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Abstract

We consider the expected case of projecting points onto a random
graduated line, provided that the closest pair of the point set is at least
at distance one. For point sets consisting of n points, there is a lower
bound of Ω(

√
n logn) given by Matoušek in [4]. We show an upper

bound of O(n2/3).

1 Introduction

Let P be a set of n points in the plane. For a line L ⊂ R
2, we can project

the points P orthogonally onto L, which we denote by πL(P ). Imagine that
the line L is a graduated line, that is, a line decomposed into line segments
(cells) of length one. For a cell c ⊂ L, let Pop(P, c) be the population of
the cell c after the projection, that is Pop(P, c) = |{p ∈ P |πL(p) ∈ c}|. For
a graduated line L, we say that its concentration Conc(P,L) is the number
of points that its most populated cell gets; that is,

Conc(P,L) = max
c a cell of L

{Pop(P, c)}.
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In a recent paper, D́ıaz et al. [3] consider the algorithmic problem of
computing a graduated line that minimizes the concentration, that is, they
are interested in Conc(P ) = minL Conc(P,L). However, an asymptotically
equivalent problem was considered by Kučera et al. [4] when studying a map
labelling problem.

Here we are interested in the expected concentration that a point set has
when projecting onto a random graduated line. Let L(α) be a graduated
line through the origin with angle α with respect to the x-axis, and such
that the origin is the boundary of a cell. We are interested in the expected
concentration EConc(P ) over all lines L(α)

EConc(P ) = Eα [Conc(P,L(α))] ,

where α is chosen uniformly at random. Let us observe that, for an asymp-
totic bound on EConc(P ), it is equivalent to consider that the lines L(α)
pass through some other point of R

2 instead of the origin.
If the point set P is arbitrarily dense, then it may be that Conc(P,L) ≥

n/2 for any line L, and so EConc(P ) = Ω(n). However, the problem be-
comes non-trivial if we put restrictions to the density of the point set.

Definition 1. A point set P ⊂ R
2 is 1-separated if its closest pair is at

least at distance 1.

Our objective is to bound the value EConc(P ) for any 1-separated point
set. Kučera et al. [4] have shown that Conc(P ) = O(

√
n log n) for all 1-

separated point set P . More interestingly, they use Besicovitch’s sets [1]
for constructing a 1-separated point set P having Conc(P ) = Ω(

√
n log n),

which implies EConc(P ) = Ω(
√

n log n).
We will show that for any 1-separated point set P we have EConc(P ) =

O(n2/3). Therefore, it remains open to find tight bounds for EConc(P ).
The rationale behind considering projections onto random lines is the

efficiency of randomized algorithms whose running time depends on the ex-
pected concentration. As an example, consider a set of disjoint unit disks
and any sweep-line algorithm [2, Chapter 2] whose running time depends
on the maximum number of disks that are intersected by the sweep line.
Choosing the direction in which the line sweeps affects the running time, but
computing the best direction, or an approximation, is expensive: Kučera et
al. [4] claim that it can be done in polynomial time, and D́ıaz et al. [3] give
a constant-factor approximation algorithm with O(nt log nt) running time,
where t is the diameter of P . By choosing a random projection we avoid
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having to compute a good direction for projecting, and we get a random-
ized algorithm. The results in this paper become helpful for analyzing the
expected running time of such randomized algorithms.

The rest of the paper is organized as follows. In Section 2 we introduce
some relevant random variables and give some basic facts. In Sections 3
and 4 we bound EConc(P ) using the first and second moments, respectively.

2 Preliminaries

Let P = {p1, . . . , pn} be a 1-separated point set, and let di,j = d(pi, pj). We
use the notation [n] = {1, . . . , n}. Without loss of generality, we can restrict
ourselves to graduated lines passing through the origin. Let L(α) be the line
passing through the origin that has angle α with the x-axis, and let p∗(α)
be the orthogonal projection of a point p onto L(α). Consider the following
random variables for the angle α

Xi,j(α) =

{

1 if d
(

p∗i (α), p∗j (α)
)

≤ 1,

0 otherwise;

Xi(α) =
n

∑

j=1

Xi,j(α);

Xmax(α) = max{X1(α), . . . ,Xn(α)};

X(α) =

n
∑

i=1

Xi(α) =

n
∑

i=1

n
∑

j=1

Xi,j(α),

where α is chosen uniformly at random from the values [0, π). In words: Xi,j

is the indicator variable for the event that p∗i (α) and p∗j(α) are at distance at
most one in the projection; Xi is the number of points (including pi itself) at
distance at most one from p∗i (α); Xmax is the maximum among X1, . . . ,Xn;
and X counts twice the number of pairs of points at distance at most one
in the projection. It is clear that P[Xi,i = 1] = 1 for any i ∈ [n]. Otherwise
we have the following result.

Lemma 1. If i 6= j, then

P[Xi,j = 1] =
2 arcsin 1/di,j

π
.
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pi = (0, 0)

pj

1

angles making
Xi,j = 1

angles making
Xi,j = 1

β

β

Figure 1: For Lemma 4. We consider what random lines L(α) through pi

that give Xij = 1

Proof. Assume without loss of generality that pi is placed at the origin
and pj is vertically above it, on the y-axis. See Figure 1. We may also
assume that the line L(α) passes through pi. Because di,j ≥ 1, there are
values α such that Xi,j(α) 6= 1. The angles that make Xi,j(α) = 1 are
indicated in the figure. In particular, if β is the angle indicated in the
figure, and we choose α uniformly at random, then P[Xi,j = 1] = 2β

π . The
angle β is such that sinβ = 1

di,j
, and so β = arcsin 1

di,j
. We conclude that

P[Xi,j = 1] = 2β
π =

2 arcsin 1/di,j

π .

The first observation, which is already used for the approximation algo-
rithms described by D́ıaz et al. [3], is that, asymptotically, we do not need
to care for the graduation, but only for the orientation of the line. In par-
ticular, the random variables Xi contain all the information that we need
asymptotically.

Lemma 2. We have

EConc(P ))

2
≤ E [Xmax(α)] ≤ 2EConc(P ).

3 Using the first moment

Using that the closest pair of P is at least one apart, we get the following
result.
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Lemma 3. For every i ∈ [n], we have

∑

j∈[n]\{i}

1

di,j
= O(

√
n).

Proof. Without loss of generality, assume that i = n. Let nd be the number
of points in P whose distance from pn is in the interval [d, d + 1). We have

∑

j∈[n−1]

1

di,j
=

∞
∑

d=1





∑

di,j∈[d,d+1)

1

di,j



 (1)

≤
∞

∑

d=1





∑

di,j∈[d,d+1)

1

d



 (2)

=

∞
∑

d=1

nd

d
. (3)

Observe that if we have two sequences (ai)i∈N and (bi)i∈N of nonnegative
numbers such that

∑j
i=1 ai ≤

∑j
i=1 bi for all j ∈ N, then

∑∞
i=1

ai

i ≤
∑∞

i=1
bi

i .
That is, the sum is maximized when the values concentrate on the smallest
possible indexes. Let Nd be the maximum number of 1-separated points
that you can have in an annulus of inner radius d and exterior radius d + 1,
and let D be the smallest value such that n <

∑D
d=1 Nd. We have n =

∑

nd

and
∑j

i=1 ni ≤
∑j

i=1 Ni for all j ∈ [D], and from (1) we conclude

∑

j∈[n−1]

1

di,j
≤

∞
∑

d=1

nd

d
≤

D
∑

d=1

Nd

d
. (4)

We need to estimate the values Nd. For the lower bound, placing points
at distance one in the circle of radius d, we get Nd = Ω(d). For the upper
bound, we can use a packing argument to show that any 1-separated point
set inside the annulus has O(d) points. We conclude that Nd = Θ(d), and
therefore D = O(

√
n). Using (4) we get

∑

j∈[n−1]

1

di,j
≤

D
∑

d=1

Nd

d
≤

O(
√

n)
∑

d=1

O(d)

d
= O(

√
n).

Lemma 4. For every i ∈ [n] we have E[Xi] = O(
√

n).
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Proof. Because Xi =
∑n

j=1 Xi,j and the linearity of the expectation, we
have

E[Xi] =

n
∑

j=1

E[Xi,j] =

n
∑

j=1

P[Xi,j = 1]

= 1 +
∑

j∈[n]\{i}
P[Xi,j = 1]

= 1 +
∑

j∈[n]\{i}

2 arcsin(1/di,j)

π
.

Observe that the function arcsin(x) is convex for x ∈ [0, 1], and therefore
we have arcsin(x) ≤ (π/2)x for all x ∈ [0, 1]. We then have

E[Xi] = 1 +
∑

j∈[n]\{i}

2 arcsin(1/di,j)

π

≤ 1 +
∑

j∈[n]\{i}

1

di,j
,

and using Lemma 3 we conclude that E[Xi] = O(
√

n).

Using the first moment method, we can show that for any 1-separated
point set P it holds that EConc(P ) = O(n3/4). For this, consider a 1-
separated point set P and its associated random variable X. We have X =
∑

Xi, and because of Lemma 4 we conclude E[X] = O(n
√

n).
We claim that, for any value t > 0, if we have Xmax(α) ≥ t, then

X(α) ≥ t2/4. Intuitively, if some Xi = t, then there are Θ(t2) pairs of
points at distance at most one from each other, and so contributing to X.
The formal proof of the claim is as follows. Let i be an index such that
Xi(α) ≥ t. Then, either to the right or to the left of p∗i (α), the projection of
pi onto L(α), there are at least t/2 points p∗j (α) at distance at most one from

p∗i (α). Assume that those points are to the left and let P̃ ⊂ P be the set of
those points. We have |P̃ | ≥ t/2. For any pj , pj′ ∈ P̃ we have Xj,j′(α) = 1,
and therefore we have Xj(α) ≥ t/2 for all pj ∈ P̃ . We conclude that

X(α) ≥
∑

pj∈P̃

Xj(α) ≥
∑

pj∈P̃

t/2 ≥ t/2 · |P̃ | ≥ t2/4,

and the claim is proved.
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We have shown that for any value t > 0 we have

[Xmax ≥ t] ⊆ [X ≥ t2/4],

and using Markov’s inequality we conclude

P[Xmax ≥ t] ≤ P[X ≥ t2/4] ≤ 4E[X]

t2
≤ O(n

√
n)

t2
.

Let r = ⌊n3/4⌋. Since Xmax only takes natural numbers, we have

E[Xmax] =
n

∑

t=1

P[Xmax ≥ t]

=

r
∑

t=1

P[Xmax ≥ t] +

n
∑

t=r+1

P[Xmax ≥ t]

≤
r

∑

t=1

1 +
n

∑

t=r+1

O(n
√

n)

t2

≤ r + O(n
√

n)

∫ n

r

1

t2
dt

≤ n3/4 + O(n
√

n)

(

1

r
− 1

n

)

= O(n3/4).

Using Lemma 2 it follows that EConc(P ) = O(n3/4). However, observe that
this bound will be improved in next section.

We would like to point out that the random variables Xi do not have
a strong concentration around their expectation. Therefore, we cannot use
many of the results based on concentration of the measure that would re-
duce the bound on EConc(P ). To see this, consider the example in Fig-
ure 2. The point pi is the center of a disc of radius n3/4, and we consider
a circular sector with arc-length n1/4. This region is grey in the picture.
Imagine that we place a densest 1-separated point set P inside the grey re-
gion. Asymptotically, since the region has area Θ(n), such a point set P has
Θ(n) points. Consider the lines L(α+π/2) passing through pi. If α is chosen
uniformly at random, the line L(α) intersects the grey region with probabil-
ity n1/4/(2πn3/4) = Θ(1/

√
n), and in that case Xi(α + π/2) = Θ(n3/4). We

conclude that E[Xi] = Θ(n1/4), but P[Xi = Ω(n4/3)] = Θ(1/
√

n), and so Xi

does not concentrate around its expectation.
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n
3/4

n
1/4

pi

Figure 2: Example showing that Xi is not concentrated around its expecta-
tion.

4 Second moments

Lemma 5. For every i ∈ [n] we have E[X2
i ] = O(n).

Proof. Assume without loss of generality that di,j ≥ di,k whenever j > k;
that is, the points are indexed according to their distance from pi. Like
above, we assume that the line L(α) passes through pi. We have

E[X2
i ] = E





∑

j,k∈[n]

Xi,jXi,k





≤ E



2
∑

j

∑

k≤j

Xi,jXi,k





= 2
∑

j

E



Xi,j

∑

k≤j

Xi,k





We claim that E

[

Xi,j
∑

k≤j Xi,k

]

= O(1), and so the result follows.

To prove the claim, observe that if Xi,j(α) = 1, then all the points pk

that have Xi,k(α) = 1 need to be in the strip (or slab) of width two having
L(α + π/2) as axis; see Figure 3, where this strip is in grey. Because of
a packing argument, in this strip there are O(di,j) points pk that satisfy
di,j ≥ di,k. Therefore, by the way we indexed the points, we conclude that,

if Xi,j(α) = 1, then
(

∑

k≤j Xi,k

)

(α) = O(di,j). In any case, we always have
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(

Xi,j
∑

k≤j Xi,k

)

(α) = O(di,j). Therefore

E [ Xi,j

∑

k≤j

Xi,k ] =

n
∑

t=1

t · P



Xi,j

∑

k≤j

Xi,k = t





≤
n

∑

t=1

O(di,j) · P



Xi,j

∑

k≤j

Xi,k = t





= O(di,j)

n
∑

t=1

P



Xi,j

∑

k≤j

Xi,k = t





≤ O(di,j) · P [Xi,j = 1]

= O(di,j)
2 arcsin 1/di,j

π
= O(1).

This finishes the proof of the claim and of the lemma.

Theorem 1. For any 1-separated point set P we have EConc(P ) = O(n2/3).

Proof. Let P be a 1-separated point set and consider the random variable
T (α) =

(
∑

i X
2
i

)

(α). By Lemma 5 we have E[T ] =
∑

i E[X2
i ] = O(n2). The

rest of the proof resembles the argument in the previous section.
We claim that, for any value t > 0, if we have Xmax(α) ≥ t, then

T (α) ≥ t3/8. The proof is as follows. Let i be an index such that Xi(α) ≥ t.
Then, either to the right or to the left of p∗i (α), the projection of pi onto
L(α), there are at least t/2 points p∗j(α) at distance at most one from p∗i (α).

Assume that those points are to the left and let P̃ ⊆ P be the set of those
points. We have |P̃ | ≥ t/2. For any pj, pj′ ∈ P̃ we have Xj,j′(α) = 1.
Therefore for all pj ∈ P̃ we have Xj(α) ≥ t/2, and X2

j (α) ≥ t2/4. We
conclude that

T (α) ≥
∑

pj∈P̃

X2
j (α)

≥
∑

pj∈P̃

t2/4 ≥ t2/4 · |P̃ |

≥ t3/8,

and the claim is proved.
We have shown that for any value t > 0 we have

[Xmax ≥ t] ⊆ [T ≥ t3/8],
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pi

pj

L(α)

11

Figure 3: For the proof of Lemma 5. For any angle α we have
(

Xi,j
∑

k≤j Xi,k

)

(α) = O(di,j).

and using Markov’s inequality we conclude

P[Xmax ≥ t] ≤ P[T ≥ t3/8] ≤ 8E[T ]

t3
≤ O(n2)

t3
.

Let r = ⌊n2/3⌋. Since Xmax only takes natural numbers, we have

E[Xmax] =

n
∑

t=1

P[Xmax ≥ t]

=
r

∑

t=1

P[Xmax ≥ t] +
n

∑

t=r+1

P[Xmax ≥ t]

≤
r

∑

t=1

1 +

n
∑

t=r+1

O(n2)

t3

≤ r + O(n2)

∫ n

r

1

t3
dt

≤ n2/3 + O(n2)

(

2

r2
− 2

n2

)

= O(n2/3).
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Using Lemma 2 it follows that EConc(P ) = O(n2/3).

Trying to use the same ideas with higher moments of Xi does not help.
Consider for example the 1-separated point set P consisting of all n points
in a horizontal row of length n, and let p1 be the leftmost point. We have
E[X3

1 ] = Θ(n2), and in general E[Xp
1 ] = Θ(np−1) for all naturals p > 2.

From this we can only conclude weaker results of the type EConc(P ) =
O(np/(p+1)).
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