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Abstract

We study the complexity of higher-order Voronoi diagrams on triangulated surfaces under
the geodesic distance, when the sites may be polygonal domains of constant complexity. More
precisely, we show that on a surface defined by n triangles the sum of the combinatorial com-
plexities of the order-j Voronoi diagrams of m sites, for j = 1, . . . , k, is O(k2n2 + k2m + knm),
which is asymptotically tight in the worst case.

1 Introduction

The diverse generalizations of Voronoi diagrams have important applications in several fields and
application areas, such as computer graphics, geometric modelling, geographic information systems,
visualization of medical data-sets, pattern recognition, robotics and shape analysis. Given a set of
m primitives, called sites, in an ambient space equipped with a metric, the order-k Voronoi diagram,
where k is an integer between 1 and m−1, partitions the ambient space into regions such that each
point within a fixed region has the same set of k closest sites. Many variants of these diagrams
can be found in the literature by considering various ambient spaces, taking sites of different shape
or nature, associating weights to the sites, or changing the underlying metrics [3, 4, 11]. In this
paper we concentrate on Voronoi diagrams defined on triangulated surfaces for polygonal sites of
constant-description complexity.

Surfaces, sites, and bisectors. Let P be a triangulated polyhedral surface consisting of n
triangles. The surface P may have nonzero genus. The distance d(p, q) between two points p, q ∈ P
of the surface is given by their geodesic distance, that is, the length of the shortest path between
the two points that is contained in the surface.

In this paper, a site s in P is a polygonal domain contained in P with constant-description
complexity; it may be a point, a segment, a polygonal path with a bounded number of segments,
or a domain enclosed by a closed polygonal path with a bounded number of segments.

The distance d(p, s) from a point p ∈ P to a site s is defined by the length of the shortest path
from p to any point of s, that is, d(p, s) = minq∈s d(p, q). The bisector β(s, s′) defined by sites s
and s′ is the locus of points at equal distance from s, s′.
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A terrain T is a polyhedral surface embedded in R
3 that is homeomorphic to a topological disk

and is xy-monotone—a vertical line intersects T at most once. The domain of a terrain is the
projection of T onto the xy-plane.

Let S = {s1, . . . , sm} be a set of m sites in P. We make the following assumptions:

• The sites are pairwise disjoint.

• No vertex of the surface is equidistant from two sites.

• No point of the surface is equidistant from four sites.

When any of the first two assumptions is removed, it may happen that a bisector defined by
two sites contains two-dimensional pieces. With the first two assumptions, a bisector does not
contain two-dimensional pieces and consists of straight-line, parabolic and hyperbolic arcs [6, 8].
A breakpoint of a bisector is an intersection point between two adjacent arcs of the bisector. A
breakpoint corresponds either to a point where the bisector crosses an edge of P or to a point where
there are two different shortest paths from one of the sites defining the bisector1. According to
previous results [6, 8], a bisector has O(n2) breakpoints.

Order-k Voronoi diagram. We are interested in the order-k Voronoi diagrams of the sites S.
We next recall its definition, together with other related concepts. For a subset S′ of the sites, the
Voronoi region V (S′) of S′ is defined as

{p ∈ P | d(p, s′) ≤ d(p, s),∀s′ ∈ S′,∀s ∈ S \ S′}.

For each integer 1 ≤ k ≤ m − 1, the order-k Voronoi diagram of S, Vork(S), is the family of
nonempty Voronoi regions V (S′), where S′ ranges over all subsets of S with k sites. When k = 1
and k = m− 1 the order-k Voronoi diagrams are called the (closest-site) Voronoi and the furthest-
site Voronoi diagram, respectively. A k-region is a Voronoi region in the order-k Voronoi diagram.
A k-face is a maximal connected component of a k-region. A k-edge is a connected component in
the intersection of two k-faces. A k-edge always lies on the bisector of two sites. A k-breakpoint is
a breakpoint on a k-edge. A k-vertex is the intersection point of three or more k-faces.

The terms faces, edges, and vertices of the order-k Voronoi diagram are chosen because of their
resemblance with a graph embedded in the surface P. The removal of all k-edges from the surface
leaves a collection of connected sets. The closure of one such connected set is a k-face, and vice
versa. Recall the third assumption we have made above: no point of the surface is equidistant from
four sites. In this case, no four bisectors intersect at a common point, and hence a k-vertex has
precisely three k-edges arriving to it. Finally, let us remark the difference between vertices and
breakpoints: while vertices correspond to endpoint of edges, breakpoints can only appear along the
relative interior of edges.

The (combinatorial) complexity of the order-k Voronoi diagram is the total number of k-faces,
k-edges, k-vertices, and k-breakpoints.

Our results. Let Vor≤k(S) denote the family of all order-j Voronoi diagrams of S for j = 1, . . . , k.
Let us define the complexity of Vor≤k(S) as the sum of the complexities of the order-j Voronoi
diagrams, j = 1, . . . , k. We show that the complexity of Vor≤k(S) is O(k2n2+k2m+knm), and that
this bound is asymptotically tight in the worst case. We also prove that the complexity of Vor≤k(S)
in so-called realistic terrains (the concept is explained in Section 4) is O(k2n + k

√
nm + k2m).

1This definition of breakpoint is consistent with [1] but different from [2, 9].
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Related work. In the Euclidean plane R
2, which can be regarded as a surface of constant

complexity, the order-j Voronoi diagram of a set of m points has complexity O(j(m − j)), and
hence the complexity of Vor≤k(S) is O(mk2) [7, 12]. In the case of a triangulated surface consisting
of n triangles and a set of m point sites, the complexity of the closest-site Voronoi diagram is
O(n(n + m)), while the number of vertices is O(m) [8, 10]. For surfaces of genus zero, Aronov
et al. [1] show that the furthest-site Voronoi diagram has complexity Θ(mn2) in the worst-case.
These previous results for surfaces were written for the case where the sites are points; in this case
the edges consist of straight-line and hyperbolic arcs. Combining approaches in [6] and [1, 8], the
results directly extend to segment, polygonal line or polygon sites, where the bisectors may also
include parabolic arcs.

2 Structural properties of order-k Voronoi diagrams.

2.1 Edges without vertices

Although the definition of edges and vertices resemble those of graphs embedded in P, the situation
may be quite different. The following observation is probably folklore.

Lemma 1 There exist order-k Voronoi diagrams with k-edges that form closed curves in P and
are not adjacent to any k-vertex.

Proof. Let us consider a prism with triangular base. Consider a line ` parallel to an edge of the
prism from one base to the other, as in Fig. 1. We place m sites on `, no pair of bisectors intersect
and some of them define the boundary of k-regions. Consequently k-regions may have closed curve
edges without vertices. �

A

B

C

D
E

F
G

{A,B,C}

{B,C,D}

{C,D,E}

{D,E,F}

{E,F,G}
`

Figure 1: Example of an order-3 Voronoi diagram with all the regions without vertices.

A key property that we use below is that a k-edge that is not adjacent to any k-vertex must
contain a breakpoint, as otherwise it would consist of a single arc contained in a triangle of P,
which is not possible.

2.2 Path-connectivity of the regions

The regions of the closest-site Voronoi diagram are path connected in any surface. The regions
of the furthest-site Voronoi diagram are also path-connected in surfaces of genus zero [1]. In the
Euclidean plane with point sites, any k-region is also path-connected, since in fact any k-region is
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convex. The situation is different for the general case, as shown in the following two constructions.
The first construction is in the plane but requires using sites that are not points. The second
construction is in a terrain, but only requires point sites.

Lemma 2 For any given k ≥ 2, there exists a set of sites in the plane such that the order-k
Voronoi diagram has some disconnected regions.

Proof. In the plane, consider the segment site s1 between the points (−1,−7) and (−1, 7), the
segment site s2 between the points (1,−7) and (1, 7), and the point site s3 = (0, 0). See Fig. 2.
The 2-region corresponding to the sites s1, s2 is disconnected, with a part above and a part below
the line y = 0. We can extend the construction to any k ≥ 2 by placing k − 2 new segment sites
that are small translations of s2. �

s2s1

s3

{s1, s2}

{s1, s3}

{s2, s3}

Figure 2: Example of an order-2 Voronoi diagram in the plane for segments sites with disconnected
regions.

Lemma 3 For any given k ≥ 2, there exists a polyhedral surface and a set of point sites such that
the order-k Voronoi diagram has some disconnected regions.

Proof. We describe a polyhedral surface P embedded in 3-dimensional Euclidean space. The
construction uses three squares: square Q1 has side length 22 and corners at

(−11,−11, 0), (−11, 11, 0),

(11, 11, 0), (11,−11, 0),

square Q2 has side length 20 and corners at

(−10,−10, 1000), (−10, 10, 1000),

(10, 10, 1000), (10,−10, 1000),

and square Q3 has side length 18 and corners at

(−9,−9, 0), (−9, 9, 0),

(9, 9, 0), (9,−9, 0).
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Note that the squares are parallel to the xy-plane, have their centers on the line x = y = 0, and
have their sides parallel to the x, y coordinate axis. Squares Q1 and Q3 are placed at height zero
and Q2 is at height 1000. Let P be the polyhedral surface obtained by gluing the xy-plane minus
the interior of Q1, the pyramid with bases Q1 and Q2 (without the bases), the pyramid with bases
Q2 and Q3 (without the bases), and the square Q3. The terrain resembles a volcano. Let ` be the
curve obtained by intersecting P with the vertical plane y = 0. See Fig. 3 for a projection onto the
xy-plane.

We place 3k point-sites along `, as follows. First, we place k sites in Q3, symmetrically respect
to its center. We then place k sites along ` in each side outside Q1, distributed in four groups:
Sl

1, Sl
2, Sr

1 and Sr
2. Groups Sl

1, Sr
1 contain bk/2c points, while groups Sl

2, Sr
2 contain dk/2e points.

Within each group, the points are regularly spaced at distance ε, where 0 < ε � 1/k. The points
Sl

2 are placed to the left of Q1, along `, at distance ε from Q1, and the points Sl
1 at distance 1/2

from Sl
2. We do the same on the right of Q1 but placing Sr

1 closer to Q1 than Sr
2 (see Fig. 3). The

construction is symmetric with respect to the plane y = 0. (It is also symmetric with respect to
the plane x = 0 when k is even.)

Consider the Voronoi region R having Sr
1 ∪ Sl

2 as closest sites. First, note that R is nonempty
because it contains the points (0, 12, 0) and (0,−12, 0) in its interior, and hence R is a k-region.
Note that no point on ` is in R, while the points (0, 12, 0), (0,−12, 0) are on different sides of `.
This means that R has at least two connected components. The construction for k = 7 is shown in
Fig. 3 (xy-projection). �

Q1

Q3

`Sl
2

Sl
1

Sr
2

Sr
1

Figure 3: Example of an order-7 Voronoi diagram with disconnected regions.

3 Complexity of order-(≤ k) Voronoi diagrams

3.1 Upper bounds

In this section we will give bounds for the complexity of V≤k(S). Our approach is similar to the
approach used by Clarkson and Shor [5] or Sharir [13]. Let Bj be the total number of j-breakpoints,
and let B≤k be the number of j-breakpoints for j = 1, . . . , k. Similarly, let Vj be the number of
j-vertices and let V≤k be the total number of j-vertices for j = 1, . . . , k.
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Lemma 4 The complexity of the order-k Voronoi diagram is O(Bk + Vk).

Proof. Let Ek and Fk be the number of k-edges and k-faces, respectively.
Each k-edge that is not adjacent to a k-vertex (cf. Lemma 1) contains some k-breakpoints.

Therefore, the number of k-edges that are not adjacent to any k-vertex is bounded by Bk. The
number of k-edges adjacent to some k-vertex is bounded by 3Vk because each k-vertex is adjacent
to at most three k-edges. Therefore, we conclude that Ek = O(Bk + Vk).

To bound Fk, we can use Euler’s formula to obtain the bound Fk ≤ Ek−Vk +2−g, where g ≥ 0
is the genus of the surface2. Therefore Fk ≤ Ek + 2 = O(Ek). We conclude that the complexity of
the order-k Voronoi diagram, defined as Fk + Ek + Vk + Bk, is O(Bk + Vk). �

Lemma 5 We have B≤k = O(kn(kn + m)) for any 1 ≤ k ≤ m − 1.

Proof. Draw a random sample R of S, by independently drawing each element of S with probability
p. We will set below p to an appropriate value. Let B(R) be the number of breakpoints of the order-
1 Voronoi diagram of R in P. From the bounds on the complexity of order-1 Voronoi diagrams,
discussed in Section 1, we know that B(R) = O(n2+|R|n). Since |R| follows a binomial distribution,
we have

E [|R|] = mp,

and therefore
E [B(R)] = O(n2 + nmp). (1)

Consider a breakpoint b in some j-edge of the order-j Voronoi diagram of S. Let s, s′ be the
two sites defining the bisector that contains b. Consider the set Sb of j − 1 sites distinct from s, s′

that are at distance at most d(b, s) from b. The point b is a breakpoint in the order-1 Voronoi
diagram of the random sample R if and only if s, s′ are in R and none of the j − 1 sites Sb is in R.
Therefore, the probability that b is a breakpoint in the order-1 Voronoi diagram of R is precisely
p2(1 − p)j−1. By linearity of expectation we then have

E [B(R)] =
m−1
∑

j=1

Bjp
2(1 − p)j−1

≥ p2

k
∑

j=1

Bj(1 − p)j−1

≥ p2(1 − p)k−1

k
∑

j=1

Bj

= p2(1 − p)k−1B≤k.

Rearranging and substituting equation (1) we see

B≤k ≤ E [B(R)]

p2(1 − p)k−1

=
O(n2 + nmp)

p2(1 − p)k−1
.

2There is equality only for nonorientable surfaces without boundary where each k-face is a topological disk. For
orientable surfaces we can replace the term g by 2g.
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Finally, setting p = 1/k we obtain

B≤k = O

(

n2 + nm/k

(1/k)2(1 − 1/k)k−1

)

= O
(

k2n2 + knm
)

,

where we have used that

1

(1 − 1/k)k−1
=

(

k

k − 1

)k−1

≤ e.

�

Lemma 6 We have V≤k = O(k2m) for any 1 ≤ k ≤ m − 1.

Proof. This proof is very similar to the previous one. Draw a random sample R from S, by
independently drawing each element of S with probability p. Let V (R) be the number of vertices
of the order-1 Voronoi diagram of R in P. From the known bounds, as discussed in Section 1, we
have V (R) = O(|R|) = O(mp).

Consider a j-vertex v, and let s1, s2, s3 be the three sites defining v: v is in the intersection
of the bisectors β(s1, s2), β(s1, s3), β(s2, s3). Consider the set Sv of sites distinct from s1, s2, s3

that are at distance at most d(v, s1) from v. The cardinality of Sv is either j − 2 (when v is also
a (j − 1)-vertex) or j − 1 (when v is also a (j + 1)-vertex). The point v is a vertex in the order-1
Voronoi diagram of the random sample R if and only if s1, s2, s3 are in R and none of the sites
Sv are in R. Therefore, the probability that v is a vertex in the order-1 Voronoi diagram of R is
precisely p3(1 − p)|Sv| ≥ p3(1 − p)j−1. Since a j-vertex is also a (j − 1)-vertex or a (j + 1)-vertex,
each vertex is counted twice in the sum V1 + V2 + · · · + Vm−1. By linearity of expectation we then
have

E [V (R)] ≥ 1

2

m−1
∑

j=1

Vjp
3(1 − p)j−1

≥ 1

2
p3

k
∑

j=1

Vj(1 − p)j−1

=
1

2
p3(1 − p)k−1V≤k.

As in the previous proof, we rearrange, substitute V (R) = O(mp), and set p = 1/k to get

V≤k ≤ 2 · E [V (R)]

p3(1 − p)k−1

=
2m/k

(1/k)3(1 − 1/k)k−1

= O(k2m).

�

Combining Lemmas 4–6 we can conclude our main result:

Theorem 1 Let P be a polyhedral surface with n triangles, let S be a set of m sites on P, and let
k be an integer between 1 and m − 1. The complexity of Vor≤k(S) is O(k2n2 + k2m + knm). �
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3.2 Lower bounds

We will show that the bound of Theorem 1 is asymptotically optimal in the worst case. For this, we
give three constructions, each showing the need of one summand in the bound O(k2n2+k2m+knm).
Our constructions only use terrains, and hence the upper bounds in Theorem 1 are tight even for
terrains.

We describe a construction attaining complexity Ω(mk2). Consider the Euclidean plane and
observe that the complexity of Vor≤k(S) for a set S of m points is Ω(mk2) [7]. Clipping the plane
with a large enough rectangle, so that n = O(1), we obtain the desired bound.

We describe a construction attaining complexity Ω(knm). Consider the Euclidean plane, and
take the point sites si = (i, 0), i = 1, . . . ,m. Sites with consecutive indices, like si, si+1, . . . , si+j−1,
define a j-region, which is a vertical strip. Therefore, Vorj consists of m− j +1 regions, and Vor≤k

has Ω(km) regions. Clip the plane with a sufficiently large axis-parallel rectangle, and triangulate
it with n ‘long’ edges that connect the left boundary to the right boundary. Each such ‘long’ edge
intersects each region in Vor≤k, and hence the complexity of Vor≤k is Ω(kmn).

We describe a construction attaining complexity Ω(k2n2). Let us assume for simplicity that
m is even. Consider the Euclidean plane and define the m/2 point sites si = (2 + ε · i, 0), for
i = 1, . . . ,m/2, where ε > 0 is a sufficiently small value to be set below. Define also the sites s′i by
s′i = −si, for i = 1, . . . ,m/2. Note that the bisector between si and s′i is the line x = 0. Let us place
n small rectangular obstacles along the line x = 1/2. For concreteness, let Rt be the axis-aligned
square with center (1/2, t) and side length 1/n. We erect an almost vertical wall over each of the
edges of each Rt. This is like effectively considering each Rt as an obstacle. Note that there is a
line through si that separates the rectangle Rt from Rt+1, for any i = 1, . . . ,m/2 and t = 1, . . . , n.
See Fig. 4.

Let β denote the bisector between sites s1 and s′1. The bisector β is not a line anymore, but
contains Θ(n) straight-line arcs—contained in the line x = 0–and Θ(n) hyperbolic arcs—contained
in the halfplane x ≥ 0. Consider a value δ > 0 sufficiently small such that the vertical line x = δ
intersects each hyperbolic arc in β. Let ` denote the vertical line x = δ/2. We can take ε to
be a sufficiently small value such that the line ` intersects all the hyperbolic arcs in any of the
bisectors between a site si and a site s′j , for any i, j ∈ {1, . . . ,m/2}. This is possible because,
looking at a bounded portion of the plane, the bisector β(s1, s

′
1) changes continuously with a small

perturbation of the sites s1, s
′
1. Therefore, the line ` intersects Θ(n) times the bisector β(si, s

′
j),

for any i, j ∈ {1, . . . ,m/2}. We clip the surface with a large enough rectangle, and triangulate
it adding n edges that are parallel to ` and very close together; each of the added edges should
intersect Θ(n) times any bisector β(si, s

′
j).

Let Si,j denote the subset of sites

{s1, s2, . . . , si} ∪ {s′1, s′2, . . . , s′j}.

Note that a point p in the plane whose x coordinate is between −1 and 1 is closer to si than to si+1

for any i ∈ {1, . . . ,m/2 − 1}. Similarly, such point is closer to s′j than to s′j+1
. This implies that

the i + j sites Si,j define a nonempty (i + j)-region in Vori+j(S) whose boundary is determined by
the bisectors β(si, s

′
j+1

) and β(si+1, s
′
j). Therefore, the boundary of V (Si,j) has complexity Ω(n2)

because bisector β(si, s
′
j+1

) is intersected n times by each of the n edges parallel to `. We conclude

that any set Si,j defines a (i+ j)-region of complexity Ω(n2). Since k ≤ m, there are Θ(k2) pairs of
values i, j ∈ {1, . . . ,m/2} adding to at most k. This means that Vor≤k has at least Ω(k2) regions,
each of complexity Ω(n2). Therefore in this construction the complexity of Vor≤k is Ω(k2n2).
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x = 0

s1s′
1

y = 0

β(s1, s
′

1
)

`

R1

R2

R3

Figure 4: The lower bound for Ω(k2n2) when n = 3; the hyperbolic arcs are symbolic and only the
sites s1, s

′
1 are shown.

4 Complexity of order-k Voronoi diagrams on realistic terrains

We next restrict ourselves to so-called realistic terrains [9]. Let α, β, γ, δ be constants independent
of n,m. A realistic terrain is a terrain where:

1. the domain is a rectangle whose aspect ratio is upper bounded by α;

2. the angle of any segment contained in T with the horizontal plane is upper bounded by β < π
2
;

3. the ratio between the longest and the shortest edge in the xy-projection of T is upper bounded
by γ;

4. the triangulation of the domain induced by the xy-projection is a γ-low-density triangulation:
any square Q intersects at most γ edges of length greater than the side length of Q.

Aronov et al. [2] have recently showed that in a realistic terrain the closest-site Voronoi diagram
of m point sites has complexity O(n + m

√
n); this improves the previous bound by Moet et al. [9].

Using this bound in Lemma 5 we obtain the following result.

Lemma 7 In a realistic terrain B≤k = O(k2n + k
√

nm) for any 1 ≤ k ≤ m − 1.

Proof. Consider the proof of Lemma 5 for a realistic terrain. Using the bound

B(R) = O(n + |R|
√

n) = O(n +
√

nmp),
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instead of the equation (1), one readily obtains

B≤k = O(k2n + k
√

nm),

�

Combining Lemmas 4, 6, and 7 we can conclude the following.

Theorem 2 Let T be a realistic terrain with n triangles, let S be a set of m point sites, and let k
be an integer between 1 and m − 1. The complexity of Vor≤k(S) is O(k2n + k

√
nm + k2m). �

5 Conclusions

We have have given tight bounds for the combinatorial complexity of order-(≤ k) Voronoi diagrams
in triangulated surfaces. Our upper bound of course also holds for the combinatorial complexity
of the order-k Voronoi diagram. Obtaining better upper bounds for the order-k Voronoi diagram
seems a much more challenging problem, even if restricted only to terrains or realistic terrains.
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