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In our paper [1] we have the following statement and start of proof:

Lemma 1 (Lemma 3 in [1]). Let k ≥ 1 be a constant. Given a graph G with n > k + 1
vertices and treewidth at most k, we can find in linear time a subset A ⊆ V (G) of
vertices such that:

(i) A has between n
k+1 and nk

k+1 vertices;

(ii) A has at most k portals;

(iii) adding edges between the portals of A does not change the treewidth of G.

Proof. Consider a tree decomposition ({Xi | i ∈ I}, T ) of G with width k. We next
transform it into another tree decomposition where the tree has maximum degree k + 1
and where any two adjacent bags differ by at least one vertex. This transformation
can be done as follows. Firstly, we add vertices to each bag Xi, i ∈ I, while keeping
property (iii) in Definition 1, until each bag has exactly k + 1 elements. Secondly, we
contract any edge ij ∈ E(T ) whenever Xi = Xj . It now holds Xi 6= Xj for any two
nodes i, j of T . Finally, for each node i in T of degree at least k + 2 we create k + 1
new bags Yi0 , Yi2 , . . . , Yik , where each new bag is a different proper subset of Xi with k
elements, remove the edges of T between i and its neighbors Γi, add edges to T between
i and ij for j = 0, . . . , k, and add for each i′ ∈ Γi an edge between Xi′ and some Xij

with the property Xi′ ∩Xi ⊂ Xij . This finishes the transformation. With a slight abuse
of notation, we keep using ({Xi | i ∈ I}, T ) for the resulting tree decomposition of G.

[. . . ]

There are two problems here. The first problem is that the statement should assume that k ≥ 2.
Indeed, for k = 1, the graph is a tree and the first item of the statement tells that A should have
between n

1+1 and n·1
1+1 vertices, that is, exactly n/2 vertices. This cannot be, for example, when n is

odd. However, this is not just an issue of parity, but a structural problem. For example, consider
3 stars with m vertices each, and add one new vertex with edges to each of the centers of the stars.
The resulting tree has 3m + 1 vertices and there is no set A that would have roughly half of the
vertices and one portal. See Figure 1.

The case when the graph G has treewidth k = 1 is special. In that case, the graph is a tree,
and it is folklore that one can obtain a set A that has between n/3 and 2n/3 vertices and portal of
size 1.
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Figure 1: Example showing that for k = 1 we cannot get A with one portal and |A| approximately
n/2.

The second problem is that the first paragraph of the proof does not achieve what it claims
because the bags Yij may have unbounded degree. See Figure 2 for an example. The tree T ′′ would
be the outcome of the transformation.

Here is a corrected statement and proof. In the statement, we only change that k ≥ 2 is needed.
The case of k = 1, when the graph is a tree, should be treated separately.

Lemma 2 (Corrected version of Lemma 3 in [1]). Let k ≥ 2 be a constant. Given a graph G with
n > k+1 vertices and treewidth at most k, we can find in linear time a subset A ⊆ V (G) of vertices
such that:

(i) A has between n
k+1 and nk

k+1 vertices;

(ii) A has at most k portals;

(iii) adding edges between the portals of A does not change the treewidth of G.

Proof. Consider a tree decomposition ({Xi | i ∈ I}, T ) of G with width k. This means that
|Xi| ≤ k+1 for all i ∈ I. With a slight abuse of notation, we denote the vertices of T sometimes by
the index i and sometimes by the bag Xi. We next transform the tree decomposition into another
tree decomposition where the tree has maximum degree k+1 and where the intersection of any two
adjacent bags has at most k vertices1. This transformation has a few steps. Firstly, we add vertices
to each bag Xi, i ∈ I, while maintaining a tree decomposition, until each bag has exactly k + 1
elements. Secondly, we contract any edge ij ∈ E(T ) whenever Xi = Xj . Let ({X ′i | i ∈ I ′}, T ′)
be the resulting tree decomposition. It now holds X ′i 6= X ′j and |X ′i| = k + 1 for each two distinct
nodes i, j of T ′.

For each node i in T ′, we do the following transformation. Let Γ′i be the neighbors of i in T ′.
We create k + 1 new bags Yi0 , Yi1 , . . . , Yik , where each new bag is a different proper subset of X ′i
with |X ′i| − 1 = k elements, remove the edges of T ′ between i and its neighbors Γ′i, add edges to
T ′ between i and ij for j = 0, . . . , k, and add for each ` ∈ Γ′i an edge between X ′` and some X ′ij
with the property X ′` ∩ X ′i ⊂ X ′ij . See Figure 2 for an example of this transformation. This is

the transformation in the proof of Lemma 3 in [1]. As it can be seen in the example and we have
mentioned before, the degree of the bags Yij can be arbitrarily large, and thus something else has
to be done. Let ({X ′′i | i ∈ I ′′}, T ′′) be the resulting tree decomposition.

For each i ∈ I ′′, we have |X ′′i | = k or |X ′′i | = k + 1. Moreover, each i ∈ I ′′ with |X ′′i | = k + 1
has precisely k + 1 neighbors in T ′′, while each i ∈ I ′′ with |X ′′i | = k may have arbitrarily large
degree in T ′′. We replace each i ∈ I ′′ with |X ′′i | = k by a tree of maximum degree 3 making copies
of X ′′i , as it is often used to reduce the maximum degree of a tree. One precise way to do this

1This is the key difference in the proof.

2



a, b, c

a, b, d

a, b, e

a, b, f

a, b, g

a, c, c′

a′, b, c

a′′, b, c

T ′

a, b, c

a, b, d

a, b, e

a, b, f

a, b, g
a, c, c′

a′, b, c

a′′, b, c

b, c

a, c

a, b

X ′
i X ′

i

Yi0

Yi1

Yi2

T ′′

Figure 2: Example showing one step of the transformation (locally) from T ′ to T ′′. In this example
k = 2.

is to do the following for each i ∈ I ′′ with |X ′′i | = k and degree d > 3 in T ′′. Let {i1, . . . , id} be
the neighbors of i in T ′′. We create new nodes j1, . . . , jd and add them to I ′′, we create new bags
Zj1 , . . . , Zjd = X ′′i , and the new tree is obtained from T ′′ by removing i (and its incident edges),
and adding the edges {X ′′i1Zj1 , . . . , X

′′
id
Zjd} ∪ {Zj1Zj2 , Zj2Zj3 , . . . , Zjd−1

Zjd}. See Figure 3 for an
example. With this local operation, we ensure that we have degree at most 3 for all bags X ′′i with
|X ′′i | = k. The degree of bags X ′′i with |X ′′i | = k + 1 remains unaltered.
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Figure 3: Example showing one step of the transformation (locally) from T ′′ to T̃ . In this examples
k = 2.

Let ({X̃i | i ∈ Ĩ}, T̃ ) be the resulting tree decomposition of G. The tree T̃ has maximum degree
max{k + 1, 3} = k + 1 (here it is relevant that k ≥ 2) and, for each edge ij ∈ E(T̃ ), we have
|X̃i ∩ X̃j | ≤ k. The transformation can be done in linear time. (The size of the decomposition
grows as a function of k, but k is constant.)

From this point we can continue with the proof given for Lemma 3 in [1].

The rest of the results given in [1] remain valid. In fact, the rest of that paper assumes
treewidth at least 2, for which the lemma was correct (but its proof was not satisfactory).

Acknowledgments. We are grateful to Serge Gaspers and Joshua Lau for pointing out the error
in the proof.
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