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Abstract

In this paper we study the following problem: Given sets R and B of r red and b blue
points respectively in the plane, find a minimum-cardinality set H of axis-aligned rectangles
(boxes) so that every point in B is covered by at least one rectangle of H, and no rectangle of H
contains a point of R. We prove the NP-hardness of the stated problem, and give either exact or
approximate algorithms depending on the type of rectangles considered. If the covering boxes are
vertical or horizontal strips we give an efficient algorithm that runs in O(r log r + b log b+

√
rb)

time. For covering with oriented half-strips an optimal O((r+b) log(min{r, b}))-time algorithm is
shown. We prove that the problem remains NP-hard if the covering boxes are half-strips oriented
in any of the four orientations, and show that there exists an O(1)-approximation algorithm.
We also give an NP-hardness proof if the covering boxes are squares. In this situation, we show
that there exists an O(1)-approximation algorithm.

1 Introduction

Let R and B be sets of red and blue points respectively in the plane. Let S = R ∪ B, |R| = r,
|B| = b, and n = r + b. We say that R and B are the red and blue classes, respectively, and
that S is a bicolored point set. The x- and y-coordinates of the point p are denoted by xp and yp,
respectively. Given X,Y ⊂ R2, we say that X is Y -empty if X does not contain elements from Y .

A classical problem in Data Mining and classification problems is the Class Cover problem [10,
13, 22] which is as follows: given a bicolored set of points S = R ∪ B find a minimum-cardinality
set of R-empty balls which covers the blue class (i.e., every point in B is contained in at least one
of the balls) and with the constraint that balls are centered at blue points. Cannon and Cowen [10]
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showed that the Class Cover problem using balls is NP-hard in general, and presented an (1+lnn)-
approximation algorithm for general metric spaces. For points in Rd with the Euclidean norm, they
gave a polynomial-time approximation scheme (PTAS).

One of the basic objectives in Data Mining is to identify (classify) members between two different
classes of data [17]. By solving the Class Cover problem, a simple classifier can be stated; see [22].

In this paper we study a non-constrained version of the Class Cover problem in the plane, called
the Boxes Class Cover problem, in which axis-aligned rectangles (i.e. boxes) are considered as
the covering objects (Figure 1 a)). Our problem can be formulated as follows:

The Boxes Class Cover problem (BCC problem): Given the set S = R ∪ B, find a
minimum-cardinality set H of R-empty open boxes such that every point in B is covered
by at least one box of H.

a) c)b)

Figure 1: a) Covering the blue class with boxes. b) A solution to the BCC problem induces a rectilinear
polygon separating B from R. c) Covering the blue class with disks.

The problem of covering with disks (instead of boxes), not necessarily centered at blue points, is
similar to the BCC problem (Figure 1 c)). This version of the Class Cover problem is NP-
hard [8], and as we will see in Section 4, it admits a constant-factor approximation algorithm using
the techniques of [9, 24].

General position (i.e. no two points are in the same vertical or horizontal line) is not assumed in
this paper. It is not hard to see that if a point set is perturbed a bit to be in general position,
then we might obtain a different solution to the BCC problem. Thus, we assume by default that
points from S may have equal coordinates. Consequently, we will use the lexicographic order, that
is, each time we sort points by x-coordinate, ties are broken by using the y-coordinate. All boxes
considered in this paper are axis-parallel and open, unless explicitly stated otherwise.

Another motivation for the BCC problem is the so-called Red-Blue Geometric Separation
problem [25], where the goal is to compute a simple polygon with fewest vertices as possible sepa-
rating the red points from the blue points. This problem is motivated by applications in scientific
computation, visualization and computer graphics [1]. A solution to the BCC problem provides a
geometric separation between the two classes with rectilinear polygons (Figure 1 b)). Indeed, the
use of rectangles is usual in the description of a point set [3, 20].

Our contributions. (1) We prove the NP-hardness of the BCC problem by a reduction from the
Rectilinear Polygon Covering problem [12, 23]. We present an algorithm that runs in b ·
rO(min{r,b}) time and thus has good performance if r or b is small. We review the theory of ε-nets,
which has strong applications to the Class Cover problem [9, 11, 18, 27], and show that our
problem admits an O(log c)-approximation, where c is the size of an optimal covering.
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(2) Due to the NP-hardness, we study some variants of our problem in which specific types of boxes
are used as covering objects. Firstly, if the covering rectangles are axis-parallel strips we prove that
the problem is polynomially solvable and give an exact algorithm running in O(r log r+b log b+

√
rb)

time. If the boxes are half-strips oriented in the same direction, we present an algorithm that solves
the problem in O((r + b) log(min{r, b})) time. However, if the covering boxes are half-strips in any
of the four possible orientations, we prove that the problem remains NP-hard by a reduction from
the 3-SAT problem [16]. Moreover, using results from Clarkson and Varadarajan [11] we show that
in this case there exists an O(1)-approximation algorithm.

(3) We prove that the version in which the covering boxes are axis-aligned squares is NP-hard by a
reduction from the problem of covering a rectilinear polygon with holes, represented as a zero-one
matrix, with the minimum number of squares [6], and show the existence of an O(1)-approximation
algorithm.

Outline of the paper. In Section 2 we state a first approach to our problem. In Section 3 we prove
that the BCC problem is NP-hard. In Section 4 we review related results concerning range spaces
and ε-nets, most of which are relevant to give approximation algorithms to our problem. In Section 5
we study the BCC problem when we restrict the boxes to strips or half-strips. In Section 6 we
consider the version of the BCC problem in which the boxes are axis-aligned squares, and we prove
its NP-hardness. Finally, in Section 7, we state the conclusions and further research.

2 A simple approach

Observe that any solution H = {H1, H2, . . . ,Hk} of the BCC problem is a cover of B, and we can
expand every Hi ∈ H so that the sides of Hi pass through red points or reach infinity. From this
observation, we can consider the set of maximal boxes (they cannot be expanded) H∗ of all the
R-empty open boxes whose sides pass through red points or are at infinity. Thus, any solution of the
BCC problem will be a subset of H∗. Such types of boxes are depicted in Figure 2, up to symmetry.
It can be seen that |H∗| is O(r2) and also that this bound is tight in the worst case [2, 5, 7].

a) b) c) d) e)

Figure 2: Boxes in H∗: a) rectangle, b) half-strip, c) strip, d) quadrant, e) half-plane.

Lemma 2.1 The number of boxes in an optimal solution to the BCC problem is upper bounded by
min{2r + 2, b}. Furthermore, this bound is tight.

Proof. Let H be an optimal solution of the BCC problem. Since every blue point is covered by a
box from H then |H| ≤ b. The equality holds when the elements of S are on a line ` and their colors
alternate along `. We now prove |H| ≤ 2r + 2 for any set S = R ∪B. For given points p, q ∈ R, let
H−p (resp. H+

p ) be the maximum-height box of H∗ whose top (resp. bottom) side contains p, and
Spq be the vertical strip containing both p and q on its boundary. Associate with each red point p
the following set of boxes:

Ap =

{
{Spq} if there exists q ∈ R such that xp < xq, yp = yq, and Spq ∈ H∗
{H−p , H+

p } otherwise.
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LetW =
(⋃

p∈RAp
)
∪{H1, H2}, where H1 is the half-plane in H∗ with right boundary, and H2 the

one with left boundary. It is not hard to see thatW has at most 2r+2 boxes and covers B. In fact,
W covers R2 \ R. For the tightness of this bound, consider the configuration of points depicted in
Figure 3. Notice that there are 2r+ 2 groups of blue points, each located on a vertical or horizontal
line passing through a red point, so that every two blue points belonging to different groups cannot
be covered by the same R-empty box. 2

Figure 3: A case in which exactly 2r + 2 R-empty boxes are needed to cover B.

The above discussion lets us design the following exponential algorithm to report an exact solution
for the BCC problem: First compute the set H∗ in O(r2) time, and after that test all subsets of H∗
of size 1, . . . ,min{2r+2, b} in this order until finding a covering of B. There are (O(r2))min{2r+2,b} =
rO(min{r,b}) subsets of H∗ to be tested, and the test of each subset can be done in O(b ·min{2r +
2, b}) = O(min{rb, b2}) time. The overall time complexity is rO(min{r,b}) ·min{rb, b2} = b·rO(min{r,b}),
which is exponential in general. However, if r or b is O(1), then it is polynomial.

3 Hardness

We prove that the BCC problem is NP-hard by using a reduction from the Rectilinear Polygon
Covering problem (RPC problem) which is as follows: Given a rectilinear polygon P , find a
minimum cardinality set of closed boxes whose union is exactly P (Figure 4 a), b)). For a general
class of rectilinear polygons with holes the RPC problem is NP-hard [23], and it remains NP-hard
for polygons without holes [12].

H1

H2

H3

H4

a) b)

P P

c)

Figure 4: a) A rectilinear polygon P . b) An optimal covering of P with four rectangles. c) The reduction
from the RPC problem to the BCC problem
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Theorem 3.1 The BCC problem is NP-hard.

Proof. Let P be an instance of the RPC problem. Let A1 be the set of all distinct axis-parallel lines
containing an edge of P . For every two consecutive vertical (resp. horizontal) lines in A1, draw the
vertical (resp. horizontal) mid line between them. Let A2 be the set of these additional lines. Let
G be the grid defined by A1∪A2. Put a red (resp. blue) point at each vertex of G\P (resp. G∩P )
(Figure 4 c)).

Let S be the above set of red and blue points. Clearly, any optimal covering of P can be scaled
up slightly to obtain an optimal covering for the BCC problem on S with the same cardinality
(because it covers the edges and the interior of P ). Conversely, any optimal covering H for the
BCC problem on S can be adjusted to be an optimal covering for P with the same cardinality:
Let H = {H1, H2, . . . ,Hk} be an optimal covering for the BCC problem on S. We assume that
each Hi ∈ H is maximal, i.e., it cannot be expanded in order to contain more blue points. Let H ′i,
1 ≤ i ≤ k, be the smallest closed bounding box of Hi ∩ B. If some H ′i is not contained in P , then
it must contain at least one cell of G not contained in P with at least one red vertex, say u, and
then Hi covers u, a contradiction. To verify H′ = ⋃k

i=1H
′
i covers P we proceed as follows: Let c be

a cell of G contained in P . By construction, it holds that: (i) c has exactly two adjacent edges on
lines of A1 and two adjacent edges on lines of A2, and (ii) any maximal box Hi ∈ H covering a blue
vertex v of c whose two edges lie on lines of A1, covers c. Hence, H′ is an optimal covering of P . 2

Remark. Let GS = (V,E) be the graph in which V is equal to B, and there is an edge in E
between two blue points p and q if and only if the minimum closed box containing both p and q
is R-empty. The blue points covered by an R-empty box are pairwise adjacent and form a clique
in GS . Conversely, the smallest closed bounding box of the points of a clique in GS is R-empty,
and thus there exists an R-empty box covering them. Therefore, the BCC problem is equivalent to
finding a minimum clique partition in GS [16]. The Partition Into Cliques problem is strongly
NP-complete [16], and the NP-hardness of the BCC problem implies that it remains NP-complete
if the input graph is a graph GS , where S is a bicolored point set.

4 Approximation algorithms

A finite1 range space (X,R) is a pair consisting of an underlying finite set X of objects and a finite
collection R of subsets of X called ranges. Given the (primal) range space (X,R), its dual range
space is (R, X∗) where X∗ = {Rx | x ∈ X} and Rx is the set of all ranges in R that contains x [9].

Given a range space (X,R), the Set Cover problem asks for the minimum-cardinality subset of
R that covers X [16]. The dual of the Set Cover problem is the Hitting Set problem: to find
a minimum subset P ⊆ X such that P intersects with each range in R [16]. A set cover in the
primal range space is a hitting set in its dual, and vice versa. The Set Cover problem is NP-hard
and the best known approximation factor of a polynomial-time algorithm is (1 + ln |X|) [15, 16].
The algorithm follows the greedy approach: while there are elements in X not covered, add to the
solution the set of R that covers the maximum number of non-covered elements in X.

The BCC problem is an instance of the Set Cover problem in the range space (B,H∗). The
greedy approach above gives the same logarithmic factor of approximation for the BCC problem,
even if we modify its definition by restricting the covering boxes to axis-aligned squares (Figure 5).
As a consequence, we get the following result:

1A range space can be infinite, but for the purpose of our problem it will be finite.
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Statement 4.1 The BCC problem has an O(log b)-approximation algorithm if we cover with either
boxes or axis-aligned squares.

H ′

H ′′

H1 H2 H3 Hk−1 Hk

· · ·

· · ·

· · ·

2k−2

2k−2 2k−1

2k−1

a)
. . .

H ′

H ′′

H1 H2 Hk

b)

Figure 5: The greedy method gives a logarithmic factor of approximation for both boxes and squares. In a)
(resp. b)), each of the intersections of the boxes (resp. squares) H ′ and H ′′ with the box (resp. square) Hi

(1 ≤ i ≤ k) contains 2i−1 blue points. The greedy method reports {H1, H2, . . . ,Hk} instead of {H ′, H ′′}.

We now show there exists an approximation algorithm with a smaller approximation ratio, which
uses the so-called ε-nets [18] and the VC-dimension [27] of (X,R) and its dual.

In terms of our problem, an ε-net, 0 ≤ ε ≤ 1, is a subset B′ ⊆ B such that any box in H∗ containing
ε|B| points, covers an element of B′. In the dual range space, an ε-net is a subset H ⊆ H∗ covering
all points p of B such that p is covered by at least ε|H∗| boxes of H∗.
The VC-dimension of (X,R) is the maximum cardinality of a subset Y ⊆ X such that any subset
of Y is the intersection of Y with some range in R. If the VC-dimension of the primal space is d,
then the VC-dimension of the dual range space is at most 2d+1 [9, 27]. It is not hard to see that
any subset P ⊆ B with at least five points has a subset P ′ ⊂ P that cannot be separated with a
box in H∗ from P \ P ′. Then the VC-dimension of our range space (B,H∗) is at most four and is
thus constant.

Brönnimann and Goodrich [9] and Even et al. [14] gave techniques using ε-nets to find approximate
solutions of the Hitting Set problem for range spaces. The technique proposed in [14] is based on
LP-relaxation, and can be interpreted as a simplification of the one of Brönnimann and Goodrich [9].
We recall only the machinery of Brönnimann and Goodrich [9] which works for range spaces of finite
VC-dimension. It reports a hitting set whose size is within a factor of O(log c) from the optimal
size c, and is based on the fact that, for every range space with finite VC-dimension d, there exists
an ε-net of size O(dε log d

ε ) [18]. In general, if the range space has a constant VC-dimension, and
there exists an ε-net of size O(1εϕ(1ε )), their method computes a hitting set of size O(ϕ(c)c), where
c is the size of an optimal set. Therefore, since both our range space (B,H∗) and its dual have a
constant VC-dimension, Brönnimann and Goodrich’s technique can be applied to obtain in the dual
range space a hitting set of size at most O(log c) times the optimal size c, which induces a solution
H (a set cover) of the BCC problem with the same size. Thus we obtain the following result:

Statement 4.2 The BCC problem has an O(log c)-approximation algorithm, where c is the size of
the optimal covering.

Finding ε-nets of size o(1ε log 1
ε ) for the dual of the range space (B,H∗) seems to be a challenge [5].

With such ε-nets we would obtain a smaller approximation factor for the BCC problem. Recently,
Pach and Tardos [26] have proved that there exist dual ranges spaces of VC-dimension 2, induced
by points and box ranges, whose sizes are Ω(1ε log 1

ε ).
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Matoušek et al. [24] proved the existence of ε-nets of size O(1ε ) for the dual of any range space
consisting of points and disk ranges. Due to this, techniques from Brönnimann and Goodrich [9]
provide an O(1)-approximation for the Class Cover problem with disks. Clarkson and Varadara-
jan [11] showed that if the geometric range space2 (X,R) has the property that, given a any subset
R′ ⊆ R and a nondecreasing function f(·), there is a decomposition of the complement of the union
of the elements of R′ into an expected number of at most f(|R′|) regions, then a cover of size O(f(c))
can be found in polynomial time, where c is the size of an optimal cover. This result is based on the
fact that, with the above conditions, there are ε-nets of size O(f(1ε )) for the dual range space [11,
Theorem 2.2]. If R is a family of pseudo-disks3, then for any subset R′ ⊆ R the trapezoidal de-
composition of the complement of the union of the elements of R′ has complexity O(|R′|) and thus
the dual range space has ε-nets of size O(1ε ) [11]. Since a set of axis-aligned squares is a family of
pseudo-disks, by using the techniques in [9, 11], the following result is obtained:

Statement 4.3 The BCC problem has an O(1)-approximation algorithm if the covering boxes are
restricted to axis-aligned squares.

5 Solving particular cases

In this section we study the BCC problem for some special cases. Namely, we consider only certain
boxes of H∗ having at most three points on their boundary.

5.1 Covering with horizontal and vertical strips

In this subsection we solve the BCC problem by using only horizontal and vertical strips and also
axis-aligned half-planes (which we also call strips for simplicity) as covering objects; see Figure 2 c)
and e). We assume that R,B and S are sorted by x- and y-coordinate, which can be achieved in
O(r log r + b log b) time. Then, the strips of H∗ can be computed in linear time.

There exists a solution for the BCC problem if and only if every blue point can be covered by an
axis-parallel line avoiding red points. This can be tested in linear time. Suppose that the BCC
problem has a solution. If a blue point and a red point lie on the same vertical (resp. horizontal) line
then the blue point can be covered by only one strip in H∗. We add all such strips to the solution
and remove the blue points they cover. This can be done in linear time. Each of the remaining blue
points is covered by two strips in H∗. We show how to solve this problem optimally.

Consider the graph G = (V,E) whose set of vertices is the set of strips that cover at least one blue
point (Figure 6), and whose set of edges E is defined as follows: put an edge between the strips H1

and H2 if and only if H1 ∩H2 contains a blue point. The graph G is bipartite, has O(r) vertices
and O(b) edges, and can be constructed in O(r + b) time.

Since each blue point is covered by exactly two strips, the problem is reduced to finding a minimum
mertex cover [16] in G. However, because of König’s theorem, the Vertex Cover problem for
bipartite graphs is equivalent to the Maximum Matching problem, and thus it can be solved in
O(
√
|V ||E|) = O(

√
rb) time [19]. Thus, the following result is obtained:

2A range space (X,R) is geometric if X is a set of geometric objects, generally points, and R is a set of geometric
ranges such as half-spaces, boxes, convex polygons, balls, etc.

3A family of Jordan regions (i.e. regions bounded by closed Jordan curves) is a family of pseudo-disks if the
boundaries of any pair of regions intersect at most twice.

7



a) b)

Figure 6: a) A set of red and blue points. b) Strips covering at least one blue point.

Theorem 5.1 The BCC problem can be solved in O(r log r + b log b +
√
rb) time if we use only

axis-aligned strips as covering objects.

5.2 Covering with oriented half-strips

In this subsection we solve the BCC problem by considering only half-strips oriented in a given
direction, say top-bottom half-strips. A box of H∗ is a half-strip if it contains at most three points
on its boundary (Figure 2 b), c), d), and e)), and is top-bottom if either it contains a red point on its
top side or it is a vertical strip. Next, we give an optimal O((r + b) log(min{r, b}))-time algorithm.

Consider the structure of rays that is obtained by drawing a bottom-top red ray starting at each
red point as depicted in Figure 7. For a given blue point p, let sp be the maximum-length horizontal
segment passing through p whose interior does not intersect any red ray.

sp
p

Hp

Figure 7: The structure of rays.

Sketch of the algorithm and correctness. Every time, we select the highest blue point p not yet
covered, and include in the solution the top-bottom half-strip Hp ∈ H∗ whose top side is sp trans-
lated upwards until it touches a red point or reaches infinity. In other words, Hp is the top-bottom
half-strip in H∗ covering p and the maximum number of other blue points. The algorithm ends
when all blue points are covered. The correctness follows from the fact that, if p is a blue point not
yet covered with maximum y-coordinate, then Hp is so that, for any other non-covered blue point
p′ which is not in Hp, p and p′ cannot be covered with the same top-bottom half-strip.

Using balanced trees, combined with one-dimensional range search techniques, the algorithm can
be done in O(r log r + b log b) time. Within the same time complexity the algorithm can decide
whether a solution exists.

We now show how to reduce the asymptotic time complexity. Suppose r < b. We prune the set of
blue points so that obtaining a set of at most 2r+ 1 blue points. It is as follows. For every vertical
strip between two consecutive red points and for every vertical line containing a red point, we store
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only the highest blue point. It suffices to cover only these blue points with the strips generated
by the algorithm. Those blue points can be found in O(b log r) time by using a binary search in
the sequence obtained by sorting the elements of R by x-coordinate. Then the above algorithm
executes in O(r log r) time. We overall time complexity is thus O((r + b) log r). We can proceed
analogously if b ≥ r in order to reduce the time complexity to O((r+b) log b) (by pruning red points
in the strips defined by blue points). In general, we can choose which variant to apply depending on
the minority color, and finally obtain an algorithm running in O(min{(r + b) log r, (r + b) log b}) =
O((r + b) log(min{r, b})) time. Thus, the following result is obtained:

Theorem 5.2 The BCC problem can be solved in O((r + b) log(min{r, b})) time if we use only
half-strips in one direction as covering objects.

We next show that for min{r, b} = Ω(r + b) the above algorithm is optimal in the algebraic de-
cision tree model. Given a set X = {x1, . . . , xn} of n numbers, denote as xπ1 ≤ · · · ≤ xπn
the sorted sequence of these numbers. The maximum gap of X is defined as MAX-GAP(X) =
max1≤i<n{xπi+1 − xπi} [21]. Arkin et al. [4] proved that, given a set X = {x1, . . . , xn} of n real
numbers and a positive real number ε, the problem of deciding whether

MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε

has an Ω(n log n) lower bound in the algebraic decision tree model. (Note that this problem can be
solved in linear time with the floor function, which is not an algebraic operation.) By a reduction
from this new version of MAX-GAP, we show that our algorithm is optimal.

Theorem 5.3 The BCC problem has an Ω(n log n) lower bound in the algebraic decision tree model
if we use only half-strips (or strips) in one direction.

Proof. Let X = {x1, . . . , xn} and ε > 0 be an instance of the above MAX-GAP problem. Assume
that 0 ≤ xi ≤ nε, for i = 1, . . . , n, because otherwise the max gap would be greater than or equal to ε.
We do the following construction: Put red points at the coordinates (0, 0), (ε, 0), (2ε, 0), . . . , (nε, 0).
LetR be the set of these n+1 red points. Put blue points at the coordinates (x1, 1), (x2, 1), . . . , (xn, 1),
and let B be the set of these n blue points. In order to have the max gap smaller than ε, each of
the open intervals (0, ε), (ε, 2ε), . . . , ((n − 1)ε, nε) has to be pierced by one of the xi’s. Now, solve
the BCC problem for R and B with half-strips (or strips) in the top-bottom direction. It follows
that MAX-GAP{x1, . . . , xn, 0, ε, 2ε, . . . , nε} < ε if and only if the minimum number of covering
half-strips (or strips) is exactly n (Figure 8). 2

1

0

0 ε 2ε 3ε 4ε 5ε
x

y

1

0

0 ε 2ε 3ε 4ε 5ε
x

y

a) b)

Figure 8: Reduction from the MAX-GAP problem to our problem.
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5.3 Covering with half-strips

In this subsection we study the BCC problem when the covering boxes are half-strips oriented in any
of the four possible directions. We call this version the Half-Strip Class Cover problem (HSCC
problem). First we show that this variant is also NP-hard, and after that we give a constant-factor
approximation algorithm due to results in [9, 11].

Notice that a solution to the HSCC problem does not exist if and only if there are two segments
with red endpoints, one vertical and one horizontal, such that their intersection is a blue point.
This can be checked by using similar arguments as in Subsections 5.1 and 5.2.

Theorem 5.4 The HSCC problem is NP-hard.

Proof. To prove the NP-hardness we use a reduction from the 3-SAT problem [16]. An instance of
the 3-SAT problem is a logic formula F of t boolean variables x1, . . . , xt given by m conjunctive
clauses C1, . . . , Cm, where each clause contains exactly three literals (i.e., a variable or its negation).
The 3-SAT problem asks for a value assignment to the variables which makes the formula satisfiable,
and its NP-hardness is well known [16].

Given F , an instance of the HSCC problem is constructed in the following way. Let α be a set
of t pairwise-disjoint vertical strips of equal width such that the i-th strip αi, from left to right,
represents the variable xi. Similarly, let β be a set of t+m pairwise-disjoint horizontal strips of equal
width. The clause Cj is represented by the (t + j)-th strip βt+j from bottom to top. Consecutive
strips in α and β are well separated. Let δi be a mid line partitioning the strip αi into two equal
parts (Figure 9). We say that the part of the interior of αi that is to the right (resp. to the left) of
δi is the true (resp. false) part of αi.

For each variable xi (1 ≤ i ≤ t) we put at αi∩βi a set Vi of red and blue points as follows (Figure 9).
We add red points in the intersections of δi and the boundary of βi; a blue point p in the center of
αi ∩ βi (p is on δi); two red points q and q′ in the interior of βi such that q is on the left boundary
of αi and yq > yp, and q′ is on the right boundary of αi and yq′ < yp. Moreover, we add two blue
points p′ and p′′ in the interior of αi ∩ βi such that p′ is in the false part of αi and yp′ < yq′ , and p′′

is in the true part of αi and yp′′ > yq.

βi

αi

δi

p

p′

p′′
q

q′

Figure 9: Set of bicolored points Vi for xi in the reduction from the 3-SAT problem.

For each clause Cj (1 ≤ j ≤ m) we add a set Wj of bicolored points in the following way. Suppose
that Cj involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ t). Let `1 and `′1 (resp. `2 and `′2) be
two horizontal lines that are close to the top (resp. bottom) boundary of βt+j such that `1 (resp.
`2) is outside βt+j and `′1 (resp. `′2) is inside (Figure 10). Let `3 and `′3 be two vertical lines lying
outside αk and such that `3 and `′3 are close to the left and right boundaries of αk, respectively.

Put red points at the intersections of the lines `1 and `2 with δi, `3, δk, `
′
3, δl, and the boundaries

of αi, αk, and αl. Add three more red points, one on the top boundary of βt+j , to the left of `3 and
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close to `3; another one between `3 and the left boundary of αk, above `′2 and close to `′2; and the
last one on `′2 and between the right boundary of αk and `′3.

Now we add blue points. Put a blue point at the intersection of `′1 and `3, and another one at the
intersection of `′3 and the bottom boundary of βt+j . If xi is not negated in Cj , then put at the true
part of αi (otherwise, in the false part) two blue points, the first one on `′1 and the second on the
bottom boundary of βt+j . If xk is not negated in Cj , then put one blue point at the center of the
intersection of βt+j and the true part of αk (otherwise in the false part). Finally, if xl is not negated
in Cj , then put at the true part of αl (otherwise in the false part) two more blue points, one on the
top boundary of βt+j and another one on the bottom boundary.

βt+j

αi

δi

αk

δk

αl

δl

xi xk xl

. . .

. . .

. . .

. . .

ℓ1
ℓ′1

ℓ′2
ℓ2

ℓ3 ℓ′3

Cj

Figure 10: The set Wj of red and blue points for the clause Cj = (xi ∨ xk ∨ ¬xl).

Let S =
⋃t
i=1 Vi ∪

⋃m
j=1Wj be the instance of the HSCC problem. We say that two blue points in

S are independent if they cannot be covered with the same half-strip. Notice that for each variable
xi the blue points in Vi are independent from the others blue points in S except with those that are
in αi, and also that at least two half-strips are needed to cover them. Moreover, blue points in the
false part of αi are independent from blue points in the true part. There are essentially two ways of
covering the blue points in Vi with two half-strips. The first one with a right-left half-strip covering
the two lowest blue points in Vi and a vertical strip covering the true part of αi (Figure 11 a)),
and the second one with a vertical strip covering the false part of αi and a left-right half-strip that
covers the upper two blue points of Vi (Figure 11 b)). We say that the first way is a true covering
of Vi (i.e., xi is true), and that the second one is a false covering of Vi (i.e., xi is false).

a) b)

xi

βi

αi

δi

xi

βi

αi

δi

Figure 11: The two ways of optimally covering the blue points associated with a variable xi. a) xi is equal
to true, b) xi is equal to false.

For each clause Cj (1 ≤ j ≤ m) that involves the variables xi, xk, and xl (1 ≤ i < k < l ≤ m),
observe that if at least one variable, say xi, is such that the covering of Vi covers the blue points
in Wj ∩ αi (i.e., the value of xi, corresponding to the covering of Vi, makes Cj true), then exactly
two half-strips are sufficient and needed to cover Wj \ αi. Otherwise, exactly three half-strips are
sufficient and needed to cover Wj . To see this, note that the blue points in Wj \ (αi ∪ αk ∪ αl)
(those in lines `3 and `′3; see Figure 10) are independent not only between them but also with all
blue points not in Wj . Then at least two half-strips are needed to cover Wj , which are sufficient if
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the covering of Vi covers Wj ∩ αi. Refer to Figure 12.

βt+j

αi

δi

αk

δk

αl

δl

xi xk xl

. . .

. . .

. . .

. . .

ℓ1
ℓ′1

ℓ′2
ℓ2

ℓ3 ℓ′3

Cj

Figure 12: If Wj ∩ αi is covered by the covering of Vi then exactly two half-strips (the horizontal ones) are
sufficient and needed to cover Wj \ αi.

Let H be an optimal solution of the HSCC problem. Due to the above observations, we claim that
F is satisfiable if and only if |H| = 2t + 2m. In fact, if F is satisfiable, then for each variable xi
we cover Vi with a true covering if xi is true, and otherwise with a false covering. Each clause Cj
(with variables xi, xk, and xl) is true, then with two half-strips we can cover the blue points in
Wj not covered by the coverings of Vi, Vk, and Vl. We use 2t half-strips for the variables and 2m
for the clauses, thus 2t + 2m in total. Inversely, |H| cannot be less than 2t + 2m, thus if |H| is
exactly 2t + 2m, then we must use two half-strips for each variable, and two half-strips for each
clause, implying that F is satisfiable if we assign the value true to each variable xi, if Vi has a true
covering, and the value false otherwise. Hence, the theorem follows. 2

Given the NP-hardness of the HSCC problem, we are interested in approximation algorithms. Let
HS be the set of all half-strips in H∗. By using results from Clarkson and Varadarajan [11], we prove
that the dual of the range space (B,Hs) has ε-nets of size O(1ε ), implying an O(1)-approximation
algorithm to the HSCC problem.

Theorem 5.5 There is a polynomial-time O(1)-approximation algorithm for the HSCC problem.

Proof. Let HS be the set of all half-strips in H∗, and partition HS into the subsets HSv and HSh

of all vertical and horizontal half-strips, respectively. Given ε > 0, the dual of the range space
(B,HSv) has (by results from Clarkson and Varadarajan [11]) an ( ε2)-net Nv of size O(1ε ) because
HSv is a family of pseudo-disks. Analogously, the dual of the range space (B,HSh

) has an ( ε2)-net
Nh of size O(1ε ). We claim that Nv ∪Nh is an ε-net of size O(1ε ) for the dual of (B,HS). In fact,
if p is a blue point covered by ε|HS | half-strips, then at least ε

2 |HS | of them are either vertical or
horizontal. Thus, since Nv and Nh are ( ε2)-nets, p is covered by a half-strip in Nv ∪Nh. It follows
from the results from Brönnimann and Goodrich [9] and Clarkson and Varadarajan [11, Theorem
3.2] that there exists a polynomial-time O(1)-approximation algorithm for the HSCC problem. 2

6 Covering with squares

In this section we study the variant of the BCC problem in which axis-aligned squares are used,
instead of general boxes (rectangles), as covering objects. We call this version the Square Class
Cover problem (SCC problem).

Aupperle et al. [6] studied the problem of covering a rectilinear polygon with the minimum number
of axis-aligned squares. The input polygons were represented as a bit-map, that is, a zero-one
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matrix in which the 1’s represent points inside the polygon, and the 0’s points outside it. They
proved that the problem (equivalent to covering the 1’s of the matrix with the minimum number of
squares) is NP-hard if the input polygon contains holes. By using a reduction from this problem,
we prove that the SCC problem is NP-hard. Before presenting our NP-hardness proof, we state
and prove the following useful lemma:

Let s ⊂ R be a closed interval. We denote by left(s) the left endpoint of s. Let t be the largest
integer less than or equal to left(s). We say that s is lattice if left(s) = t. Otherwise, we say that
we adjust s, or that s is adjusted, if we shift s so that either left(s) = t or left(s) = t + 1. Given
X ⊂ R, let m(X) denote the Lebesgue measure of X.

Lemma 6.1 Let N be a positive integer number, and I be a finite set of closed intervals so that
each of them is contained in the interval [0, N ] and has integer length. Let U be the union of the
elements of I. If m([0, N ] \ U) is less than one, then all non-lattice elements of I can be adjusted
in such a way U becomes equal to [0, N ].

Proof. We can perform what follows for j = 0, 1, . . . , N − 1: Let Ij = {s ∈ I | j < left(s) < j + 1}
and sj = arg mins∈Ij left(s). If [j, j + 1] ⊂ U then adjust all intervals s ∈ Ij so that left(s) = j + 1.
Otherwise, adjust both sj and all intervals s ∈ Ij \ {sj} so that left(sj) = j and left(s) = j + 1.
Induction can be used to prove for all j ∈ {0, 1, . . . , N−1} that after the above processing, [0, j+1] ⊆
U and all intervals s ∈ I such that left(s) ≤ j are lattice . Observe that m([0, N ]\U) never increases
after any interval is adjusted. The result thus follows. 2

Theorem 6.2 The SCC problem is NP-hard.

Proof. Let P be a rectilinear polygon with holes represented in a N × N zero-one matrix. We
reduce P to an instance S of the SCC problem as follows. Let M be an integer number greater
than N . We can consider that the vertices of P are lattice points in [0, N ]× [0, N ] (Figure 13 a)).
We subdivide the square [0, N ] × [0, N ] into a regular grid G of cell size 1

M , and put a blue (resp.
red) point at each vertex of G that is in the interior (resp. boundary) of P (Figure 13 b)). Let S
be the resulting bicolored point set.

a) b)

0

1

2

3

1 2 3 0

1

2

3

1 2 3

Figure 13: The reduction from the problem of covering a rectilinear polygon with the minimum number of
axis-aligned squares, to the SCC problem. a) A rectilinear polygon represented in a 3 × 3 zero-one matrix,
whose vertices are considered lattice points in [0, 3]× [0, 3]. b) The set of red and blue points generated from
the polygon.

Any covering set of P is a covering set of S, and conversely, the covering squares of S can be
expanded/shifted to be a covering set of P . Namely, let Q be a covering set of S. First, we assume
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that the squares of Q are closed and we expand them so that they do not contain red points in their
interiors. Notice that the side length of each square in Q is now an integer number. After that, we
use Lemma 6.1 in order to shift (horizontally and/or vertically) elements of Q so that Q becomes a
covering set of P . Every square of Q is shifted at most once in each direction. It is done as follows:

Let ` be a horizontal line passing through points of S. Let Q` denote the set of squares of Q
intersected by `, and let U` be their union. We say that a square of Q` is lattice if the x coordinates
of its vertices are all integer numbers. If Q` does not cover P ∩ `, then (P ∩ `) \ U` consists of a
set I` of pairwise-disjoint maximal-length segments. Moreover, the size of each segment in I` is at
most 1

M because the distance between consecutive blue points in ` is equal to 1
M . Since the side

length of each square in Q` is an integer number, the total size (or measure) of (P ∩ `) \ U` is at
most N

M < 1. Therefore, it is easy to see that we can use Lemma 6.1 in order to shift horizontally
the non-lattice squares of Q`, so that Q` covers P ∩ ` and all elements of Q` are lattice.

By repeating the above process for every horizontal line ` passing through points of S, and after
that considering ` vertical and working analogously, the final set Q covers P . 2

Notice that the SCC problem remains NP-hard if we restrict the squares to be centered at blue
points. In fact, we can use the above reduction and add only blue points at the lattice vertices of
the interior of P and at the centers of the pixels of P , and red points at the lattice points of the
boundary of P .

We have shown in Section 4 that there exists an O(1)-approximation algorithm for the SCC problem
because a set of squares is a set of pseudo-disks [11] (Statement 4.3).

7 Conclusions and further research

In this paper we have addressed the Class Cover problem with boxes. We proved its NP-hardness
and explored some variants by restricting the covering boxes to have special shapes. The main results
of this paper are the NP-hardness proofs and the exact algorithms when we cover with strips and
top-bottom half-strips, respectively (Subsections 5.1 and 5.2). All the approximation algorithms for
the NP-hard problems come from results on ε-nets, which were stated for a more general problem,
and the factors of approximation given are asymptotic. The major open problem is to develop
approximation algorithms whose approximation factors are either better than or equal, but not
asymptotic, to the ones stated here.

A natural variant of the BCC problem to be considered in future research is to use only vertical
half-strips as covering objects. At this point, we are unable to give either a polynomial-time exact
algorithm or a hardness proof. We can prove that the problem of finding an optimal cover of B with
R-empty vertical half-strips so that the top-bottom (resp. bottom-top) half-strips have pairwise-
disjoint interiors, is a 2-approximation. This new problem can be solved in polynomial-time by
using dynamic programming.
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