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Abstract

In this paper we present an efficient algorithm to test if two given paths are homotopic; that
is, whether they wind around obstacles in the plane in the same way. For paths specified by
n line segments with obstacles described by n points, several standard ways achieve quadratic
running time. For simple paths, our algorithm runs in O(nlogn) time, which we show is tight.
For self-intersecting paths the problem is related to Hopcroft’s problem; our algorithm runs in
O(n/?logn) time.

1 Introduction

A basic topological question is determining if two paths are homotopic, so that one can be deformed
into another without leaving the containing space. Specifically, suppose that the input consists of
a set P of up to n points in the plane, and two paths, a and (3, that start and end at the same
points and are represented as polygonal lines of at most n segments each. The goal is to determine
whether « is deformable to § without passing over any points of P. Equivalently, we determine
whether the closed loop 3%, which concatenates a with the reverse of 3, is contractible in the
plane minus P. We assume (or simulate) general position, so that no three points are colinear and
no two points are on the same vertical line. We are primarily concerned with paths that have no
self-intersections.

*The first author is partially supported by the Cornenlis Lely Stichting, and the rest by NSF grants 9988742 and
0076984.



The path homotopy question arises in several
application areas: In circuit board design, river
routing, where the homotopy class of each wire is
specified, is one of the few polynomial-time solv-
able variations of the wire routing problem [19]. In
motion path planning, one might check to see that
two ways of getting from point A to point B are
equivalent [17]. In geographic information systems
(GIS), one may wish to simplify a linear feature Figure 1: Are o and 3 homotopic?
(road or river) while respecting the way in which the feature winds around points [4, 7]. Michael
Goodchild, in an invited lecture at the 11th ACM Symposium on Computational Geometry, pointed
out that even on a road map that has features with 60m accuracy, you will still find all the houses
on the proper side of the road. In such a case, the operators entering data have used topological
constraints to make sure that the road winds properly when creating the road layer or building
layer. Efrat et al. [14] recently looked at computing shortest paths among obstacles by identifying
and bundling homotopic fragments. They independently developed a sweep algorithm that uses
has similar ideas to ours. Our rectification can be used to speed up their algorithm.

Several approaches to test path homotopy among points in the plane
give algorithms with quadratic worst-case behavior. One approach is to
find the Euclidean shortest representatives of the homotopy classes for
a and ( using known algorithms, then to check that they are identical.
These algorithms [17] trace each path through a triangulation, taking
time proportional to the number triangles that intersect the paths, which
may be ©(n?). In fact, explicit representation of the shortest path may
take ©(n?) segments for a path like that of Figure 2. The more general Figure 2: e(n?)
problem of testing if two paths are homotopic in compact surfaces, with ~segments in shortest
or without boundary, was treated in [8, 9]. Here the specification of the homotopic path
path essentially must be as a sequence of the edges that are crossed in the universal cover of the
surface, which may again be quadratic.

Our approach is to convert a and 3 separately to near-canonical representations of their homo-
topy classes, then compare representations to determine if the paths are homotopic. After laying
the topological groundwork in the next section, we show how to test homotopy for simple paths in
Section 3. We comment on extending our algorithm for non-simple paths in Section 4, establish
lower bound on both problems in Section 5. We conclude in Section 6.

2 Topological preliminaries

We actually solve three natural variations of the path homotopy question, so clear definitions are
important.

2.1 Three variations on path homotopy

The topological concept of homotopy formally captures the notion of deforming paths [1, 22]. Let
I = ]0,1] denote the unit interval and M denote a topological space, which for us will be the
complement of some point or polygonal obstacles in the plane. A path is a continuous function
a:I — M; that is, a function for which the preimage a=!(A) of an open set A C M is open in I.
Paths a and  that share starting and ending points, «(0) = £(0) and (1) = (1), are said to



be path homotopic if one can be deformed to the other in M while keeping the endpoints fixed.
Formally, paths « and (3 are path homotopic if there is a continuous map I': [0, 1] x [0, 1] — M such
that I'(x,0) = a(z) and I'(z,1) = B(x), and I'(0,y) = «(0) = B(0) and I'(1,y) = a(1) = B(1).
By the standard topological definition, path end points must lie in the space M, and the path
can pass over them by continuous deformation, creating self-intersections. This may be undesirable
in some applications, so we also consider two alternative definitions that allow a path to begin or
end at obstacles in the plane. Informally, we can think of the path as a thread winding above a
plane that is punctured with long needles that serve as obstacles. The three variations are whether
a path end point is fixed by a tack, pin, or pushpin.
tack A thumbtack pushed flat into the plane presents no obstacle to the thread, so this corresponds
to the standard definition given above.

pin A straight pin serves as a point obstacle, so that the end points py and p; are not included in
the topological space M. A path is a continuous function from an open interval a: (0,1) — M
such that the one-sided limits lim,_,o+ a(x) = pg and lim,_,;- a(x) = p;.

pushpin A pushpin serves as a larger obstacle, so that closed € neighborhoods around the the end
points are not included in the topological space M. A path is defined as in the pin case,
but now the limit points py and p; are chosen on the boundaries of the ¢ neighborhoods.
This is equivalent to fixing the path direction at the endpoint, or to adding point obstacles
infinitesimally to the left and to the right of the path endpoint.

The two examples of Figure 3 show that these definitions

lead to different notions of path homotopy. Paths o and 3 . .
are homotopic under the tack definition, but not under either . M—\
the pin or pushpin definitions. In fact, any homotopy must o 7 2N g

pass over endpoints, temporarily creating a path with self-
intersections. Paths v and § are homotopic under the tack
and pin definitions, but are not homotopic under the push-
pin definition, which preserves how = winds around the left
endpoint.

Because we can add obstacles to the plane to handle the pin and pushpin definitions, we consider
the tack (standard) definition in greatest detail. This does cause extra complications in handling
self-intersections, especially in Section 3.6. (The work of Efrat et al. [14] uses the pushpin definition.)

Figure 3: Distinguishing between
path definitions

2.2 Canonical sequences

Whatever definition of path we choose, path homotopy is an equivalence relation [1, 22], which
implies we can identify a homotopy class by giving a representative path.



We can write a simple representation of a path as the
sequence of points that it passes above (overbar) and be-
low (underbar). We can depict this by drawing vertical rays A
upward and downward from each point of P to form ver- < Pj C
tical slabs. The sequence just records intersections with
these rays as we traverse a path through the slabs. Fig-
ure 4 illustrates the paths o« = ABBBCDDCCDEEDCBA and
(8 = ABCDEEDDDCBBBA. This representation can be con-
structed for paths with or without self-intersections.

A repeated point with opposite bars is a turn point. Our
« sequence has two turn points, BB and DD. Polygonal path
« can have at most n — 1 turn points, since there must be
at least one vertex of o between intersections with two rays
from the turn point, and each vertex is claimed by at most one turn point.

An adjacent pair of repeated symbols can be deleted by deforming the curve out of a slab without
changing the homotopy class. This deletion can be repeated until we obtain a canonical sequence.
(The canonical sequence may even be empty.) For example, from « we delete BB and DCCDEE, and
from 3 we delete EE, DD, and BB, to find that both have the same canonical sequence ABCDDCBA.
In fact, two paths have the same canonical sequence if and only if they are homotopic. This is
most easily seen using universal covers, which we sketch in the next subsection. (Unfortunately,
canonical sequences can have quadratic length, so we cannot store and manipulate them explicitly.)

A
)
()

Figure 4: Paths

« = ABBBCDDCCDEEDCBA and
3 = ABCDEEDDDCBBBA have the
same canonical sequence
ABCDDCBA.

2.3 Covering space

Informally, a topological space U is a covering space of a space X if, at each point u € U, there
is a corresponding point x € X such that things around u and x look the same in their respective
spaces, but there may be many points of U mapping to the same point zx.

A space is always a covering space of itself under the identity map [1, 22]. A more interesting
covering space is the universal covering space, which is simply connected—every loop in this space
can be contracted to a point. In our setting (Figure 4), this space is most easily described by an
procedure that grows a region by gluing together copies of vertical slabs at their boundary rays.
Start with a region that consists of any single vertical slab, and therefore has four boundary rays
(or two if we started with the leftmost or rightmost slab.) Then loop forever, selecting a boundary
ray and gluing on a copy of the missing slab along that ray. Never form a cycle or enclose a ray’s
endpoint.

When the set of obstacle points, P, is non-empty, the universal covering space is infinite, which
is why our procedure does not terminate. It is relatively easy to construct only the portions of
the universal cover that intersect the given paths « and [ because any path can be lifted to the
universal cover by choosing the sequence of rays and slabs in the order that a path intersects them.
In fact, every path in the plane minus P has a unique lift into the universal cover once the starting
point is specified [1, 22]. To test path homotopy, one can simply lift both o and 3 to the universal
cover starting from the same point and ask if they end at the same point in the universal cover.

Because the universal cover is simply connected, the dual graph, with a vertex for each slab,
is an infinite tree. The dual of the portion visited by a path is a finite tree, and the operation of
constructing a canonical sequence prunes leaves from this tree so that what remains is the unique
shortest path from the slab of the start point to the slab of the end point. This establishes the



difficult-to-prove direction of the following lemma.
Lemma 1 Two paths have the same canonical sequence if and only if they are homotopic.

Proof: It is clear that two paths with the same canonical sequence are homotopic, since the
construction of a canonical sequence from a path is a concatenation of homotopies on slabs. For
the reverse, suppose that paths o and 3 are homotopic. When we lift both to the universal cover,
starting at the same point, they end at the same point. Their canonical sequences, therefore,
must go from the same starting slab to the same ending slab. There is only one shortest path
that does so in the tree, so the canonical sequences are the same. m

The following Corollary will be useful in proving that paths have the canonical sequence.

Corollary 2 Any path that can be lifted to the universal cover to start and end on the same vertical
segment has an empty canonical sequence.

Proof: The path is homotopic to the vertical segment, which has an empty canonical sequence. m

3 Homotopy test for simple paths

In this section we focus on homotopy testing for paths a and § that are simple—they have no
self-intersections. An aboveness ordering allows us to find a rectified representation of a path.
Using orthogonal range queries, we can adjust the path to have the canonical sequence, then test
homotopy for two adjusted paths in O(nlogn) time.

3.1 Aboveness ordering

For sets in the plane one can define an aboveness relation that is useful in many algorithms in
computational geometry [24]: A > B if there are points (z,y4) € A and (x,yp) € B with y4 > yp.

We say that a set is vertically convex if it is path connected and the intersection with any vertical
line is an (open or closed) interval. Break a path a into monotone fragments and conceptually
separate them at their common endpoints to give a collection of disjoint vertically convex sets.
When applied to disjoint, vertically convex sets, the aboveness relation is a partial order.

Lemma 3 For pairwise disjoint, vertically convex sets Ay, As, ..., Ay in the plane, the aboveness
relation 1s acyclic.

It is easy to develop a plane sweep algorithm that can compute in O(nlogn) time, a total order
for monotone fragments of a path and points that is consistent with the aboveness relation. We
sketch an algorithm adapted from Palazzi and Snoeyink [23].

Define an aboveness tree on disjoint points and monotone path fragments, in which each point
and path is a child of the path directly above its rightmost endpoint. This is a k-ary tree, in
which children can be ordered left to right by rightmost endpoints. We add a horizontal segment
at y = oo to serve as the root of this tree. For disjoint paths specified by n total segments, this tree
can be constructed in O(nlogn) time by a plane sweep algorithm. We represent this k-ary tree as
a binary tree by giving each path a pointer to its left sibling and rightmost child, as in Figure 5.
We then number the points and paths according to an inorder traversal that recursively visits the
left sibling, the node, and then the rightmost child.

We can prove that this numbering is consistent with the aboveness relation. Define a rightward
trace from any point or monotone path by tracing paths to their rightmost endpoints, and to parent
pointers, up to the root. Note that traces do not cross. If s > ¢ then a trace from s must come
from the left to meet a trace from ¢, and the inorder traversal numbers the subtree containing s
before the subtree containing ¢. See [23] if more detail is desired.
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Figure 6: Numberings for o and (3 are used to form rectified pairs («, P) and
(8, P). Rectifying preserves path simplicity and sequences.

3.2 Rectified pairs

We can use a total ordering that respects the aboveness to rectify any simple path « around points
P. Simply rank each point of P and monotone fragment of the path and replace all y coordinates
by their ranks. We call the result a rectified pair («, P).

Figure 6 shows the rectified pairs (a, P) and (§, P). Each path is considered to consist of
horizontal segments that come from monotone path fragments and vertical segments that connect
these fragments in order.

Notice that the points receive different ranks for the numberings of the two paths, and therefore
different y coordinates in the two rectified pairs. The points can still be distinguished by their
x coordinates, which were assumed to be distinct and do not change. All aboveness relationships
are preserved, so rectifying a pair does not change a path sequence or cause self-intersection.

3.3 Orthogonal range queries

Rectifying a pair makes it easier to compute a canonical sequence, because we can search for turn
points using orthogonal range queries. Our problem is to preprocess a set of points P in the plane
to answer queries of the form, “Report the rightmost point in an axis-aligned query rectangle @, or
‘none’ if the rectangle @ is empty.” (We use a symmetric structure to query for leftmost points.)
These are sometimes known as three-sided range queries, because it is sufficient to supply the top,



bottom, and right side of the query rectangle. This problem can be solved in O(nlogn) time and
linear space using Chazelle’s data structure for segment dragging [5]. The RT of Edelsbrunner [11]
or the range priority tree of Samet [25] achieve the same time, with an extra logarithmic factor in
space but a savings in programmer complexity.

Lemma 4 Three-sided range queries can be answered in O(logn) time, with O(nlogn) preprocess-
ing and linear space.

Proof: Chazelle’s segment dragging structure achieves this bound with linear space [5]. We
describe a simple structure with O(nlogn) space based on persistence [10] in the hope that it
can be improved: Sort the points by increasing x coordinate, so that pq,po,...,p, are ordered
from left to right. Denote the prefixes by P; = {p1,p2,...,pi}, for 1 <i <n. Let Py = 0.

Build a balanced priority search tree T; for ¢ = 0 to n. The leaves of T; contain the points
of P; ordered by y coordinate, and every internal node indicates the point in its subtree with
greatest x coordinate. We can build these incrementally using node-copying persistence. Form
T; by adding p; to T;_1: copy the nodes on a root-to-leaf path, and modify the copies to preserve
balance and update priority. This takes a total of O(nlogn) time and space.

To answer a query for the rightmost point in @, simply search on x to find the tree T; that
is right of the line through the right side of @), search in 7T; for the subtrees between the top and
bottom sides of @, then find the maximum z in all these subtrees. This takes O(logn) time. m

3.4 A rectified canonical path

Given a rectified pair («, P), we can compute a new path whose sequence is the canonical sequence
for a. We call this new path a rectified canonical path. It must be understood that this is defined
with respect to a rectified pair, and not the original points. At the end of this subsection, we derive
non-rectified canonical paths for a, 3, and the original point set P.

We use a simple, incremental algorithm to compute a rectified canonical path from the pair
(a, P). We assume that « is represented by the list xo, yo, 1, Y1, - -, Yn—1, Tn, Which indicates
that the path visits (zo,v0), (z1,%), (1,¥1), ---y (Tn—1,Yn-1), (Tn,yn—1), alternating between
horizontal and vertical segments. We think of « as oriented from the start to end.

The canonical path that we compute is determined from («, P)
by an important last intersection property. Given any oriented
curve 7 in the universal cover, we say that a curve 4 has the last
intersection property if any vertical segment L in the universal
cover that intersects a non-vertical segment of 4 does so at the L1
last intersection of L N+ along . In Figure 7, the dark curve ' o
& has the last intersection property in the universal cover. For
example, segment L; has three intersections with the lift of «,
and the last is in the lift of &. Segment Lo actually has only one
intersection with the lift of «, which is in A&.

We consider the horizontal segments of a in order. We maintain
the invariants that after ¢ segments, for 0 < ¢ < n,

Lo

>

I

o

|
—l

Figure 7: & has the last
intersection property

1. Stack S contains a rectified canonical path for the prefix of a from xy to z;,
2. The canonical sequence for the path on S has no adjacent repeated symbols, and
3. The path on S has the last intersection property.



Begin by setting ¢ = 0 and pushing xg onto S. This establishes the initial invariant for the

stack; the others are trivially true.

the

While ¢ < n, let X denote the top element on the stack, and if X # zg, let Y; and X, be
pair just below X on the stack. Figure 8 illustrates cases (I)~(V) as we consider the current

segment from (X, y;) to (zi+1,v:). We assume that z;11 < X, since the reverse is symmetric.

and

|: start [1: continue 1 turn IV: erase curr V: eraseold
YS X’:XO X XS XS H )(S__ XS H YS
yI : : Yi

X1 X1 X1 X X1 X X1 X

Figure 8: Five cases in incrementally computing a canonical path

If we are not doubling back—that is, if (I): X = xg or (II): ;41 < X < Xs—then push y;
Zi+1, and increment ¢. The canonical sequence for this path will not gain any repeated pair of

symbols and the path is extended in the current direction.

If we are doubling back, X5 < X and there are three cases. Either (III): there is a turn point

p with max{Xg, z;11} < p.x < X, or there is no turn point and (IV): Xy < ;41 < X or (V):
Tit1 < Xs < X. We check for a turn point by performing an orthogonal range query with the
rectangle [max{Xs, zi+1}, X] X [Ys,v:]. We handle each case separately.

(IIT): Turn point (p.z,p.y) is found, so replace X with p.z at the top of S, then push y; and z;;1,

and increment 7. Because of the turn point, adjacent symbols in the canonical sequence will
not be identical, and vertical lines in the universal cover will intersect a single horizontal
segment. (Note: we may wind over and under p in this case; sometimes it helps to think
of p as a pair of points separated infinitesimally in x so that winding generates infinitesimal
horizontal segments.)

(IV): No turn point; erase current segment. Replace X with x;11 at the top of S and increment i.

(V):

We

This shortens the path stored in S, so cannot create repeated symbols or violate the last
intersection property.

No turn point; erase old segment. Pop stack S twice to remove the old segment at the top.
This case may apply repeatedly, as it does not increment ¢, but each repetition shortens the
path in S.

continue until 7 = n.

Theorem 5 The algorithm above correctly computes a path whose sequence is the canonical se-
quence for (o, P) using at most 2n orthogonal range queries plus O(n) time.

Proof: First, we show that the algorithm terminates after 2n iterations. Each case (I)-(IV)
increments the loop variable ¢ and pushes at most two elements onto S. Case (V) pops S twice
and leaves ¢ unchanged. Initially ¢ = 0, and we stop when ¢ = n, so we have n iterations in
total with cases (I)—(IV) and at most 2n elements pushed onto S. Case (V) never empties the
stack—the sentinel z( triggers case (I)—so we have at most n iterations with case (V).

Using the arguments given in the description of the cases, we can establish and inductively

maintain the invariants that, after i segments, stack S contains a rectified canonical path,



with the last intersection property, that starts from xg and ends with x;. When the algorithm
terminates at ¢ = n, we have our rectified canonical path. =

Once we have run the algorithm, we can un-rectify
the path, as in Figure 9, to return to the original set
of points. This will allow us to compare two paths on ;
the same point obstacles. The rectified canonical path .
uses horizontal segments, corresponding to segments of I .
a, and vertical segments corresponding to portions that
have been shrunk by homotopy. Since the x-coordinates
of all points and segments were preseved in rectification,
and the aboveness relation was respected, we can easily
map back to the original portions of a and join them by
vertical segments, forming canonical path &. The last
intersection property (recall Figure 7) is also preserved.

We have described the algorithm for the standard
(tack) definition of path homotopy. For the pin and
pushpin definitions, we add path endpoints to the set Figure 9: Unrectifying the canonical
of obstacle points P. Under the pushpin definition, we path for (a, P)
also add two points that are infinitesimally left and right of the start point to make the algorithm
wind correctly around the start. Under the pin definition, the algorithm unwinds at the start, and
we postprocess, if needed, to unwind at the end point.

3.5 A leftist path

Figure 10(a), adapted from Efrat et al. [14], illustrates that a canonical path with the last inter-
section property need not be simple. In fact, one can create examples with a quadratic number of
self intersections. We define the leftist canonical path & and prove that under the pin and pushpin
definitions it has no self-intersections and under the tack definition it has O(n) intersections.

The path is called “leftist” because it consists of mono-

tone fragments that are traversed from left to right, so the —
vertical segments chosen for homotopy are as far to the —
left as possible, as in Figure 10(b). The idea is simple: @ :

put together fragments of two canonical paths to change S N =
the last intersection property to a left intersection prop- ——— P

erty: any vertical segment in the universal cover either (b)
does not intersect the lift of the path, or intersects it in ( —
the point where the lift of « last crosses from left to right. ——=—=_

For a rectified pair (a, P), let o and aft (forward and
reverse) be the two canonical paths obtained by running Figure 10: Self-intersections in (a)
the algorithm of the previous section twice, starting from avoided by leftist path (b)
either end of the curve a. Since both paths are homotopic to «, the canonical sequence of off is
the reverse of that of af—both have the same turn points, which we can number p; to py—1 along
ol (Some points may be duplicated, and we use infinitesimal horizontal segments for portions
that wind around a point.) Let py denote the start point and p,, the end point.

We snip ar and ag at the turn points. Fragments ending below a turn point are extended
infinitesimally beyond the turn point by an amount proportional to their rank order below the turn




point. For example, if there are three fragments whose right endpoints are below a turnpoint p € P,
then the lowest one is extended 3¢ to the right, the next 2¢ and the highest by €. To assemble
these fragments into the leftist path &, we start at point pg, with ¢ = 1. We take the fragment «;
from af" if p;_1 is left of p;, otherwise we take the fragment a; from a’'. We connect fragments in
order, extending fragments above turn points to match the extensions below.

Notice that & has the same canonical sequence as a—since it was derived from fragments of
ap and «ap, it has the same turn points and the same sets of points above and below. Thus, & is
homotopic to a.

A vertical segment within a fragment a; C & has the left intersection property, because it had
the last intersection property with either af or off, whichever came from the left. At the left
endpoints, fragments have the left intersection property for any vertical line just to the right of the
obstacle point; at the right endpoints, they have the left intersection property for vertical lines just
to the left of the obstacle point. We use these properties as we consider self-intersections of the
leftist path & in the next lemma.

Lemma 6 Consider the leftist canonical path & for a simple path o with n segments: Under the
pin and pushpin definitions & is also simple. Under the tack definition & has at most 2n points of
self-intersection.

Proof: On the leftist path &, consider any vertical segment L C &, from the homotopy of a

portion § C «.. Let p be the start point of curve a, and let v be the connected portion of « \ 6

that contains p. We lift to the universal cover to consider whether a point ¢ where v intersects

L can be a self-intersection of a&.

Y 7 . AN
wi- T
S — P’ M

(@ : () ~—

Figure 11: Examples lifting 4 starting from ¢ within R’ = R(L',9").
(Striped areas are used toward the end of the proof of Lemma 6.)

Lift L and 6 from either of their shared endpoints to obtain L’ and #’, which bound a simply-
connected region R' = R(L',#’) in the universal cover. Lift intersection point ¢ to ¢’ € L', and
lift curve v to ' starting from point ¢’. If this lifts p to a point p’ that lies in R’, then we
say that ¢ is a normal intersection, otherwise ¢ is special. Point ¢ is normal in Figure 11(a-b)
and special in (c—d). We aim to count self-intersections of & by separately counting the normal
and special intersections that can create them. Figure 12 shows a complex example (under
the tack definition) in which L N~ has both normal and special intersections that appear as
self-intersections of &.

Normal intersections actually come in equivalence classes: a given lift of p to p’ € R’ can
contribute several intersections L' N/, all of which will be normal. We consider all of these
to be in the same equivalence class, by Corollary 2. In fact, each class can contribute at most
one self-intersection of & by the left intersection property. We therefore count the number of
normal intersection classes.
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Under the pin and pushpin definition, there are no normal intersection classes—endpoint p
is an obstacle, so p cannot be lifted to lie inside the simply connected region R’'.

Under the tack definition, the number of normal intersection classes for L and v is the
number of copies of point p that can be lifted into R’. (Two in Figure 12, for example.) To
count copies, from each copy p’ in the universal cover draw a vertical ray downward to hit a
segment of #'; each segment of 6’ (except the one hitting the top of L’) can be hit by at most
one ray in the universal cover, since all the vertical rays have the same projection into the plane.
Thus, R’ contains at most |#| distinct copies of p. The total number of normal classes over all
vertical segments of & is 2n, since each vertical segment contributes a unique contracted curve
and at most two remaining fragments of «.

It remains to count special points that are self-intersections
of &. In the remainder of the proof, we show that each special
self-intersection ¢ can be mapped one-to-one to a normal class
that contributes no normal self-intersection to &. (Thus the
number of normal and special self-intersections is bounded by o’
the number of normal classes.) The one special self-intersection
in Figure 12 (marked with a diamond) maps to the normal class
of M'N¢.

Therefore, consider a special point ¢ € L N~ that is a self-
intersection of &. The lift 7/ enters R’ by crossing L’ at ¢/, but
by the definition of special, 74/ cannot end inside R’. Since +/
does not cross ¢, it must leave by crossing L' again. If R’ was
to the right of L at ¢/, as in Figure 11(a~b), this would violate

the left intersection property, so we know that R’ lies to the left
of I. Figure 12: L N~ has normal

intersections in two classes
and special intersections.

o e e e e - - -

[

The lift of & must exit R’ by a another vertical segment M’
to the left of L', as in Figure 11(c—d). This M’ has its own region
R(M’, p'), for some p C 7. Since M’ exits R’ without crossing L', the curve #’ must cross M’
an odd number of times, and therefore 6 ends inside R(M’, p/).

Let ¢ denote the line through L’ in the universal cover. Since 6’ ends on ¢ inside R(M’, p’),
there is a simply-connected subset of this region, defined by ¢ and p, that the lift o’ enters
from left to right at the endpoint of #’. Examples are drawn with stripes in Figure 11(c—d).
Since curve o’ cannot cross p’ and crossing ¢ again would violate the left intersection property,
o ends in this region, and the first intersection of M and 6 is normal.

We can further observe that the intersections of M’ N @ form a normal class, because the
other end of 6 also crosses ¢ and cannot return to M’ without violating the left intersection
property. This normal class corresponds to at most one special self-intersection ¢ € &: the
portion of « intersecting M contracts to the unique vertial segment L, and the monotone chain
of & that contains M contains at most one point ¢ € L. Since the normal class M’ N6’ does not
contribute a normal self-intersection, the total number of normal and special self-intersections
is bounded by the maximum number of normal classes, which is zero under the pin and pushpin
definitions and 2n under the tack definition. This completes the lemma. =

We use an unrectified leftist path as our canonical path & from now on.
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3.6 Comparing canonical paths

Canonical sequences can have quadratic size, as the example of Figure 2 shows, so we still cannot
compute the sequences for leftist canonical paths & and B . Fortunately, these paths can be compared
by a more complicated version of the sweep algorithm for rectifying paths.

We continue to use notation introduced in the previous section. Path & is a sequence of mono-
tone chains delimited by turn points: let pg be the path starting point, p,, the path end point, and
p; the i*" turning point we encounter as we trace &. The i*" monotone chain «; is defined as the
portion of the path & from p;_1 to p;. We first state two lemmas that will allow us to compare
canonical paths, then we describe a sweep algorithm to perform the comparison.

Lemma 7 If the paths & and B have the same canonical sequences, the corresponding monotone
chains «; and B; are defined by the same two end points p;_1 and p;.

Proof: Each turning point p; corresponds to a label pair with opposite bars (E‘EZ— or Eiﬁi) in the
canonical sequence. Since the path a and (8 have the same canonical sequences, the sequence
of point label pairs with opposite bars are also the same. Therefore, the sequence of turning
points are the same. By the definition of monotone chain, each monotone chain «; and §; has
the same end points. =

Lemma 7 gives a necessary condition for & and B to have the same canonical sequences: their

monotone chains must have the same end points. If this is not satisfied, we can report that & and B
do not have the same canonical sequence, therefore o and (8 are not homotopic. Otherwise, further
tests are needed.
Lemma 8 For each point p in the plane, let A(a,p) C {1,2,...,m} be the set of indices of mono-
tone chains {a;} that lie above p. Similarly, let A((3,p) be the set of indices of monotone chains
{Bi} that lie above p. If Lemma 7 is also satisfied, then the paths & and B have the same canonical
sequence if and only if A(a,p) = A(B,p) for each p € P.

Proof: To compare the canonical sequences, we can traverse the path o’ and 3’ with the same

speed along the x-coordinate. Since the end points of each monotone chain «; are the same

as [3;, we pass the same sequence of points above or below in the plane as we traverse & and

B. Suppose that monotone chains «; and 3; are being traversed (since their indices are both 7)

and we pass a point p. If the canonical sequences for & and B are the same, this point has the

same bar (p or p), so index i is either in both A(a,p) and A(3,p) or in neither. Conversely, if

A(a,p) = A(B, p), then p will have the same bar in the canonical sequences for & and B.m

The result of Lemma 8 allows us to compare the canonical sequences using a sweep algorithm.
The input of the algorithm is the set of monotone a-chains from leftist path & and monotone
(-chains from B We sweep these chains from left to right with a vertical line. We maintain three
invariants during the sweep:

1. We know the set of monotone a-chains and the set of monotone §-chains intersected by the

sweep line at position x.

2. Within each set, we know the aboveness order of the monotone chains and the rank of each
chain in this order. (It should be noted that the monotone chains could intersect, so this
aboveness order depends on the current sweep line position x. We keep the orders for o and
for 3 separate, otherwise we would need to compute all intersections between a and (3.)

3. For each rank 1 < k < m and v € {a, 8}, we define above set A(y,k) as the set of in-
dices of monotone chains from  having rank at most k. We maintain the size of symmet-
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ric differences between A(a, k) and A(S, k), and denote these difference numbers D, (k) =
|diff(A(c, k), A(B, k))|.

The invariants allow us to check the hypothesis of Lemma 8 to compare the canonical sequences.
When the sweep encounters a point p, we locate p in the set of ordered monotone a-chains and the
set of (-chains. This gives us the sizes of the above sets, |A(a, p)| and |A(5, p)|. If these sizes are
not equal, then the canonical sequences are not the same according to Lemma 8. Otherwise, we
let k equal this size, and check if D, (k) = 0. If it is not, A(a,p) # A(B,p), and Lemma 8 again
tells us that the canonical sequences are not the same. If it is, we continue. If these conditions are
satisfied by all p € P, then the canonical sequences are the same by Lemma 8.

Having shown that the invariants allow us to compare canonical sequences, we give algorithms
to maintain these invariants and establish its complexity. To maintain the aboveness order and the
difference numbers, we keep these data structures:

e Two balanced binary search trees that use aboveness as the order: T, stores the monotone
a-chain indices, and Tj stores (3-chain indices. Trees Ti, and Tj allow us to search for the
interval at which a point splits the monotone chains into above sets and below sets. By
keeping counts in each subtree, we can also find the sizes of these sets.

e A balanced binary tree Tp that stores difference numbers D, (k) and uses k as the order.
Difference numbers may be inserted or deleted.

Although we usually maintain these structures by handling events during a sweep, let us briefly
describe how to initialize these data structures for a given sweep position z.

Lemma 9 The sweep data structures can be initialized for n chains at a sweep position x in
O(nlogn) time.
Proof: We need to form T, T, and Tp, as defined above. For v € {a, 3}, order the chains of
v by aboveness to form 7.
To form Tp, we must compute the difference numbers D, (k), for k = 1...m. First build
two auxillary tables: Let I,(r) be the chain index at a given rank in 7 and R, (i) be the rank of
a given index; these are inverses I, (R,(i)) = i and R,(I,(r)) = r. Initialize D,(k) = 0. Then,
for k=1...m, compute

Dy(k) = Do(k — 1) + sgn(Rg(Ia(k)) — k)—sgn(Ra(I5(k)) — k).

This simply says that the difference number increases by one whenever the kth chain in the «
list ranks higher in the g list and decreases when it ranks lower, with the reverse for the kth
chain in the g list.

The most time-consuming step of this computation is sorting and ranking, which takes
O(nlogn) time for n chains. m

We maintain the data structure as we sweep the plane with a vertical line. At certain events,
the sweep reaches the x-coordinate of a point at which we must update the data structures or
compare the canonical sequences. In order to do this, the events clearly need to include monotone
chain end points and points in the plane. Since the monotone chains from one path could intersect
each other, the events also need to include all self-intersections of & and 3. These intersections are
computed during the sweep [3].

Before we describe how each event is handled, we make some simplying assumptions about the
monotone chains so that the algorithm is easier to describe—we will remove these assumptions
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later. First, we will treat each monotone chain as strictly monotone, even though chains from the
canonical path may contain vertical line sements. Second, we will assume that no two event points
have the same x-coordinate, even though this is not the case because of the vertical line segments.
Now, we consider five types of events.

(D

(IT)

point in the plane: We check that the canonical sequences are still the same. First, locate the
point among the monotone chains using 7i, and T}, then check that the difference number is
zero, thereby verify that the o above set is the same as the 5 above set.

intersection event: Suppose the intersection is caused by monotone chains «; and «; so that
«; is below «; after the intersection. To update T,, and T3, we simply swap the monotone
chain indices ¢ and j. To update the Tp, first find the aboveness rank k of «;. Then, we
know that the monotone chain «; has left the aboveness set A(a, k); and the monotone chain
a; has entered A(o, k). Recall that the difference number D, (k) = |diff(A(«, k), A(5, k))|.
So it is clear that Dy (k)—and only D,(k) in Tp—mneeds to be changed. To change D,(k)
appropriately, we find out whether the monotone chain g; is in A(f3, k). If it is, then incre-
ment D, (k). Otherwise, do nothing. Symmetrically, if the monotone chain (; is in A(S, k),
decrement D, (k). Otherwise, do nothing.

path end point: At a path endpoint we must have either both the « chain and 8 chain begin
or both end for the paths to be homotopic. Since there are only two path endpoints, we use
Lemma 9 to reinitialize the data structures at these events.

chain starting event: At a turn point, we may have m monotone chains begin in « and in
B. We first apply Lemma 9 just to the m new chains to compute the difference numbers
restricted only to the new chains, which we denote D/ (r), for r =1...m.

To update the algorithm’s data structures, we next locate the event point in the trees T, and
Ty and then insert the new chains in these trees in the aboveness order.

We must now update the difference numbers in Tp. Note that because the event is a turning
point, if the insertion does not take place at the same rank % in both T,, and T}, or if different
numbers of « and (3 chains are inserted, then the paths are not homotopic by Lemma 8. Thus,
we need only insert m new differences; the old difference numbers do not otherwise change.
Since the " interval in the new monotone chains becomes the (r 4 k) interval after the
insertion, we insert the new difference numbers {D,(r 4+ k) = D, (r)+ Dy(k),r =1,2,...,m}
into Tp.

chain ending event: The operations for updating data structures at a turning point where
m monotone chains end are exactly the reverse of the operations at a chain starting event.
To update T, and Tp, we delete the indices of all monotone chains ending at the event
point. Assuming that these had ranks k4 1 through k 4+ m, we delete the difference numbers
{D,(k+1),Dyz(k+2),...,Dy(k+m)} from Tp.

The number of intersection events depends on the definition of path that we use, but we will
show a linear upper bound in the next section. Thus, our sweep to compare canonical sequences is
efficient.

Theorem 10 Linear space and O(nlogn) time are sufficient to compare the canonical sequences
of canonical paths & and B, assuming that the number of self-intersections in each canonical path
is O(n).
Proof: The space is linear since all the data structures we used are linear (T, T3 and Tp). To
see the time, note that each operation to maintain T;, and T (insertion or deletion of the chain
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indices) can be charged to a monotone chain end point, and each operation for maintaining
Tp (computing, insertion or deletion of the difference numbers) can be charged either to a
monotone chain end point or an intersection point. Since the time for each of these operations
is at most O(logn), and we assume that there are O(n) number of monotone chain end points
and intersection points, the total time is O(nlogn).

By careful implementation, we can get rid of the assumptions that simplified the algorithm
description. First, we assumed that the chains were strictly monotone, but in fact they contain
vertical line segments. Therefore, in order for intersection points to be handled correctly, the
sweep line should stop at a vertical line segment, compute the intersections on it and order these
intersection events by the order they are encountered by the path. Second, we assumed that no two
events have the same x-coordinate, although some points in the plane, such as the turning points,
lie on vertical line segments. To handle these points correctly, we need to perturb them away from
the vertical line segments in the right direction: from the canonical path computation, we know
whether the line segment is some path contracted from the right side of the point or from the left.
If it is from the left, this event should be handled immediately after the vertical line segment; if is
from the right, it should be handled immediately before the vertical line segment.

4 Homotopy testing for non-simple paths

When paths are allowed to intersect themselves, as well as each other, then we cannot use aboveness
to rectify the paths as in the previous section. In this section we show that we can use a different
construction of a universal cover and achieve a running time near O(n?/?).

Since the paths may self-intersect, we simply concatenate them as suggested in the introduction
and consider whether a closed loop « is contractible in the plane minus P. The idea is to lift the
path into a universal cover constructed in an appropriate way, and test if the endpoints of the lifted
path coincide. We will use a simple path d going through all points in P in order to construct such
a universal cover, but, in order to minimize the number of operations during the lifting of a, we
have to minimize the number of intersections between d and «. The way to construct d is using a
spanning tree with low crossing number.

Lemma 11 A simple spanning tree of P with crossing number O(y/n) can be constructed in
O(nl*€) time, for any € > 0.

Proof: We combine ideas and results from [12, 16, 20, 21]. Start by computing a spanning tree
Ty of P with crossing number O(y/n). In [21] it is shown how a simplicial partition { Py, ..., P/}
with |P;| < 4 and crossing number O(y/n) can be constructed in time O(n'*¢). This partition
plays the role of the partial matching used in [20]: for each class P; with |P;| > 2, we put an edge
between a pair of points lying in it, and remove anyone of its endpoints from the set of points
P. Tterating this step O(logn) times, we get the spanning tree Ty within O(n!*€) operations.

Tree T can have self-intersections, but we can use it to construct a Steiner spanning tree 75
that is simple [12]. We start with an empty 75. Then, we traverse T} in preorder, and when we
visit a vertex p € P, we shoot a ray along the edge connecting p toward its parent. Then we add
to T5 the segment from p to the first intersection of the ray with current 75. The dynamic data
structure for ray shooting described in [16] supports updates and queries in O(log?n) time, so
Ty can be constructed in O(nlog®n) time. Observe that T, has O(n) edges, and that, as subset
of T1, it also has crossing number O(y/n).
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As proved in [12], from T5 we can construct in O(nlogn) time a spanning tree 73 with no
Steiner points, and whose crossing number is twice that of T5. =

Theorem 12 We can decide if a closed loop « is contractible in the plane minus P in O(n3/2 logn)
time.

Proof: Take a bounding box B enclosing o and P, and let p_ and p4 be two points on the left
and on the right of B, respectively. We apply the previous lemma to the set P U {p_,p+} to
obtain a simple spanning tree, and then we use it to make a tour starting at p_ and finishing at
py. If we perturb some edges of this tour slightly, we can convert it into a simple path d from
p— to p4, passing through all points, that has crossing number O(y/n).

This path d splits B into two pieces, By and B, which we can use as building blocks for
the portion of a universal cover that contains the lift of the loop a. We actually build the dual
graph T' (a tree) for the universal cover, and keep just one copy of each block. Thus, we can
represent the portion of the universal cover containing the lift of a in space proportional to n
plus the number of nodes of the dual tree T'.

Here is the construction of T'. Preprocess blocks By and B; for ray shooting [18]. Start with
some vertex of a in B;, where bit ¢ € {0,1}, and create a tree node v to represent this copy of
B;.

Now, use ray shooting along the segments of « to trace « in B; until it leaves by crossing
an edge e of the path d. If edge e has never been crossed before, then make a new node 7 in
the dual tree T', put an edge between current node v and 7, annotated with the edge e. If edge
e has been crossed, then v has an edge annotated with e that connects to a node 7. In either
case, update the current node v = 7, and complement i to switch to the other block. When
we complete the tracing, we know that « is contractible if and only if we ended up in the same
node of T in which we started.

Because each edge of T' comes from one intersection of d and «, and given that the crossing
number of d is O(y/n), tree T has size O(n*/?). An additional logarithmic factor in the running
time is sufficient to pay for the ray shooting. m

5 Lower bounds

In this section we establish lower bounds for the

path homotopy question among points in the plane. 3 T Tj
The bounds are different depending on whether the 2 r ] ]
. 1 | x < |
paths are simple or not. L | 7‘ | o i
aj bl a bg Ay, bn

5.1 Simple paths

When both paths o and 3 are simple, to decide if they Figure 13: Lower bound for simple paths
are homotopic takes a minimum of 2(nlogn) operations in the decision tree model. In order to
show this, consider the following problem: given a set of n disordered numbers z1, ..., x,, and
a set of n disjoint intervals [a1,b1], ..., [an,by], ordered by increasing order, is there any interval
containing any point? Using Ben-Or’s theorem [2], it is straightforward to see that in the algebraic
decision tree model, this problem has a lower bound of Q(nlogn).

But this problem can be reduced to a test whether two simple paths are homotopic. Consider
a to be the segment with endpoints (a;,0) and (b,,0), and [ to be the path following a except
when it overlaps with some interval [a;, b;], in which case it will follow the horizontal segment at
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height 2, as shown in Figure 13. If we consider the set of points P = {(z;,1)|1 < < n}, then no
point belongs to any interval if and only if the paths o and 8 are homotopic.

5.2 Non-simple paths

When the polygonal lines a and 3 are allowed to self-intersect, then the problem becomes harder:
we can reduce Hopcroft’s problem to the problem of testing if two paths are homotopic.

Given n points and n lines, Hopcroft’s problem asks if any point lies on any line. The best algo-
rithms known to solve Hopcroft’s problem take just slightly more than O(n*/3) time [6]. Erickson
showed that partition algorithms, a certain class of algorithms that includes the natural and known
algorithms, take at least Q(n*/?) time [15].

We give a reduction that works for partition algorithms, and any other algorithm whose prim-
itive tests check the signs of bounded-degree polynomials of the input point coordinates. We need
this restriction so that we can use infinitesimal quantities in the construction. As is common in
perturbation methods, we can expand the primitives as polynomials in one infinitesimal variable
and determine the sign of the term of smallest degree [13].

Given an instance of Hopcroft’s problem, deter-
mine a bounding box that contains all the points and p
intersects the faces of the arrangement of lines that
are above all lines and below all lines. Let p and i .
q be points on the bounding box that lie in these
faces, as illustrated in Figure 14. This can be done [ e \
in linear time after sorting the lines by slope. Let q
G be the left path along the bounding box from p
to q. Let a be the path that follows 3 except for Figure 14: Reduction from Hopcroft’s
leaving the bounding box at every line, crossing the problem
box infinitesimally above the line, and returning in-
finitesimally below the line to 3. Paths a and (8 are homotopic iff no point lies on any line.

6 Conclusion

We have given an efficient, elementary algorithm to test homotopy for simple paths in the plane
by using an aboveness ordering to rectify paths. We believe that it may be possible to eliminate
the range queries by adding segments to the path in aboveness order instead of traversal order, but
each way we have tried so far slips back to a quadratic worst case. For non-simple paths, we use
standard machinery to give a subquadratic algorithm. Lower bounds show that the running time
of our first algorithm is tight, but that it may be possible to improve the second.

The UNC authors thank Anna Lubiw for warning us about the intersections of the type in
Figure 10. The first author is grateful to Mark de Berg and Marc van Kreveld for helpful discussions
regarding this research. He also wants to thank Pankaj Agarwal for pointing him to hierarchical
cuttings to reduce the construction time in Lemma 11.
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