
Computing the Stretch of an Embedded Graph∗

Sergio Cabello† Markus Chimani‡ Petr Hliněný §

November 17, 2013

Abstract

Let G be a graph embedded in an orientable surface Σ, possibly with edge weights,
and denote by len(γ) the length (the number of edges or the sum of the edge weights)
of a cycle γ in G. The stretch of a graph embedded on a surface is the minimum of
len(α) · len(β) over all pairs of cycles α and β that cross exactly once. We provide two
algorithms to compute the stretch of an embedded graph, each based on a different
principle. The first algorithm is based on surgery and computes the stretch in time
O(g4n log n) with high probability, or in time O(g4n log2 n) in the worst case, where
g is the genus of the surface Σ and n is the number of vertices in G. The second
algorithm is based on using a short homology basis and computes the stretch in time
O(n2 log n+ n2g + ng3).

1 Introduction

Consider a graph G embedded on an orientable surface Σ of genus g. What can be said
about the crossing number of G in the plane? Is it computable in polynomial time? If
it is not, can we obtain a reasonable approximation in polynomial time? Unfortunately,
Cabello and Mohar [3] show that the crossing number of such graphs is not computable in
polynomial time, even when Σ is the torus. Djidjev and Vrt’o [4] show that the crossing
number of G is upper bounded by O(g∆n), where n is the number of vertices in G
and ∆ is the maximum degree of G. This is an improvement over the previous bound
of O(Cg∆n), for some constant C, by Börözky, Pach and Tóth [1]. Under some mild
assumptions about the density of the embedding of G, Hliněný and Chimani [9] give a
(3 · 23g+2∆2)-approximation algorithm for the crossing number of G. This last work is
the main motivation for our research.

Hliněný and Chimani [9] define the stretch of an embedded graph G as

str(G) = min{len(α) · len(β) | α and β are cycles in G that cross exactly once}.
∗A preliminary version of this work was presented at XV Spanish Meeting on Computational Geometry

in 2013.
†Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubljana,

Slovenia. Supported by the Slovenian Research Agency, program P1-0297, projects J1-4106 and L7-
5459, and within the EUROCORES Programme EUROGIGA (project GReGAS) of the European Science
Foundation.
‡Theoretical Computer Science, Department of Mathematics/Computer Science, Osnabrück University,

Germany. This research was conducted while being funded by a Carl-Zeiss-Foundation juniorprofessorship,
and partially supported by EUROCORES Programme EUROGIGA (project GraDR) of the European
Science Foundation.
§Faculty of Informatics, Masaryk University. Brno, Czech Republic. Supported by EUROCORES

Programme EUROGIGA (project GraDR) of the European Science Foundation, under Czech Science
Foundation no. GIG/11/E023.

1

Here, len(α) denotes the number of edges in α and a cycle is a closed walk in a graph
without repeated vertices. A precise definition of what “crossing exactly once” means
is given in Section 2.2. The stretch plays a fundamental role in their analysis of the
algorithm. Intuitively, a large value of stretch implies existence of a large toroidal grid
minor in G, even if the density of the embedding is not large in traditional terms. The
concept of stretch can be generalized to the case of positive edge-weighted graphs in a
natural way: take len(α) to be the sum of the edge-weights along the cycle α. Henceforth
we will assume this more general definition of stretch.

It is worth noting that, if two cycles α and β are crossing once, then they must both be
(surface-)non-separating. That is, cutting the surface along α or β does not disconnect
the surface. This is so because any cycle crosses a (surface-)separating cycle an even
number of times. Thus, when computing the stretch, we can restrict our attention to
pairs (α, β) of non-separating cycles.

In this paper we provide two algorithms to compute the stretch of an embedded graph.
Let g denote the genus of the surface Σ and n the number of vertices in G. The first
algorithm has a time bound of O(g4n log n) with high probability, or O(g4n log2 n) in the
worst case. The second algorithm has a time bound of O(n2 log n+ n2g + ng3).

Overview of the approach. Let us provide an informal overview of the main ideas.
We do not work directly with the concept of stretch, but use a detour through another
concept: odd-stretch. The definition of odd-stretch resembles the definition of stretch,
but we allow closed walks α and β, instead of just cycles, and allow an odd number of
crossings, instead of exactly one crossing. It turns out that the stretch and odd-stretch
of a graph is the same. However, working with the odd-stretch is easier because we only
need to take care of the parity of crossings and, when constructing new closed walks via
exchange arguments, we do not need to take care to construct cycles.

For the first algorithm we show the following recursive property of the stretch: it is
defined either by the shortest non-separating cycle α∗ and one other cycle crossing α∗

exactly once, or by the stretch of the surface obtained by cutting along α∗ and pasting
disks. The eventual algorithm, given in Figure 2, is very simple. However, there is a fine
point we have to take care of to obtain a polynomial-time algorithm. Repeatedly cutting
along shortest non-separating cycles and pasting disks may give rise to an exponential
growth in the size of the graphs: at each cut we make copies of the vertices along the
cycle and thus the number of vertices may nearly double at each iteration. However, if at
some iteration we get a shortest non-separating cycle with more vertices than the original
graph, we can finish the recursive search. In this way we avoid the potentially exponential
growth in the size of the graphs.

For the second algorithm we use (simple) properties of the homology group over Z2.
We define a map cr2 counting the (parity of the) number of crossings of 1-cycles. The
key observations are that cr2 is an invariant of homologous cycles and it is bilinear. It
turns out that it is enough to restrict the search to cycles in a shortest set of cycles that
generate the homology group. After this, it is just a matter of combining known results.
The resulting algorithm is very simple to understand, provided that one is familiar with
Z2-homology on surfaces.

2 Odd-stretch

We introduce the concept of odd-stretch, which is a generalization of stretch. We first
discuss crossings for curves in general position and then crossings for closed walks in a

2

graph. Finally, we define the odd-stretch, discuss some of its properties and, eventually,
show that the odd-stretch of a surface-embedded graph is the same as its stretch.

2.1 Crossings of curves in general position

Two curves C and C ′ on a surface Σ are in general position if they have a finite
number of intersections and, at each intersection, they cross transversally. Formally, for
every point x in the image of C or C ′, there exists an open neighborhood N(x) of x such
that:

(i) N(x) ∩ (C ∪ C ′) is homeomorphic to an open straight-line segment, or

(ii) there is a homeomorphism h between N(x)∩ (C ∪C ′) and two distinct straight-line
open segments s1 and s2 that cross.

For two curves C and C ′ in general position, the set of crossings is X(C,C ′) = C∩C ′.
These two curves cross k times if and only if k = |X(C,C ′)|. We will use the following
(intuitive) fact: the number of crossings between two closed curves, modulo 2, is invariant
under small perturbations of any or both of the two closed curves.

2.2 Crossings of closed walks

Observe that any walk α in G induces a corresponding curve on Σ. Generally, if it does
not introduce any ambiguity, we may denote this curve by α as well.

Two closed walks α and β in G cross k times if and only if: there are arbitrarily small
perturbations of α and β to general position that cross k times, and any small enough
perturbation of α and β has at least k intersecting points. Moreover, we can always
assume that the crossings of the perturbations occur in a neighborhood of the vertices.
We denote by cr(α, β) the number of crossings between α and β. We denote by cr2(α, β)
the modulo 2 value of cr(α, β).

For any closed walk α, the set of closed walks in G that cross α an odd number of times
satisfies the so-called 3-path condition. The next lemma states this in an equivalent way
for easier use later on. This Lemma 1 and Lemma 3, below, appear as claims in [9]; their
proofs are in the full version. We prove them here to make the presentation self-contained
and because we use a different language and perspective.

Lemma 1. Let α and γ be two closed walks such that cr2(α, γ) = 1. Let x and y be
two vertices on γ and let π be some walk from x to y. Let γ′ be the closed walk defined
by concatenating γ[y → x] and π. Let γ′′ be the closed walk defined by concatenating
γ[x→ y] and the reverse of π. Then either cr2(α, γ

′) = 1 or cr2(α, γ
′′) = 1.

Proof. Consider a small perturbation Cα of α and a small perturbation Cγ of γ to general
position such that Cα and Cγ cross an odd number of times. Take a small perturbation
Cπ of π such that: the endpoints of Cπ are on Cγ \Cα, any subpath of Cπ that excludes its
endpoints is in general position with Cα and with Cγ . (Note that we do not have general
position, according to our definition, because there are T -junctions around the endpoints
of Cπ.) See Figure 1, left.

We can combine pieces of the curves Cα, Cγ and Cπ to construct small perturbations
of γ′ and γ′′. Indeed, let us denote by x′ and y′ the endpoints of Cπ such that x′ is
near x and y′ is near y. Let us define Cγ′ as the concatenation of Cγ [y′ → x′] and Cπ.
Similarly, we define Cγ′′ as the concatenation of Cγ [x′ → y′] and the reverse of Cπ. See

3

x′

y′

Cπ

Cα

Cγ

Cα

Cα

Cγ′

Cγ′′

Figure 1: Figure for the proof of Lemma 1. Dotted parts are added to conceptually close
the curves; they do not contribute crossings.

Figure 1, right. It is easy to see that Cγ′ is a small perturbation of γ′ and Cγ′′ is a small
perturbation of γ′′. Furthermore, by construction we have

|X(Cα, Cγ′)|+ |X(Cα, Cγ′′)| = |X(Cα, Cγ)|+ 2 · |X(α,Cπ)|.

Since |X(Cα, Cγ)| is odd, either |X(Cα, Cγ′)| or |X(Cα, Cγ′′)| is odd. It follows that either
γ′ or γ′′ cross α an odd number of times.

2.3 Odd-stretch of an embedded graph

The odd-stretch of an embedded graph G is

oddstr(G) = min {len(α) · len(β) | α and β are closed walks in G with cr2(α, β) = 1} .

We remark the two main differences with the previous stretch: α and β iterate over
closed walks, instead of cycles, and the curves can cross an odd number of times, instead
of exactly once. A priori, the stretch and the odd-stretch of an embedded graph are
different. A posteriori we will see that they are the same. We say that a pair (α, β)
of closed walks in G defines oddstr(G) if α and β cross an odd number of times and
oddstr(G) = len(α) · len(β).

Lemma 2. Let (α∗, β∗) be two curves defining oddstr(G). Then α∗ and β∗ are cycles.

Proof. Assume, for the sake of contradiction, that β∗ is not a cycle. The other case, when
α∗ is not a cycle, is symmetric. Let x be vertex that is repeated along β∗. We can then
split β∗ into two closed walks β′ and β′′ through x such that

len(β′) < len(β∗) and len(β′′) < len(β∗). (1)

4

Because of Lemma 1 applied with α = α∗, γ = β∗, x = y, π = x, γ′ = β′ and γ′′ = β′′,
either β′ or β′′ cross α∗ an odd number of times. This means that either (α∗, β′) or (α∗, β′′)
is a pair of closed walks considered in the definition of oddstr(G) and, because of (1),
it has a smaller product of lengths than (α∗, β∗). In either case we reach a contradiction
with the definition of (α∗, β∗).

Lemma 3. The odd-stretch of G and the stretch of G are the same.

Proof. Clearly, the odd-stretch is not larger than the stretch. We next show the other
inequality.

We want to work under the assumption that there is a unique shortest path between
any pair of vertices of G. For each edge e ∈ E(G), choose a value re and perturb the
edge weight we by the amount re · ε. Let Gε be the resulting graph with perturbed edge
weights. If we choose the values re, e ∈ E(G), linearly independent over the rationals,
then the graph Gε has a unique shortest path between any two vertices for all sufficiently
small ε > 0. If we show that str(Gε) = oddstr(Gε) for all sufficiently small ε > 0,
it follows by continuity that str(G) = oddstr(G). Thus, we henceforth only need to
consider the case where there is a unique shortest path between any pair of vertices.

Let (α∗, β∗) be a pair of closed walks that define the odd-stretch. Because of Lemma 2,
α∗ and β∗ are cycles. We claim that α∗ and β∗ cross exactly once, and thus str(G) =
oddstr(G). Assume, for the sake of contradiction, that the cycles α∗ and β∗ cross more
than once; so they cross at least three times. Let x and y be two distinct vertices of
V (α∗)∩V (β∗) where crossings of α∗ and β∗ occur, such that the intersection α∗∩β∗ does
not contain a path connecting x to y. Let π be the shortest path in G from x to y. The
path π is not contained in α∗ or in β∗. Consider the case when π is not contained in β∗;
the other case is symmetric. Since shortest paths are unique, we have

len(π) < len(β∗[x→ y]) and len(π) < len(β∗[y → x]).

Consider the closed walk γ′ obtained by concatenating β∗[y → x] with π and the closed
walk γ′′ obtained by concatenating β∗[x→ y] with the reverse of π. (Note that γ′ and γ′′

are not necessarily cycles because π may cross β∗.) We have

len(γ′) < len(β∗) and len(γ′′) < len(β∗).

Moreover, because of Lemma 1, some γ∗ ∈ {γ′, γ′′} crosses α∗ an odd number of times.
Therefore the pair of closed walks (α∗, γ∗) contradicts the choice of (α∗, β∗).

3 Algorithm using surgery

We will use the following two properties:

Lemma 4 ([2]). Let G be a graph with m vertices embedded in a surface of genus g.

• We can compute a shortest non-separating cycle in time O(g2m logm) with high
probability, or in time O(g2m log2m) in the worst case.

• For any given non-separating cycle α, we can compute a shortest cycle of G that
crosses α exactly once in time O(gm logm) with high probability, or in time O(gm log2m)
in the worst case.

Lemma 5. Let α be a shortest non-separating cycle in G. For any two vertices x and y
on α, α contains a shortest path from x to y or from y to x.

5

'

&

$

%

Algorithm ComputeStretchSurgery
Input: graph G embedded in a surface Σ of genus g
Output: stretch of G
1. i← 1
2. (G1,Σ1)← (G,Σ)
3. str ←∞
4. while Σi not the sphere and |V (Gi)| ≤ g · |V (G)| do
5. αi ← shortest non-separating cycle in Gi
6. βi ← shortest cycle crossing αi exactly once
7. str ← min{str, len(αi) · len(βi)}
8. (Gi+1,Σi+1)← cut (Gi,Σi) along αi and attach disks to the bound-

aries
9. i← i+ 1
10. return str

Figure 2: Algorithm ComputeStretchSurgery to compute the stretch factor of a
graph embedded on an orientable surface.

The algorithm for computing the stretch of an embedded graph is given in Figure 2.
We first discuss its time complexity and then its correctness.

Lemma 6. Algorithm ComputeStretchSurgery has time complexity O(g4n log n)
with high probability, or O(g4n log2 n) in the worst case, where n is the number of vertices
in G.

Proof. Because of Lemma 4, each iteration of the while loop needs O(g2i ni log ni) time
whp, or O(g2i ni log2 ni) in the worst case, where ni is the number of vertices in Gi and gi
is the genus of Σi. Since ni = O(gn) because of the condition for iterating the while loop
and gi ≤ g, each iteration of the while loop takes O(g2(gn) log(gn)) = O(g3n log n) time
whp, or O(g3n log2 n) time in the worst case. Since there are at most g iterations of the
while loop, the lemma follows.

Lemma 7. Let α be a shortest non-separating cycle and let β be a shortest cycle crossing
α exactly once. Let G′ be the embedded graph obtained from G by cutting along α and
attaching a disk to the boundaries. The stretch of G is the minimum between len(α)·len(β)
and the stretch of G′.

Proof. Let Σ be the surface where G is embedded and let Σ′ be the surface where G′ is
embedded. Since any two closed curves of G′ that cross an odd number of times in Σ′

also cross an odd number of times in Σ, it is clear that

str(G) ≤ min{str(G′), len(α) · len(β)}.

Thus, we have to argue the other inequality. If (α, β) define the stretch of G, then this is
obvious.

Let us assume that (α, β) do not define the stretch of G; it holds that str(G) <
len(α) · len(β). Let (γ∗, σ∗) be the pair of cycles that define the stretch of G. If there
are several such pairs, we choose one such that cr(γ∗, α) + cr(σ∗, α) is minimum. We
distinguish 3 cases depending on the values of cr(γ∗, α) and cr(σ∗, α):

Case cr(γ∗, α) = cr(σ∗, α) = 0. In this case, γ∗ and σ∗ keep crossing in Σ′, and thus
str(G) = str(G′).

6

Case cr(γ∗, α) = 1 or cr(σ∗, α) = 1. This case cannot actually happen. Let us assume
that cr(γ∗, α) = 1; the other case is symmetric. Since γ∗ crosses α once and β is a
shortest cycle crossing α once, we have len(β) ≤ len(γ∗). Using that α is a shortest
non-separating cycle we would have

str(G) = len(γ∗) · len(σ∗) ≥ len(β) · len(α).

Case cr(γ∗, α) ≥ 2 or cr(σ∗, α) ≥ 2. This case cannot actually happen. Let us assume
that cr(γ∗, α) ≥ 2; the other case is symmetric. Let x and y be two crossings of
γ∗ and α that are consecutive along α. Because of Lemma 5, α contains a shortest
path between x and y. Let π denote this shortest path. We can use π and γ∗ to
construct two cycles γ′ and γ′′ that are not longer than γ∗ and that cross α fewer
times than γ∗. Because of Lemma 1, some γ̃ ∈ {γ′, γ′′} crosses σ∗ an odd number
of times. The pair (γ̃, σ∗) contradicts the choice of (γ∗, σ∗).

This finishes all cases. (Note that the second and third cases are not mutually exclusive.)

Lemma 7 shows correctness of the algorithm if the condition |V (Gi)| ≤ g · |V (G)| is
true for each i = 1, . . . , g. We next argue why we can finish the search if at some iteration
|V (Gi)| > g · |V (G)|.
Lemma 8. If, for some i, αi has more than |V (G)| vertices, then for any ` ≥ i

str(G) = min{len(αj) · len(βj) | j = 1, . . . , `− 1}.
Proof. Assume, for the sake of this proof, that in the algorithm ComputeStretch-
Surgery we drop testing the condition |V (Gi)| ≤ g · |V (G)|. The algorithm then makes
exactly g iterations and computes cycles αj , βj for each j = 1, . . . , g. Because of Lemma 7
it holds

str(G) = min{len(αj) · len(βj) | j = 1, . . . , g}.
Assume that, at some iteration, the shortest non-separating cycle αi in Gi, has more

than |V (G)| vertices. For each k < i, the cycle αi corresponds to a closed walk Wk in the
graph Gk. Moreover, the walk Wk does not cross the cycle αk, for each k < i. Since αi
has more than |V (G)| vertices, W1 repeats some vertex of G1 = G. This means that W1

is not a cycle.
Let k be the maximum index, 1 ≤ k < i such that Wk is not a cycle in Gk; thus Wk+1

is a cycle in Gk+1. Since W1 is not a cycle and Wi is a cycle, the index k is well defined.
See Figure 3, left and center. Let v be a vertex of Gk that is repeated in Wk. Cutting
Gk through αk produces two copies α′k and α′′k of αk. Let v′ and v′′ be the corresponding
copies of v. We can form a closed walk W ′k in Gk by taking the subwalk of Wk from the
first appearance of v until the second. This closed walk W ′k crosses αk once. Therefore
len(βk) ≤ len(W ′k) < len(Wk) = len(αi) ≤ len(αj) for each j ≥ i. We conclude that, for
each j ≥ i,

len(αj) · len(βj) > len(βk) · len(αj) ≥ len(βk) · len(αk).

It follows that

len(αk) · len(βk) ≤ min{len(αj) · len(βj) | j = i, . . . , g}.
Since k < i ≤ ` we conclude that

str(G) = min{len(αj) · len(βj) | j = 1, . . . , g}
= min{len(αj) · len(βj) | j = 1, . . . , `− 1}.

7

αk

Σk+1 Σk

αk

Σk

α′k α′′k

vv′′v′

Wk+1 Wk+1 Wk Wk

W ′
k

Figure 3: Figure for the proof of Lemma 8.

Theorem 9. Let G be a graph with n vertices embedded in a surface of genus g. We
can compute the stretch of G in time O(g4n log n) with high probability, or in time
O(g4n log2 n) in the worst case.

Proof. The time bound follows from Lemma 6. We next argue the correctness of the
algorithm. The while loop has the following simple invariant: at the start of iteration
i the variable str stores the value min({len(αj) · len(βj) | j = 1, . . . , i − 1} ∪ {∞}). If
|V (Gi)| ≤ g · |V (G)| for each iteration, then the algorithm finishes with i = g + 1, the
surface Σg+1 is a sphere, and correctness follows from Lemma 7. Let us consider the other
case, when at some iteration ` we have |V (G`)| > g · |V (G)|. Since there are at most g
iterations, there must have been at least one iteration i < ` where the increase in vertices,
given |V (αi)|, was larger than |V (G)|. Correctness then follows from Lemma 8.

4 Algorithm using homology

We are going to describe an algorithm based on homology with time bound O(n2 log n+
n2g + ng3). We start with a quick review of homology (over Z2), and describe the prop-
erties that we will use. For a comprehensive treatment, see Hatcher [8, Chapter 2] or
Edelsbrunner and Harer [5, Chapter IV].

Homology of cycles. A 1-chain is a formal sum of edges, α =
∑

e∈E(G) αee, where
each αe ∈ Z2. We can identify each 1-chain α with the subset of edges E(α) = {e ∈ E(G) |
αe = 1}. The set of 1-chains forms a vector space of dimension |E(G)|, denoted by C1.
The sum in C1 corresponds to the symmetric difference when looking at the corresponding
subsets of edges. A 1-chain α is a 1-cycle if E(α) has even degree in each vertex. The
set of 1-cycles forms another vector space, denoted by Z1. This vector space is sometimes
called the cycle space and has dimension |E(G)|−|V (G)|+1. Each face f of G defines a 1-
cycle ∂(f), which corresponds to the edges appearing in the facial walk of f exactly once.
The subspace of Z1 generated by {∂(f) | f a face of G}, is called the boundary space
B1. The (first) homology group H1 is the quotient Z1/B1, which is also a vector space.
Standard results in algebraic topology imply that the vector space H1 has dimension 2g, if
G is (cellularly) embedded in an orientable surface of genus g. Each element of H1, called
a homology class, corresponds to a subset of 1-cycles. Two 1-cycles α and β are in the
same homology class if there exist faces f1, . . . , fk such that α = β + ∂(f1) + · · ·+ ∂(fk).
We say that 1-cycles in the same homology class are homologous. For any 1-cycle α, we
use [α] to denote its homology class.

8

Each cycle α in G defines a 1-cycle in a natural way; with a slight abuse of notation,
we also denote this 1-cycle by α. For each 1-cycle α in G, we can find cycles α1, . . . , αk
such that E(α) =

⋃k
i=1E(αi). Thus, we can see each 1-cycle as the union of a finite

subset of cycles. The length of a 1-cycle α, denoted by len(α), is the sum of the weights
of the edges in E(α), or |E(α)| if the graph is unweighted.

Greedy homology cycle basis. A greedy homology 1-cycle basis is a sequence
(γ1, . . . , γ2g) of 1-cycles with the following property: for each i, the 1-cycle γi is a shortest
cycle such that the homology class [γi] is linearly independent of the subspace spanned
by [γ1], [γ2], . . . , [γi−1]. We are implicitly using that H1 has dimension 2g. We note an
easy property that is probably folklore.

Lemma 10. Let Γ = (γ1, . . . , γ2g) be a greedy homology 1-cycle basis. Then each γi in Γ
is a cycle.

Proof. Assume, for the sake of contradiction, that some γi is not a cycle. Let α1, . . . , αk
be cycles such that γi = α1 + · · ·+αk. Since [γi] = [α1]+ · · ·+[αk] is linearly independent
of {[γ1], [γ2], . . . , [γi−1]}, some [αj] is linearly independent of {[γ1], [γ2], . . . , [γi−1]}. Such
αj is shorter than γi, which leads to a contradiction with the condition of Γ being a greedy
homology 1-cycle basis.

Erickson and Whittlesey [7] show how to compute a greedy homology 1-cycle basis in
time O(n2 log n+ n2g+ ng3). See Erickson [6] for an overview of the techniques. We will
use this as a subroutine in our algorithm.

Crossings of 1-cycles. We have defined cr2(·, ·) for closed walks. This definition can
be extended to 1-cycles using bilinearity: for any 1-cycles α and β, we consider cycles
α1, . . . , αk and β1, . . . , β` such that E(α) =

⋃k
i=1E(αi) and E(β) =

⋃`
j=1E(βj), and

define

cr2(α, β) =
k∑
i=1

∑̀
j=1

cr2(αi, βj) (mod 2).

One can see that this definition is independent of the choice of cycles αi and βj . Indeed,
one can make a perturbed copy G′ of G, so that G and G′ are in general position. Then
cr2(α, β) is the modulo 2 value of the number of crossings between E(α) and the copy
of E(β) in G′. Hence, it is clear that the definition is independent of the decomposition
into cycles.

Next, we note that for any face f and any 1-cycle β we have cr2(∂f, β) = 0. Using
the bilinearity of cr2 we conclude that for any boundary 1-cycle α ∈ B1 and any 1-cycle
β ∈ Z1 we have cr2(α, β) = 0. It follows that if α and α′ are homologous 1-cycles, then
cr2(α, β) = cr2(α

′, β) for each β ∈ Z1. In particular, we can define the (parity of the)
crossings between homology cycles cr2 : H1 × H1 → Z2 by cr2([α], [β]) = cr2(α, β). For
readers familiar with Algebraic Topology, it may be useful to mention that this is a special
case of the topological intersection number defined using the cup product.

Algorithm. The eventual algorithm for computing the stretch of an embedded graph
is given in Figure 4.

Lemma 11. Let Γ = (γ1, . . . , γ2g) be a greedy homology 1-cycle basis. Then

oddstr(G) = min{len(γi) · len(γj) | γi and γj in Γ, cr2(γi, γj) = 1}. (2)

9

'

&

$

%

Algorithm ComputeStretchHomology
Input: graph G embedded in surface Σ of genus g
Output: stretch of G
1. (γ1, . . . , γ2g)← greedy homology 1-cycle basis for G
2. str ←∞
3. for 1 ≤ i < j ≤ 2g do
4. if cr2(γi, γj) = 1 then
5. str ← min{str, len(γi) · len(γi)}
6. return str

Figure 4: Algorithm ComputeStretchHomology to compute the stretch factor of a
graph embedded on an orientable surface.

Proof. Let R denote the value on the right hand side of (2). Since each γi in Γ is a cycle
due to Lemma 10, we have oddstr(G) ≤ R. We have to argue the other inequality.

Let α and β be a pair of cycles attaining oddstr(G). Because Γ is a homology 1-cycle
basis, there are subsets of indices Iα, Iβ ⊆ {1, . . . , 2g} such that

[α] =
∑
i∈Iα

[γi] and [β] =
∑
j∈Iβ

[γj].

Because Γ is a greedy homology 1-cycle basis, we have

∀i ∈ Iα : len(γi) ≤ len(α) and ∀j ∈ Iβ : len(γj) ≤ len(β).

Because of bilinearity of cr we have

1 = cr2([α], [β]) =
∑
i∈Iα

∑
j∈Iβ

cr2([γi], [γj]).

Therefore there exists some i ∈ Iα and j ∈ Iβ such that cr2([γi], [γj]) = 1. We conclude
that

R ≤ len(γi) · len(γj) ≤ len(α) · len(β) = oddstr(G).

Theorem 12. Let G be a graph with n vertices embedded in a surface of genus g. We
can compute the stretch of G in time O(n2 log n+ n2g + ng3).

Proof. Consider the algorithm ComputeStretchHomology. The algorithm correctly
returns the stretch of G because of Lemma 11. We have to analyze its running time.
Finding a greedy homology 1-cycle basis for G takes O(n2 log n + n2g + ng3) time [7].
We then have to check O(g2) times whether two cycles intersect an odd number of times.
Each such test can be done in O(n) time deforming one of the cycles, for example to lie
in the vertex-face incidence graph. Thus all tests together take time O(g2n). The result
follows.

Note that the running time of the algorithm is the running time to compute a greedy
homology basis plus O(g2n). Thus, an improvement over the result of Erickson and
Whittlesey [7] readily implies an improvement in the time bound of this theorem.

Acknowledgments

We are grateful to Daniel Štefankovič for some earlier discussions.

10

References

[1] K. J. Börözky, J. Pach, and G. Tóth. Planar crossing numbers of graphs embeddable
in another surface. Int. J. Found. Comput. Sci., 17(5):1005–1016, 2006.

[2] S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths in
embedded graphs. SIAM J. Comput., 42(4):1542–1571, 2013.

[3] S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013.

[4] H. Djidjev and I. Vrt’o. Planar crossing numbers of graphs of bounded genus. Discrete
& Computational Geometry, 48(2):393–415, 2012.

[5] H. Edelsbrunner and J. Harer. Computational Topology, An Introduction. American
Mathematical Society, January 2010.

[6] J. Erickson. Combinatorial optimization of cycles and bases. In A. Zomorodian,
editor, Advances in Applied and Computational Topology, volume 70 of Proceedings of
Symposia in Applied Mathematics, page 195?228. AMS, 2012.

[7] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators.
In Proc. SODA 2005, pages 1038–1046, 2005.

[8] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[9] P. Hliněný and M. Chimani. Approximating the crossing number of graphs embeddable
in any orientable surface. In Proc. SODA 2010, pages 918–927, 2010.

11

