S) that answers
distance queries in O(nS−1/2 log n) time per query after O(nS1/2) preprocessing
time. Our data structure requires an additional O(log1/2 n)-factor in query time,
but it is constructed in O(S) time, which is substantially faster; observe that
the ranges of S for both data structures are slightly different. Using this data
structure, the many distances problem can be solved in O(n5/3 + nk1/2 log1/2 n)
time if k < n3/2/ log n or O(kn1/4 log n) time otherwise. Our approach is better
for any k.

• Fakcharoenphol and Rao [8], with the logarithmic improvement by Klein [15], give
a data structure that answers distance queries in O(

√
n log2 n) time per query af-

ter O(n log2 n) preprocessing time. Using this data structure, the many distances
problem can be solved in O(n log2 n + k

√
n log2 n) time. Our approach is better for

k = ω((n/ log n)5/6).

• Henzinger et al. [13] show that the single source shortest path problem can be solved in
linear time. Applying this k times gives the best known solution for the many distances
problem when k = O(log2 n).

• Chen and Xu [5] give data structures that depend on a parameter measuring the
minimum number of faces over the planar embeddings of the graph, a parameter first
introduced by Frederickson [10]. In the worst case, this parameter is linear, and for
any value S ∈ [n4/3, n2], Chen and Xu give a data structure of size O(S) requiring
O(n3/S) preprocessing time if S ≤ n3/2 and O(n

√
S) preprocessing time if S > n3/2.

This data structure answers distance queries in O((n/
√
S log(n/

√
S) + α(n)) time if

S ≥ n3/2 and in O((S/n) log n) time if S ≤ n3/2. This data structure implies that the
many distances can be solved in O(n3/2 +nk1/2 log1/2 n) time. Our data structure has
the same query time up to logarithmic factors but requires less preprocessing time and
it is better for any value of k.

We conclude that our solution for the many distances in planar graphs improves previous
results when k = ω((n/ log n)5/6) and k = o(n2/ log6 n) simultaneously. Our data structure
has a better trade-off between construction and query time when many distance queries have
to be answered.

For distances in planar graphs with small integer edge-lengths see Kowalik and Kurowski [16]
and references therein. The distance between all pairs of vertices in planar graphs was first
solved optimally by Frederickson [10]. For approximate distances in planar graphs, see Tho-
rup [24] and references therein. Finally, our result relies heavily on the recent result by

3

(a) (b) (c)

Figure 1: (a) A plane graph B with a cycle C in bold. The gray region is the interior of C.
(b) The graph Int(C,B). (c) The graph Ext(C,B).

Klein [15] (see also [3]) for solving the many distances problem when all the pairs have at
least one vertex incident to a common face.

2 Notation and toolbox

2.1 Basics

Let G be a given planar graph with n vertices. We assume that V (G) = {1, . . . , n} so that
arrays can be indexed by the elements of V (G). Each edge e ∈ E(G) has a non-negative
edge length `(e). For any set of edges A we use `(A) =

∑

e∈A `(e). For any subgraph B of
G and any vertices u, v ∈ V (B), we use dB(u, v) to denote the length of a shortest path in
B between between u and v. When no such path exists we write dB(u, v) = ∞.

Using any linear-time embedding algorithm we can assume, henceforth, that G is a plane
graph, that is, a planar graph together with an embedding in the plane. Using a standard
transformation we may further assume that the maximum degree of G is at most three. For
non-connected graphs, we will make a slight abuse of terminology and use facial walk to refer
to the union of the facial walks that define a face that is not simply connected.

We identify a vertex with the point that represents it in the embedding, and an edge
with the curve that represents it in the embedding. The term cycle is used for a walk with
no repeated vertices. A cycle C defines a Jordan curve in the plane, that is, an injective
image of S1. From Jordan’s theorem, it follows that R2 \ C has two connected components,
one unbounded, called the exterior of C, and one bounded, called the interior of C.

Let B be any embedded planar graph. A cycle C in B naturally defines two subgraphs;
see Figure 1. We use Int(C,B) for the subgraph of B that is contained in the closure of the
interior of C. We use Ext(C,B) for the subgraph of B that is contained in the closure of the
exterior of C. Notice that the edges of C belong to both Int(C,B) and Ext(C,B), while the
edges connecting vertices of C that are not part of C go either to Int(C,B) or Ext(C,B),
but not to both.

2.2 Pieces

A piece B is a subgraph of G; we identify B with its embedding in the plane induced by
the embedding of G. A boundary walk of B is a facial walk of B that is not a facial walk
of G. A boundary vertex of B is a vertex of B incident to an edge in E(G) \ E(B). The
boundary of B, denoted by ∂B, is the set of its boundary vertices. The size of the boundary
is the number of vertices in ∂B. Note that a walk in G that intersects B is contained in B
or passes through the boundary ∂B.

4

Figure 2: Left: part of a piece B (solid and dashed edges) with a boundary walk W (solid
edges) that bounds a face. The dotted edges are edges of E(G) \ E(B). Right: the hole
H(B,W).

Let B be a piece and let W be one of its boundary walks. We define the hole of B with
respect to W , denoted by H(B,W), as the subgraph of G−E(B) contained in the closure of
the face of B defined by W , excluding the edges of W . See Figure 2. It may be that H(B,W)
has several connected components. Since G has maximum degree three, the vertices of W
are cofacial in H(B,W). (This is not true in general for planar graphs of arbitrary degree
because a subtree of W may be enclosed by a cycle of H(B,W).)

If B is a piece with w boundary walks, denoted by W 1,W 2, . . . ,Ww, then the edges
of the holes H(B,W 1),H(B,W 2), . . . ,H(B,Ww) form a disjoint partition of E(G) \ E(B).
Each vertex of V (G) that is not in B appears in a unique hole. Given a piece B, we can
identify its boundary walks and construct the corresponding holes in linear time. A path in
G connecting two vertices of ∂B that is otherwise disjoint from ∂B is contained in B or in
one of its holes H(B,W j).

2.3 Decompositions

The following definition is a variation on the definition by Frederickson [9], where we require
that each piece is connected and also consider the number of boundary walks.

Definition 1 Given a parameter r ∈ (0, n) and a graph G, an r-decomposition with a few
holes consists of a family of pieces B1, . . . , Bp such that:

• each edge of G appears in at least one piece;

• each piece is a connected subgraph;

• each piece has at most r vertices;

• p = O(n/r), that is, there are O(n/r) pieces;

• each boundary ∂Bi has O(r1/2) vertices;

• ∑i wi = O(n/r), where each wi is the number of boundary walks of Bi.

In the following we describe an algorithm to construct an r-decomposition with a few
holes in O(n log(n/r)) time. Similar approaches have been described by Frederickson [9],
Goodrich [11], and Henzinger et al. [13], but they do not achieve all the properties listed in
our definition of r-decomposition with a few holes. The algorithm of Henzinger et al. [13]
produces pieces whose boundary may have too many vertices. The algorithm of Frederick-
son [9] and Goodrich [11] do not have control over the number of boundary walks because
they rely on the separator theorem of Lipton and Tarjan [19]. Our algorithm to construct an
r-decomposition with a few holes is a slight modification of the approach by Frederickson [9].
Namely, we achieve control over the total number of boundary walks using the cycle-separator

5

Figure 3: From left to right: a face in a piece B; the face in the supergraph B′; a possible
cycle used to split B′; how the split affects the face.

result of Miller [20], instead of the separator theorem of Lipton and Tarjan [19]. While our
construction needs O(n log(n/r)) time, the original algorithm of Goodrich [11] achieves lin-
ear time using several data structures. It is unclear if the algorithm of Goodrich [11] can
also be modified to use the cycle-separator, and thus obtain a linear-time construction of
r-decompositions with a few holes. In any case, such improvement in the running time of
this step does not affect the running time for the overall problem.

Lemma 2 Let B be a connected piece with n vertices, b boundary vertices, and w boundary
walks. We can construct in linear time two pieces B1 and B2 such that: V (B) = V (B1) ∪
V (B2) and E(B) = E(B1)∪E(B2), each of the pieces is connected, and both pieces together
have n+O(

√
n) vertices, b+O(

√
n) boundary vertices, and w+2 boundary walks. Moreover,

we can choose any of the following two options:

(a) B1 and B2 each have at most 2n/3 +O(
√
n) vertices;

(b) B1 and B2 each have at most 2b/3 +O(
√
n) boundary vertices.

Proof. We construct a supergraph B′ of B as follows: for each face f of B we add a new
vertex vf and connect it with a two-edge path to each appearance of a vertex in the facial
walk of f . See Figure 3. The graph B′ has a planar embedding that naturally extends the
embedding of B: the rotation of the subdivided edges around vf agrees with the ordering in
the facial walk of f . Let V ′ be the vertices added toB to create B′, that is, V ′ = V (B′)\V (B).
The graph B′ is 2-connected, has O(n) vertices, and its faces have 5 vertices each.

If we are interested in property (a), we assign weight 1 to each vertex of V (B), and weight
0 to the new vertices V ′. For property (b), we would assign weight 1 to each vertex of the
boundary of B, and weight 0 to the rest of vertices. The rest of our discussion focuses on
property (a), since property (b) is handled almost identically. Applying Miller’s result [20]
we obtain a (simple) cycle C ′ in B′ with O(

√
n) vertices such that each of the subgraphs

Ext(C ′, B′) and Int(C ′, B′) contains at most 2n/3 +O(
√
n) vertices of V (B).

Let B1, B2 be the subpieces Ext(C ′, B′) − V ′, Int(C ′, B′) − V ′ of B. Clearly, V (B) =
V (B1) ∪ V (B2) and E(B) = E(B1) ∪ E(B2), while each of the two pieces has at most
2n/3+O(

√
n) vertices. Only the vertices V (C ′)∩V (B) go to both B1 and B2, and therefore,

the total number of vertices and the total number of boundary vertices increases by O(
√
n).

The total number of boundary walks in B1, B2 is at most w + 2: the cycle C ′ produces two
new facial walks (one in B1 and one in B2), and a boundary walk of face f in B either
disappears (if C ′ passes through the vertex vf) or goes to only one subpiece (if C ′ does not
pass through vf). Finally, note that we extended B to B′ in such a way that C ′ can “go
across” a face f of B only once, and the part of f going to either piece is connected, making
the pieces B1 and B2 connected.

The construction of B′ from B, the computation of Miller’s cycle-separator C ′, and the
remaining steps take linear time. Hence, we use linear time for the whole procedure. �

6

Theorem 3 Given a planar graph G with n vertices and a value r ∈ (0, n), we can construct
an r-decomposition of G with a few holes in O(n log(n/r)) time and O(n) space.

Proof. Starting with a family of pieces consisting of G, we recursively apply the splitting
procedure of Lemma 2, with property (a), to any piece with more than r vertices. Freder-
ickson [9, Lemma 1] argues that this splitting is applied Θ(n/r) times and, over all pieces,
O(n/

√
r) boundary vertices are obtained. The time spent for this part is O(n log(n/r))

because the recursion is balanced and stops when pieces with Θ(r) vertices are obtained.
Next, we repeatedly apply Lemma 2, with property (b), to each piece of the family that

has more than c
√
r boundary vertices, where c > 0 is an appropriate constant. As shown

by Frederickson [9, Lemma 2], this splitting takes place O(n/r) times. Eventually we finish
with a family of pieces, each with at most r vertices and O(

√
r) boundary vertices. In

total, Lemma 2 is used O(n/r) times, and therefore the family we obtain consists of O(n/r)
connected pieces and has O(n/r) boundary walks over all pieces. This family is therefore
an r-decomposition of G with a few holes, as sought. Each of the O(n/r) applications of
Lemma 2, with property (b), requires O(r) time, and therefore we need O(n) time for this
part.

At any given time of the algorithm, the sum of the number of vertices in the pieces is
bounded by n plus the number of boundary vertices, counted with multiplicity. Once a
vertex becomes a boundary vertex in a piece, it will remain a boundary vertex in this piece
as well as in all the subpieces that it appears in. Since at the end there are O(n/r) pieces
with O(

√
r) boundary vertices per piece, the sum of the sizes of the pieces at any given time

is bounded by O(n) + O(n/r) · O(
√
r) = O(n). We conclude that O(n) space is enough to

construct the decomposition. �

2.4 Toolbox

We will make use of the following result by Klein [15]; see Cabello and Chambers [3] for an
alternative presentation that generalizes to graphs embedded in surfaces.

Theorem 4 Let G be a plane graph with n vertices, and let F be a face of G. We can
preprocess G in O(n log n) time and space such that any query for a distance dG(u, v) where
u is any vertex of V (G) and v is any vertex of F can be answered in O(log n) time.

Under the same hypothesis, and given k pairs of vertices (u1, v1), . . . , (uk, vk) with ui ∈
V (G) and vi vertices of F , we can compute the values dG(u1, v1), . . . , dG(uk, vk) in O((n +
k) log n) time and O(n+ k) space.

An apex graph G is a graph such that G− v is planar for some vertex v ∈ V (G); such a
vertex v is called an apex of G.

Lemma 5 Let G be an apex graph with known apex v. For any vertex u ∈ V (G), we can
compute the values dG(u, u

′) for all u′ in V (G) in linear time.

Proof. If G has n vertices, then it has a separator of size O(
√
n): a separator of the planar

graph G− v together with v is a separator for G. Moreover, if we know an apex for G, then
such a separator for G can be found in linear time [19].

Apex graphs are closed under taking subgraphs: a subgraph of an apex graph is an
apex graph. Thus, the algorithm by Henzinger et al. [13] implies the result. See Tazari and
Müller-Hannemann [23] for an alternative approach. �

It is unclear if this result holds when the apex is unknown because we currently do not
know how to find such an apex in linear time. We will need to compute the distance between
all pairs of vertices in general graphs. The following result is from Chan [4].

7

Theorem 6 Given a graph G with n vertices, we can compute the values dG(u, u
′) for all

pairs of vertices (u, u′) ∈ V (G)× V (G) in O(n3/ log n) time and space.

Finally, we will also use the following result by Djidjev, which we already mentioned in
the introduction.

Theorem 7 Given a planar graph G with n vertices, there is a data structure of size O(n3/2)
that can be constructed in O(n3/2) time such that a query distance in G can be computed in
O(n1/2) time.

In particular, the distance between k given pairs of vertices can be computed in O(n3/2 +
kn1/2) time and O(n3/2 + k) space.

3 Distances within a piece

We first solve a particular problem concerning distances from a piece. Let B be a piece of
G with r vertices, w boundary walks, and boundary of size O(r1/2).

Lemma 8 We can compute in O(n log n + r3/2) time and O(n + r3/2/ log r) space the dis-
tances dG(u, v) in the graph G for all u, v ∈ ∂B.

Proof. Let W = {W 1, . . . ,Ww} be the set of boundary walks of B. For each j = 1, . . . , w,
let Hj denote the hole H(B,W j). Define a complete graph K∂B with ∂B as vertex set, and
set the length of each edge uv ∈ E(K∂B) to

min
(

{dB(u, v)} ∪ {dHj (u, v) | u ∈ W j ∈ W and v ∈ W j ∈ W}
)

.

First we show that dG(u, v) = dK∂B
(u, v) for any u, v ∈ ∂B, implying that we can compute

the desired distances by solving the all pairs shortest path problem in K∂B . Then we bound
the running time of the procedure.

To show that dG(u, v) = dK∂B
(u, v) for any u, v ∈ ∂B, observe first that dG(u, v) ≤

dK∂B
(u, v) because the length of any edge uv in K∂B is at least dG(u, v) by construction. To

see the other inequality, fix for each pair u, v ∈ ∂B a shortest path ∆G(u, v) in G from u
to v that uses the minimum number of vertices from ∂B. We proceed by induction on the
values |∂B ∩∆G(u, v)|, where u, v ∈ ∂B.

• If |∂B∩∆G(u, v)| = 2, then the path ∆G(u, v) is contained in B or in a hole Hj , where
W j is a boundary walk containing u, v. In this case

dG(u, v) = `(∆G(u, v))

= min{dB(u, v), dHj (u, v)}
≥ dK∂B

(u, v),

which proves the base case of the induction.

• If |∂B ∩∆G(u, v)| > 2, consider a vertex v′ in ∂B ∩∆G(u, v) different from u, v. Then
by the inductive hypothesis we have

dG(u, v) = dG(u, v
′) + dG(v

′, v)

≥ dK∂B
(u, v′) + dK∂B

(v′, v)

≥ dK∂B
(u, v).

8

This finishes the proof that dG(u, v) = dK∂B
(u, v) for any u, v ∈ ∂B.

It remains to bound the running time of the procedure. To compute the lengths of edges
uv ∈ E(K∂B) we proceed as follows.

• The distances dB(u, v) for all u, v ∈ ∂B can be computed by constructing a shortest
path tree from each u ∈ ∂B. Since each such shortest path tree can be constructed in
O(r) time because B is planar [13], this takes |∂B| ·O(r) = O(r3/2) time in total. Since
for each shortest path we can reuse the space, we need O(|∂B|2 + r) = O(r) space in
total.

• Consider next a fixed W j ∈ W. The vertices of W j are cofacial in Hj , and therefore we
can compute the distances dHj (u, v) for all u, v ∈ W j∩∂B using Theorem 4. This takes
O((|V (Hj)|+ |W j ∩∂B|2) log n) time and O(|V (Hj)|+ |W j ∩∂B|2) = O(n+r) = O(n)
space. Repeating this procedure for each boundary walk W j ∈ W, we obtain the
distances dHj (u, v) for all u, v ∈ W j ∩ ∂B, W j ∈ W. Since G has maximum degree
three, each boundary vertex can appear in at most three holes. Therefore

∑

j

|W j ∩ ∂B| ≤ 3|∂B| = O(r1/2)

and
∑

j

|V (Hj)| ≤ 3|V (G)| = O(n).

Thus, we spend

∑

j

O((|V (Hj)|+ |W j ∩ ∂B|2) log n) = O





∑

j

|V (Hj)| log n+
∑

j

|W j ∩ ∂B|2 log n





= O(n log n+ r log n)

= O(n log n)

time in this step. Since in each computation involving a walk W j we can reuse the
space, we only need O(n+ r) = O(n) space in this step.

From the computed distances we obtain the lengths of the edges in K∂B . The total running
time to construct K∂B is thus O(r3/2 + n log n + r log n) = O(n log n + r3/2), and we use
O(n+ r) = O(n) space.

Finally, since K∂B is a complete graph with O(r1/2) vertices, we can compute dK∂B
(u, v)

for all vertices u, v ∈ ∂B in O(r3/2/ log r) time and space using Theorem 6. �

Lemma 9 We can compute in O(n log n + r3/2) time and O(n + r3/2) space the distances
dG(u, v) in the graph G for all u ∈ ∂B and v ∈ B.

Proof. We use the previous lemma to compute the distances dG(u, v) for all u, v ∈ ∂B. This
takes O(n log n+ r3/2) time and requires O(n+ r3/2) space.

Fix a vertex u ∈ ∂B, and consider the graph Bu obtained by adding to B the additional
edges Eu = {uv | v ∈ ∂B \ {u}}, each edge uv ∈ Eu having length dG(u, v). The graph Bu

can be constructed in O(r) time and has size O(r); see Figure 4. Moreover, observe that
Bu is an apex graph with known apex u. Using Lemma 5, we can compute the distances
dBu(u, v) for all v ∈ B in O(r) time and space.

We claim that dBu(u, v) = dG(u, v) for any v ∈ B, which implies that we have computed
the distances dG(u, v) for all v ∈ B. Applying this procedure for each of the O(r1/2) vertices
of ∂B we obtain the lemma.

9

u

Figure 4: Left: a piece B in light gray; black dots represent boundary vertices and white
dots represent non-boundary vertices along the boundary walks. Right: graph Bu for vertex
u.

The proof of the claim is very similar to the one in the previous lemma. First, observe
that dG(u, v) ≤ dBu(u, v) for any vertices u, v ∈ B because this inequality holds for vertices
that are adjacent in Bu. To prove that dG(u, v) ≥ dBu(u, v) for any vertex v ∈ B, consider
a shortest path ∆G(u, v) in G from u ∈ ∂B to v ∈ B. If |∆G(u, v) ∩ ∂B| = 1, then u
is the only boundary vertex of ∆G(v, u), which means that ∆G(u, v) is contained in B,
and therefore dG(u, v) = dB(u, v) = dBu(u, v). If |∆G(u, v) ∩ ∂B| > 1, let v′ be the last
vertex in ∆G(u, v) ∩ ∂B as we walk from u to v; it may be that v′ = v. We then have
dG(u, v) = dG(u, v

′) + dG(v
′, v) = dBu(u, v

′) + dBu(v
′, v) ≥ dBu(u, v). This finishes the proof

of the claim and the proof of the lemma. �

The technique we use in Lemma 8 has been used previously; see for example Lipton
et al. [18] or Henzinger et al. [13]. In fact, a better time complexity in Lemma 8 can be
obtained using the improved techniques developed by Fakcharoenphol and Rao [8], or by
Klein et al. [14]. However, those techniques are more complex and do not improve the time
complexity of Lemma 9 or of our forthcoming results.

4 Data structure for distances in planar graphs

Consider a parameter r ∈ (0, n) whose value will be fixed later. We use Lemma 3 to construct
an r-decomposition with a few holes that has pieces B = {B1, . . . Bp}, where p = Θ(n/r).
We keep using wi to denote the number of boundary walks of piece Bi ∈ B. It holds that
∑

iwi = O(n/r). We define a data structure DS(G, r) consisting of the following parts:

(a) We store each piece B ∈ B explicitly with each vertex marked as boundary vertex or
non-boundary vertex. We also store with each piece B the number |∂B| of boundary
vertices, the number w of boundary walks, and a list with pointers to the boundary
vertices ∂B.

(b) We store an array B[1, . . . , n] such that B[v] is a piece containing vertex v, for any
v ∈ V (G).

(c) For each piece B ∈ B and each boundary walk W of B we store the hole H = H(B,W)
explicitly. We also store a list L(B,H) of vertices that appear in both V (H) and ∂B,
containing pointers to both copies of each such vertex.

(d) We store an array Locate[][] indexed by pieces and vertices. For each piece B ∈ B and
each vertex v ∈ V (G), Locate[B, v] contains a pointer to the copy of v in B if v is a
vertex of B, and otherwise a pointer to the copy of v in the unique hole H of B that
contains v.

10

(e) For each piece B ∈ B we store a data structure that reports in O(1) time the distance
dG(u, v) for any query pair (u, v) ∈ (∂B)× V (B).

(f) For each piece B ∈ B we store a data structure that reports in O(r1/2) time the distance
dB(u, v) for any query pair (u, v) ∈ V (B)2.

(g) For each hole H = H(B,W) of each piece B ∈ B we store a data structure that reports
in O(log n) time the distance dH(u, v) for any query pair (u, v) ∈ (∂B∩V (H))×V (H).

We would like to note the discrepancy between the mathematical notation and the represen-
tation in data structures. A vertex v of G may appear in several pieces and holes, and we
do not distinguish them in the mathematical notation. However, we are assuming that each
graph stores its own copy of v, and hence accessing v in the representation of G is not the
same as accessing it in the representation of a piece B or a hole H. However, in our scenario
the vertices V (H) ∩ (∂B) for a hole H in a piece B will always be accessed through the list
from part (c), and this gives pointers to both copies of the same vertex.

Lemma 10 The data structure DS(G, r) can be constructed in O((n2/r) log n+ nr1/2) time
and space.

Proof. Constructing the r-decomposition takes O(n log n) time. From the r-decomposition
we obtain the pieces B1, . . . , Bp explicitly. In O(n) time we can traverse piece Bi in G to
identify, mark, and count the boundary vertices of Bi, and to obtain the list of boundary
vertices. The array B[] from part (b) can be constructed as follows: starting with an empty
array B[], we set B[v] = Bi for each v ∈ V (Bi) and each Bi ∈ B. This sets up parts (a) and
(b) of DS(G, r). We have spent O(n log n) time and O(n) space.

We next describe part (c) of DS(G, r). For each piece B ∈ B we proceed as follows.
First, we identify the w boundary walks W 1, . . .Ww of B by traversing B in G. Next, for
each boundary walk W of B, we construct the hole H = H(B,W) explicitly, taking care
to construct the list L = L(B,H) simultaneously: when adding to H a vertex v of G that
is a boundary vertex of B we also include v in L with the appropriate pointers. In each
hole we need time proportional to its number of vertices. Since the holes of B are pairwise
edge-disjoint, constructing part (c) of DS(G, r) takes O(n) time and space per piece B ∈ B.

To construct the array Locate[][] of part (d) we follow the same approach used for B[].
For each piece B ∈ B we do the following: for each v in a hole H of B we set Locate[B, v]
with a pointer to the copy of v in H. Then for each v ∈ V (B) we set Locate[B, v] with a
pointer to the copy of v in B. This sets up part (d) of DS(G, r). We have spent O(n) time
and space per piece B ∈ B.

We next describe part (e) of DS(G, r). For each piece B ∈ B we proceed as follows. We
attach to each vertex v of B a label φ(v) ∈ {1, . . . , |V (B)|} such that the mapping φ : V (B) →
{1, . . . , |V (B)|} is bijective and φ(∂B) = {1, . . . , |∂B|}. That is, φ is an enumeration of the
vertices of B where the boundary vertices ∂B are at the beginning. Such a labeling φ can
be computed easily in O(r) by traversing the piece B once to enumerate the vertices of ∂B,
and then traversing it a second time to enumerate the vertices V (B)\∂B. We then initialize
a two-dimensional array d[1, . . . , |∂B|][1, . . . , |V (B)|] of size O(r1/2)×O(r) = O(r3/2). Using
Lemma 9 we compute the distances dG(u, v) for all (u, v) ∈ (∂B)×V (B), and store dG(u, v)
in the entry d[φ(u)][φ(v)]. With this information, we can clearly access the distance dG(u, v)
in O(1) time for any query (u, v) ∈ (∂B)×V (B). This sets up part (e) of DS(G, r). We have
spent O(n log n+ r3/2) time and O(n+ r3/2) space per piece B ∈ B.

Part (f) of DS(G, r) can be set up by applying Theorem 7 to each piece B ∈ B. This
takes O(r3/2) time and space per piece B ∈ B.

11

To set up part (g) of DS(G, r), we apply Theorem 4 to each hole H = H(B,W) of each
piece B ∈ B with respect to the face of H that contains the vertices V (W). To answer a
distance query dH(u, v) for a pair (u, v) ∈ (∂B∩V (H))×V (H), we apply the data structure
of Theorem 4. To bound the running time used to set up part (g) of DS(G, r), note that
the holes of a piece B are pairwise edge-disjoint, and therefore applying Theorem 4 to all
the holes of a piece takes O(n log n) time. This sets up part (g) of DS(G, r). We have spent
O(n log n) time and space per piece B ∈ B.

We have finished the description of how to set up parts (a)–(g) of DS(G, r). In addition
to the O(n log n) time to construct the r-decomposition, we have used O(n log n+ r3/2) time
per piece B ∈ B. Summing over all O(n/r) pieces we see that the total time needed is

∑

B∈B

O(n log n+ r3/2) = O((n/r)(n log n+ r3/2) = O((n2/r) log n+ nr1/2).

The same bound applies to the space used by the data structure. �

Lemma 11 For any query pair (u, v) ∈ V (G)2, the data structure DS(G, r) can report in
O(r1/2 log n) time the distance dG(u, v) .

Proof. Consider a query pair (u, v). Using the array B[] (part (b) of DS(G, r)) we can
identify a piece B = B[u] ∈ B that contains vertex u. Using the entry Locate[B, v] (part (d)
of DS(G, r)) we can decide if the vertex v is also in the piece B or not. This gives rise to two
cases.

Case v /∈ V (B). In this case v is in some hole of B. We can identify the hole H of B that
contains v using the entry Locate[B, v] (part (d) of DS(G, r)). We claim that

dG(u, v) = min
{

dG(u, v
′) + dH(v′, v) | v′ ∈ (∂B) ∩ V (H)

}

.

Assuming the correctness of the claim, we can then compute dG(u, v) in O(r1/2 log n)
time: we go through the list L(B,H) (part (c) of DS(G, r)) containing the vertices
(∂B) ∩ V (H), and for each vertex v′ of L(B,H), we obtain the value dG(u, v

′) (resp.
dH(v′, v)) in O(1) (resp. O(log n)) time using part (e) (resp. (g)) of DS(G, r).

To see the correctness of the claim, we apply an idea similar to the ones in previous
lemmas. Clearly, we have

dG(u, v) ≤ min
{

dG(u, v
′) + dH(v′, v) | v′ ∈ (∂B) ∩ V (H)

}

.

For the other inequality, consider a shortest path ∆G(u, v) in G between u and v, and
let v′′ be the last vertex of ∆G(u, v) in ∂B. The portion of ∆G(u, v) between v′′ and v
has to be contained in H, and v′′ has to be a vertex of (∂B) ∩ V (H). Therefore

dG(u, v) = dG(u, v
′′) + dG(v

′′, v) = dG(u, v
′′) + dH(v′′, v)

≥ min{dG(u, v′) + dH(v′, v) | v′ ∈ (∂B) ∩ V (H)}.

This finishes the proof of the claim and closes the case v /∈ V (B).

Case v ∈ V (B). We claim that

dG(u, v) = min
(

{dB(u, v)} ∪ {dG(u, v′) + dG(v
′, v) | v′ ∈ ∂B}

)

.

Assuming the correctness of the claim, we can then compute the value dG(u, v) in
O(r1/2) time: the value dB(u, v) can be obtained using part (f) of DS(G, r), and the

12

value min {dG(u, v′) + dG(v
′, v) | v′ ∈ ∂B} can be obtained going through the list con-

taining the vertices of ∂B (part (a) of DS(G, r)), and for each vertex v′ ∈ ∂B obtaining
the values dG(u, v

′), dG(v
′, v) in O(1) time using part (e) of DS(G, r).

To see the correctness of the claim, we apply the same idea as above. Clearly, we have

dG(u, v) ≤ min
(

{dB(u, v)} ∪ {dG(u, v′) + dG(v
′, v) | v′ ∈ ∂B}

)

.

For the other inequality, consider a shortest path ∆G(u, v) in G between u and v. If
∆G(u, v) is contained in B, then

dG(u, v) = dB(u, v) ≥ min
(

{dB(u, v)} ∪ {dG(u, v′) + dG(v
′, v) | v′ ∈ ∂B}

)

.

If ∆G(u, v) is not contained in B, let v′′ be any vertex of ∆G(u, v)∩∂B. We then have

dG(u, v) = dG(u, v
′′) + dG(v

′′, v)

≥ min
(

{dB(u, v)} ∪ {dG(u, v′) + dG(v
′, v) | v′ ∈ ∂B}

)

.

This finishes the proof of the claim and closes the case v ∈ V (B).

�

We will now pick the best value of r for the data structure DS(G, r). Space and prepro-
cessing time is O((n2/r) log n + nr1/2). Observe that when r ≤ n2/3 log2/3 n, the first term
of the sum dominates, while when r ≥ n2/3 log2/3 n, the second term dominates. In any
case, we cannot expect to bound the time and space complexity to construct DS(G, r) below
O(n4/3 log1/3 n). By choosing r, we get a family of data structures with a trade-off between
the time for its construction and the time to answer distance queries.

Theorem 12 Let G be a planar graph with n vertices. For any value S in the interval
[n4/3 log1/3 n, n2], we can construct in O(S) time a data structure of size O(S) that answers

distance queries in O
(

(n/
√
S) log3/2 n

)

time per query.

Proof. Construct DS(G, r) for r = (n2/S) log n. According to Lemma 10, this requires

O

(

n2 log n

(n2/S) log n
+ n

√

(n2/S) log n

)

= O
(

S + (n2/
√
S) log1/2 n

)

= O(S)

time and space, where in the last step we used S ≥ n4/3 log1/3 n. Lemma 11 shows that
it takes O(

√
r log n) = O((n/

√
S)

√
log n log n) = O((n/

√
S) log3/2 n) time to answer a

query. �

5 Many distances in planar graphs

Using Theorem 12 and standard rebuilding techniques [22] we obtain the following result.

Theorem 13 Let G be a planar graph of size n. The distance between k pairs of vertices in
G that are given online can be computed in O(k2/3n2/3 log n+n4/3 log1/3 n) time, even when
we do not know the value k beforehand.

13

Proof. Set k0 = n/ log n, and ki = k02
i for any positive integer i. We use ri = n4/3k

−2/3
i

for any integer i.
For the first k0 pairs that we have to answer, we use the data structure DS(G, r0). It

takes

O

(

n2 log n

r0
+ nr

1/2
0

)

= O

(

n2 log n

n4/3k
−2/3
0

+ n

√

n4/3k
−2/3
0

)

= O
(

n2/3 log n (n/ log n)2/3 + n5/3(n/ log n)−1/3
)

= O
(

n4/3 log1/3 n
)

time to construct DS(G, r0), and each distance query can be answered in

O(
√
r0 log n) = O(

√

n4/3k
−2/3
0 log n) = O(n2/3(n/ log n)−1/3 log n) = O(n1/3 log4/3 n)

time. Therefore, the distances between the first k0 pairs can be computed in O(n4/3 log1/3 n)
time.

Next, we apply the following rule. Whenever the number of pairs received reaches a value
ki, we construct the data structure DS(G, ri) and answer the distance queries for the next
pairs using it. That is, the pairs that we receive between the ki-th and the (2ki − 1)-th pair
are answered using DS(G, ri).

In total, if k ≥ n/ log n, we will construct the data structures DS(G, ri) for i = 0, 1, . . . , blog2(k/k0)c.
This takes

blog2(k/k0)c
∑

i=0

Time to construct DS(G, ri) =

blog2(k/k0)c
∑

i=0

O

(

n2 log n

ri

)

= O





blog2(k/k0)c
∑

i=0

n2 log n

n4/3k
−2/3
i





= O





blog2(k/k0)c
∑

i=0

n2/3k
2/3
i log n





= O



n2/3 log n

blog2(k/k0)c
∑

i=0

(k02
i)2/3





= O



n2/3k
2/3
0 log n

blog2(k/k0)c
∑

i=0

22i/3





= O
(

n2/3k
2/3
0 (k/k0)

2/3 log n
)

= O
(

n2/3k2/3 log n
)

time.
To bound the time to compute the distances, observe that the ki pairs between the ki-th

and the (ki+1 − 1)-th are answered using DS(G, ri). Each distance in DS(G, ri) takes

O(
√
ri log n) = O(

√

n4/3k
−2/3
i log n) = O(n2/3k

−1/3
i log n)

time, and therefore computing the ki distances in DS(G, ri) takes O(n2/3k
2/3
i log n) time.

14

The total time we spend computing all the distances is

blog2(k/k0)c
∑

i=0

O
(

n2/3k
2/3
i log n

)

which we have just seen above that is O(n2/3k2/3 log n). �

One weak point in this approach is that we are not exploiting the fact that the k pairs
are known beforehand, that is, that the many distances problem, as we have defined it, is an
off-line problem. In the following, we make use of this fact to improve the space bound.

Theorem 14 Let G be a planar graph of size n. The distance between k given pairs of
vertices in G can be computed in O(k2/3n2/3 log n+ n4/3 log1/3 n) time and O(n+ k) space.

Proof. Let P = {(s1, t1), . . . , (sk, tk)} be the k given pairs of vertices. We assume that
k ≥ n/ log n, as otherwise we can just add extra pairs of vertices and the time and space
bounds to be proved remain the same. Consider a parameter r = n4/3k−2/3, and note that
r3/2 = n2/k ≤ n log n. We use a streaming technique [22], which interleaves the construction
of DS(G, r) and the queries to be answered, as follows.

We use Theorem 3 to construct an r-decomposition with a few holes, thus obtaining a
set B = {B1, . . . Bp} of pieces, where p = Θ(n/r). As before, wi denotes the number of
boundary walks of piece Bi ∈ B and we have

∑

iwi = O(n/r). We construct parts (a) and
(b) of DS(G, r), which require O(n log n) time and O(n) space; see the first paragraph in the
proof of Lemma 10.

We split the pairs in P into groups Pi, i = 1 . . . p, such that the following holds: if a pair
(s, t) is in Pi, then s is a vertex in the piece Bi. This split can be done in O(k) time by
assigning the pair (s, t) ∈ P to the group Pi if B[s] = Bi. Let ki = |Pi|. We further split

each group Pi into subgroups P 1
i , P

2
i , . . . , P

dkir
1/2/ne

i of n/r1/2 pairs each, except possibly the
last subgroup.

Consider any fixed subgroup P a
i . To simplify notation, let us take Q = P a

i , B = Bi, and
w = wi. We also use H1, . . . ,Hw for the holes of B. We next discuss how to compute dG(s, t)
for all pairs (s, t) in the subgroup Q in O(n log n) time and O(n) space. Let T denote the
set of vertices {t | (s, t) ∈ Q}.

We construct parts (c) and (d) of DS(G, r) for the piece B. This can be done in O(n log n+
r3/2) = O(n log n) time and O(n) space as discussed in the proof of Lemma 10. We also
attach to each vertex v of ∂B a distinct label φ∂(v) ∈ {1, . . . , |∂B|} and to each vertex t of T
a distinct label φT (t) ∈ {1, . . . , |T |}. That is, φ∂ is a bijection between ∂B and {1, . . . , |∂B|}
and φT is a bijection between T and {1, . . . , |T |}. This can be done in O(n) time by traversing
B and G.

We construct a table δ[1, . . . , |∂B|][1, . . . , |T |] of size O(r1/2 ·n/r1/2) = O(n) whose entries
are initialized to +∞. For each pair (v, t) ∈ ∂B × T we want that δ[φ∂(v)][φT (t)] = dG(v, t)
if t ∈ V (B) and δ[φ∂(v)][φT (t)] = dH(v, t) if t is in V (Hj) \ V (B) for a hole Hj of B. This
is achieved as follows. We split T into subgroups T 0, T 1, . . . , Tw, where T 0 contains the
vertices t in B, and T j contains the vertices t in V (Hj) \ V (B). This split can be done in
O(|T |) = O(n/r1/2) time by using Locate[B, t] for each t of T .

The distances dG(v, t) for all pairs (v, t) ∈ ∂B×T 0 can be obtained as follows. We apply
Lemma 8 to compute the distances between all the boundary vertices of B in O(n log n +
r3/2) = O(n log n) time and O(n+ r3/2/ log r) = O(n) space. Then, for each vertex v ∈ ∂B,
we compute the distances dG(v, t) for all t ∈ T 0 in O(r) time and space using an apex
graph, as it is done in Lemma 9, and store them in δ[φ∂(v)][φT (t)]. Over all boundary

15

vertices v ∈ ∂B we spend O(n log n + |∂B| · r) = O(n log n + r3/2) = O(n log n) time. Note
that the space can be reused for each boundary vertex v ∈ ∂B, and thus we use a total of
O(n+ |∂B| · |T 0|) = O(n+ r1/2n/r1/2) = O(n) space.

The distances dG(v, t) for all pairs (v, t) ∈ ∂B × T j can be obtained and stored in
δ[φ∂(v)][φT (t)] using the second part of Theorem 4 in

O((|V (Hj)|+ |∂B| · |T j|) log n) = O((|V (Hj)|+ r1/2|T j|) log n)

time and
O(|V (Hj)|+ |∂B| · |T j|) = O(n+ r1/2 · n/r1/2) = O(n)

space. Since we can reuse space for each hole Hj , we conclude that the table δ can be filled
in using O(n) space and

O



n log n+
w
∑

j=1

(|V (Hj)|+ r1/2|T j |) log n





time. The second term of the running time can be bounded by

O





w
∑

j=1

|V (Hj)| log n+
w
∑

j=0

r1/2 |T j | log n



 = O(n log n+ r1/2|T | log n)

= O(n log n+ r1/2 (n/r1/2) log n)

= O(n log n).

Now we have the table δ available. The distances dB(s, t) for all (s, t) ∈ Q can be com-
puted using Theorem 13, and we can similarly store them in a table. Since r ≤ (n log n)2/3,
this computation takes

O(|Q|2/3r2/3 log r + r4/3 log1/3 r) = O((n/r1/2)2/3r2/3 log r + r4/3 log r)

= O(n2/3r1/3 log r + r4/3 log r)

= O(n)

time and space. We can now compute the distances dG(s, t) for all pairs (s, t) ∈ Q using
the approach of Lemma 11. Any distance that is needed has been computed and can be
recovered in O(1) time from a table, and hence we spend O(r1/2) time and O(1) additional
space per distance. We conclude that we can compute dG(s, t) for all pairs (s, t) ∈ Q in
O(n log n) time and O(n) space.

Repeating the procedure for each group P a
i , where a = 1, . . . , dkir1/2/ne and i = 1 . . . p,

we can compute the distance for all pairs P using

∑

i

dkir
1/2/ne
∑

a=1

O(n log n) =
∑

i

O(kir
1/2/n) ·O(n log n)

=
∑

i

O(kir
1/2 log n)

= O(kr1/2 log n)

= O(n2/3k2/3 log n)

time. Since for each group P a
i we can reuse the working space of size O(n), we only need

O(n+ k) space in total. The result follows. �

16

6 Stretch factor of planar geometric graphs

A Euclidean graph is a graph whose vertices are embedded in some Euclidean space R
d and

such that the length of each edge is the Euclidean distance between its vertices. Given a
Euclidean graph G, one of its relevant parameters is its stretch factor, defined as

tG = max
u,v∈V (G)

{

dG(u, v)

|uv|

}

,

where | · | denotes the Euclidean distance. This parameter measures how well the distances
in the graph resemble the Euclidean distances, and is the key parameter for the construction
of geometric spanners [7]. Narasimhan and Smid have shown the following result.

Theorem 15 [21] Given a Euclidean graph G in R
d, and a parameter 3 ≥ ε > 0, computing

a value t such that t ≤ tG ≤ (1 + ε)t takes O(n log n) time plus the time to compute the
distance between O(ε−dn) pairs of vertices in G.

When the graph G is planar (and possibly with a non-plane embedding) we can use
Theorem 14 to conclude the following result.

Theorem 16 Let G be a Euclidean graph with n vertices in R
d, let 3 ≥ ε > 0 be a parameter,

and assume that G is planar. We can compute in O(ε−2d/3n4/3 log n) time a value t such
that t ≤ tG ≤ (1 + ε)t.

Observe that if we fix the parameter ε to a constant value, we obtain a running time of
O(n4/3 log n). This represents a considerable improvement over the previous running time of
O(n3/2) [21]. On the other hand, if we restrict ourselves to families of graphs whose dilations
tG are bounded by a constant, and we also consider ε to be constant, Gudmundsson et al. [12]
have shown how to compute in O(n log n) time a value t such that t ≤ tG ≤ (1 + ε)t. This
latter result is applicable to arbitrary graphs.

7 Discussion

We have presented data structures and algorithms for computing distances in planar graphs
with non-negative edge-lengths. The algorithms and data structures can easily be extended
to directed planar graphs. They also extend to directed planar graphs with negative and
positive weights, assuming that there are no cycles of negative length. For this, we just
convert the problem to a problem involving positive weights by computing all the distances
from an arbitrary source in O(n log2 n) time and then defining a feasible price function;
see [14] or [8].

The main open problem concerns the complexity of the many distances problem. In
particular, can it be solved in roughly O(n + k) time? Near-linear time answers are known
only when k = O(

√
n) or k = Θ(n2). A first approach towards this problem may be to

consider the problem of computing the pairwise distances between a set of k vertices in a
planar graph. Currently, the best result when k = Θ(

√
n) is achieved by reducing it to the

problem of computing Θ(k2) = Θ(n) distances.

8 Acknowledgments

The author would like to thank Christian Wulff-Nilsen for his help in revising the text and
an anonymous reviewer for several suggestions to improve the readability.

17

References

[1] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In ESA’96, volume
1136 of LNCS, pages 514–528. Springer, 1996.

[2] S. Cabello. Many distances in planar graphs. In SODA ’06: Proc. 17th Symp. Discrete
algorithms, pages 1213–1220. ACM Press, 2006.

[3] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. In
SODA ’07: Proc. 18th Symp. Discrete Algorithms, pages 89–97, 2007.

[4] T. M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time. Algorith-
mica, 50(2):236–243, 2008.

[5] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. In STOC ’00: Proceedings
of the 32nd annual ACM symposium on Theory of computing, pages 469–478, 2000.

[6] H. N. Djidjev. Efficient algorithms for shortest path problems on planar digraphs. In
F. d’Amore, P. G. Franciosa, and A. Marchetti-Spaccamela, editors, WG’96, volume
1197 of LNCS, pages 151–165. Springer, 1997.

[7] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, chapter 9, pages 425–461. Elsevier, 2000.

[8] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[9] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applica-
tions. SIAM J. Comput., 16:1004–1022, 1987.

[10] G. N. Frederickson. Planar graph decomposition and all pairs shortest paths. J. ACM,
38(1):162–204, 1991.

[11] M. T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst.
Sci., 51(3):374–389, 1995.

[12] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate distance
oracles for geometric spanners. ACM Trans. Algorithms, 4(1):1–34, 2008.

[13] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian. Faster shortest-path al-
gorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,
1997.

[14] P. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with
negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms,
6(2):1–18, 2010.

[15] P. N. Klein. Multiple-source shortest paths in planar graphs. In SODA ’05: Proc. 16th
Symp. Discrete algorithms, pages 146–155, 2005.

[16] L. Kowalik and M. Kurowski. Short path queries in planar graphs in constant time. In
STOC ’03: Proc. 35th Symp. Theory of computing, pages 143–148, 2003.

[17] M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus
in almost linear time. In SOCG ’06: Proc. 22nd Symp. Comput. Geom., pages 430–438,
2006.

18

[18] R. J. Lipton, D. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer.
Anal., 16:346–358, 1979.

[19] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl.
Math., 36:177–189, 1979.

[20] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. Syst. Sci., 32:265–279, 1986.

[21] G. Narasimhan and M. Smid. Approximating the stretch factor of euclidean graphs.
SIAM Journal on Computing, 30:978–989, 2000.

[22] M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
in Computer Science. Springer, 1983.

[23] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed
graph classes, with an application to Steiner tree approximation. Discrete Applied
Mathematics, 157:673–684, 2009.

[24] M. Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, 2004.

[25] U. Zwick. Exact and Approximate Distances in Graphs - A Survey. In ESA 2001,
volume 2161 of LNCS, pages 33–48. Springer, 2001.

19

