Corrigendum to "Algorithms for graphs of bounded treewidth via orthogonal range searching"

Sergio Cabello Christian Knauer

October 8, 2019

In our paper [1] we have the following statement and start of proof:
Lemma 1 (Lemma 3 in [1]). Let $k \geq 1$ be a constant. Given a graph G with $n>k+1$ vertices and treewidth at most k, we can find in linear time a subset $A \subseteq V(G)$ of vertices such that:
(i) A has between $\frac{n}{k+1}$ and $\frac{n k}{k+1}$ vertices;
(ii) A has at most k portals;
(iii) adding edges between the portals of A does not change the treewidth of G.

Proof. Consider a tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T\right)$ of G with width k. We next transform it into another tree decomposition where the tree has maximum degree $k+1$ and where any two adjacent bags differ by at least one vertex. This transformation can be done as follows. Firstly, we add vertices to each bag $X_{i}, i \in I$, while keeping property (iii) in Definition 1, until each bag has exactly $k+1$ elements. Secondly, we contract any edge $i j \in E(T)$ whenever $X_{i}=X_{j}$. It now holds $X_{i} \neq X_{j}$ for any two nodes i, j of T. Finally, for each node i in T of degree at least $k+2$ we create $k+1$ new bags $Y_{i_{0}}, Y_{i_{2}}, \ldots, Y_{i_{k}}$, where each new bag is a different proper subset of X_{i} with k elements, remove the edges of T between i and its neighbors Γ_{i}, add edges to T between i and i_{j} for $j=0, \ldots, k$, and add for each $i^{\prime} \in \Gamma_{i}$ an edge between $X_{i^{\prime}}$ and some $X_{i_{j}}$ with the property $X_{i^{\prime}} \cap X_{i} \subset X_{i_{j}}$. This finishes the transformation. With a slight abuse of notation, we keep using $\left(\left\{X_{i} \mid i \in I\right\}, T\right)$ for the resulting tree decomposition of G.

$$
[\ldots]
$$

There are two problems here. The first problem is that the statement should assume that $k \geq 2$. Indeed, for $k=1$, the graph is a tree and the first item of the statement tells that A should have between $\frac{n}{1+1}$ and $\frac{n \cdot 1}{1+1}$ vertices, that is, exactly $n / 2$ vertices. This cannot be, for example, when n is odd. However, this is not just an issue of parity, but a structural problem. For example, consider 3 stars with m vertices each, and add one new vertex with edges to each of the centers of the stars. The resulting tree has $3 m+1$ vertices and there is no set A that would have roughly half of the vertices and one portal. See Figure 1.

The case when the graph G has treewidth $k=1$ is special. In that case, the graph is a tree, and it is folklore that one can obtain a set A that has between $n / 3$ and $2 n / 3$ vertices and portal of size 1 .

Figure 1: Example showing that for $k=1$ we cannot get A with one portal and $|A|$ approximately $n / 2$.

The second problem is that the first paragraph of the proof does not achieve what it claims because the bags $Y_{i_{j}}$ may have unbounded degree. See Figure 2 for an example. The tree $T^{\prime \prime}$ would be the outcome of the transformation.

Here is a corrected statement and proof. In the statement, we only change that $k \geq 2$ is needed. The case of $k=1$, when the graph is a tree, should be treated separately.

Lemma 2 (Corrected version of Lemma 3 in [1]). Let $k \geq 2$ be a constant. Given a graph G with $n>k+1$ vertices and treewidth at most k, we can find in linear time a subset $A \subseteq V(G)$ of vertices such that:
(i) A has between $\frac{n}{k+1}$ and $\frac{n k}{k+1}$ vertices;
(ii) A has at most k portals;
(iii) adding edges between the portals of A does not change the treewidth of G.

Proof. Consider a tree decomposition $\left(\left\{X_{i} \mid i \in I\right\}, T\right)$ of G with width k. This means that $\left|X_{i}\right| \leq k+1$ for all $i \in I$. With a slight abuse of notation, we denote the vertices of T sometimes by the index i and sometimes by the bag X_{i}. We next transform the tree decomposition into another tree decomposition where the tree has maximum degree $k+1$ and where the intersection of any two adjacent bags has at most k vertices ${ }^{1}$. This transformation has a few steps. Firstly, we add vertices to each bag $X_{i}, i \in I$, while maintaining a tree decomposition, until each bag has exactly $k+1$ elements. Secondly, we contract any edge $i j \in E(T)$ whenever $X_{i}=X_{j}$. Let $\left(\left\{X_{i}^{\prime} \mid i \in I^{\prime}\right\}, T^{\prime}\right)$ be the resulting tree decomposition. It now holds $X_{i}^{\prime} \neq X_{j}^{\prime}$ and $\left|X_{i}^{\prime}\right|=k+1$ for each two distinct nodes i, j of T^{\prime}.

For each node i in T^{\prime}, we do the following transformation. Let Γ_{i}^{\prime} be the neighbors of i in T^{\prime}. We create $k+1$ new bags $Y_{i_{0}}, Y_{i_{1}}, \ldots, Y_{i_{k}}$, where each new bag is a different proper subset of X_{i}^{\prime} with $\left|X_{i}^{\prime}\right|-1=k$ elements, remove the edges of T^{\prime} between i and its neighbors Γ_{i}^{\prime}, add edges to T^{\prime} between i and i_{j} for $j=0, \ldots, k$, and add for each $\ell \in \Gamma_{i}^{\prime}$ an edge between X_{ℓ}^{\prime} and some $X_{i_{j}}^{\prime}$ with the property $X_{\ell}^{\prime} \cap X_{i}^{\prime} \subset X_{i_{j}}^{\prime}$. See Figure 2 for an example of this transformation. This is the transformation in the proof of Lemma 3 in [1]. As it can be seen in the example and we have mentioned before, the degree of the bags $Y_{i_{j}}$ can be arbitrarily large, and thus something else has to be done. Let ($\left.\left\{X_{i}^{\prime \prime} \mid i \in I^{\prime \prime}\right\}, T^{\prime \prime}\right)$ be the resulting tree decomposition.

For each $i \in I^{\prime \prime}$, we have $\left|X_{i}^{\prime \prime}\right|=k$ or $\left|X_{i}^{\prime \prime}\right|=k+1$. Moreover, each $i \in I^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k+1$ has precisely $k+1$ neighbors in $T^{\prime \prime}$, while each $i \in I^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k$ may have arbitrarily large degree in $T^{\prime \prime}$. We replace each $i \in I^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k$ by a tree of maximum degree 3 making copies of $X_{i}^{\prime \prime}$, as it is often used to reduce the maximum degree of a tree. One precise way to do this

[^0]

Figure 2: Example showing one step of the transformation (locally) from T^{\prime} to $T^{\prime \prime}$. In this example $k=2$.
is to do the following for each $i \in I^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k$ and degree $d>3$ in $T^{\prime \prime}$. Let $\left\{i_{1}, \ldots, i_{d}\right\}$ be the neighbors of i in $T^{\prime \prime}$. We create new nodes j_{1}, \ldots, j_{d} and add them to $I^{\prime \prime}$, we create new bags $Z_{j_{1}}, \ldots, Z_{j_{d}}=X_{i}^{\prime \prime}$, and the new tree is obtained from $T^{\prime \prime}$ by removing i (and its incident edges), and adding the edges $\left\{X_{i_{1}}^{\prime \prime} Z_{j_{1}}, \ldots, X_{i_{d}}^{\prime \prime} Z_{j_{d}}\right\} \cup\left\{Z_{j_{1}} Z_{j_{2}}, Z_{j_{2}} Z_{j_{3}}, \ldots, Z_{j_{d-1}} Z_{j_{d}}\right\}$. See Figure 3 for an example. With this local operation, we ensure that we have degree at most 3 for all bags $X_{i}^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k$. The degree of bags $X_{i}^{\prime \prime}$ with $\left|X_{i}^{\prime \prime}\right|=k+1$ remains unaltered.

Figure 3: Example showing one step of the transformation (locally) from $T^{\prime \prime}$ to \tilde{T}. In this examples $k=2$.

Let $\left(\left\{\tilde{X}_{i} \mid i \in \tilde{I}\right\}, \tilde{T}\right)$ be the resulting tree decomposition of G. The tree \tilde{T} has maximum degree $\max \{k+1,3\}=k+1$ (here it is relevant that $k \geq 2$) and, for each edge $i j \in E(\tilde{T})$, we have $\left|\tilde{X}_{i} \cap \tilde{X}_{j}\right| \leq k$. The transformation can be done in linear time. (The size of the decomposition grows as a function of k, but k is constant.)

From this point we can continue with the proof given for Lemma 3 in [1].
The rest of the results given in [1] remain valid. In fact, the rest of that paper assumes treewidth at least 2 , for which the lemma was correct (but its proof was not satisfactory).

Acknowledgments. We are grateful to Serge Gaspers and Joshua Lau for pointing out the error in the proof.

References

[1] S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal range searching. Comput. Geom., 42(9):815-824, 2009.

[^0]: ${ }^{1}$ This is the key difference in the proof.

