
A randomized algorithm for finding a maximum clique in the

visibility graph of a simple polygon

Sergio Cabello∗ Maria Saumell†

October 17, 2013

Abstract

We present a randomized algorithm to compute a clique of maximum size in the
visibility graph G of the vertices of a simple polygon P . The input of the problem
consists of the visibility graph G, a Hamiltonian cycle describing the boundary of P ,
and a parameter δ ∈ (0, 1) controlling the probability of error of the algorithm. The
algorithm does not require the coordinates of the vertices of P . With probability at

least 1 − δ the algorithm runs in O
(

|E(G)|2
ω(G) log(1/δ)

)
time and returns a maximum

clique, where ω(G) is the number of vertices in a maximum clique in G. A determin-
istic variant of the algorithm takes O(|E(G)|2) time and always outputs a maximum
size clique. This compares well to the best previous algorithm by Ghosh et al. (2007)
for the problem, which is deterministic and runs in O(|V (G)|2 |E(G)|) time.
Keywords: Visibility graph; Maximum clique; Simple polygon; Randomized algo-
rithm

1 Introduction

A (simple) polygon is the region of the plane bounded by a non-self-intersecting, closed,
polygonal path. The polygonal path itself is part of the polygon; it is usually called its
boundary . A polygon P defines a (vertex) visibility graph G = G(P) in a natural
way. The vertices of G are the vertices of the polygon. There is an edge between two
vertices v and v′ of G whenever the edge segment connecting v and v′ is contained in P .
In particular, the edges of the polygon correspond to edges of the visibility graph G. In
fact, the edges of the polygon define a Hamiltonian cycle in G.

Several optimization problems have been considered for geometrically constrained
graphs. In this paper, we are interested in finding a maximum clique in the visibility
graph of a polygon. A clique is a complete subgraph. Thus, a clique in a graph H
contains a subset of the vertices of H with the property that each two vertices are con-
nected by an edge. The clique number of H, usually denoted by ω(H), is the number
of vertices in a maximum clique.

A clique in the visibility graph of a polygon has a simple, nice geometric interpretation.
A subset of the vertices of P forms a clique whenever they are pairwise visible. It is possible

∗Department of Mathematics, IMFM and FMF, University of Ljubljana, Slovenia. Supported by the
Slovenian Research Agency, program P1-0297, projects J1-4106 and L7-5459, and within the EURO-
CORES Programme EUROGIGA (project GReGAS) of the European Science Foundation.
†Department of Mathematics, University of West Bohemia, Czech Republic. Supported by projects

NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget
of the Czech Republic, and ESF EuroGIGA project ComPoSe as F.R.S.-FNRS - EUROGIGA NR 13604.

1

to see that the vertices of a clique of the visibility graph G are in convex position. In fact,
the vertices vi1 , vi2 , . . . , vik of P , enumerated as they appear along the boundary of P , form
a clique if and only if the polygonal path Q defined by vi1vi2 , vi2vi3 , . . . , vik−1

vik , vikvi1
forms a convex polygon contained in P . In particular, the edges of Q have to be edges
of G.

The visibility graph G of a polygon P can be computed efficiently in O(|E(G)|)
time using the algorithm of Hershberger [Her89] together with linear-time triangula-
tion [Cha91]. See the algorithm by Ghosh and Mount [GM91] for polygons with holes.
However, the inverse direction is unclear: given a graph G, it is not known how to decide
whether this is the visibility graph of a polygon. In particular, we cannot reconstruct
efficiently a polygon whose visibility graph is given. See the discussion by Ghosh and
Goswami [GG, Gho07, Gho97].

We consider the following restricted scenario: the geometric coordinates of the poly-
gon P are unknown. The information available as input is the visibility graph G and a
Hamiltonian cycle C describing the boundary of P . As discussed before, with our current
knowledge this information is strictly weaker than having the coordinates describing P .
The objective is to find a maximum clique in G. The very same model and problem is
considered by Ghosh, Shermer, Bhattacharya, and Goswami in [GSBG07] (see alterna-
tively [Gho07, Section 6.7]), where an algorithm with time complexity O(|V (G)|2 |E(G)|)
is given. Better algorithms can be obtained if the coordinates of the vertices are avail-
able using a modification of the ideas of Fisher [Fis97], Avis and Rappaport [AR85], or
Bautista-Santiago et al. [BSDBL+11].

For the aforementioned restricted scenario, we provide a deterministic algorithm find-
ing a maximum clique in O(|E(G)|2) time, and a randomized algorithm finding a maxi-

mum clique in O
(
|E(G)|2
ω(G) log(1/δ)

)
time with probability at least 1− δ. These algorithms

compare favorably with the result of Ghosh et al. [GSBG07]. At a very high-level, our
approach is an adaptation of the dynamic programming of Fisher [Fis97] and Bautista-
Santiago [BSDBL+11] that infers enough information from the cycle C and the visibility
graph G.

We next introduce some notation. In Section 2 we provide geometric lemmas to
extract certain geometric information from G and C. The description of the algorithm is
in Section 3.

Notation. We assume that P has n vertices. Let C = v1v2 . . . vnv1 be the Hamiltonian
cycle describing the boundary of P . Throughout the paper, indices of vertices are treated
modulo n, so that vn+i = vi. With a slight abuse of notation, we use vi to refer to both
the vertex of the polygon P and the corresponding vertex in the visibility graph G.

In our drawings we will assume that C gives the vertices in counterclockwise order;
however, the algorithm is oblivious to the orientation.

For any two vertices vi and vj of G, let C(vi, vj) be the set of vertices in C as we walk
from vi to vj along C, without vi and vj . For example, C(vi, vi+1) = ∅ and C(vi, vi+2) =
{vi+1}. Similarly as it is done for intervals, let C(vi, vj] = C(vi, vj) ∪ {vj}.

For each vertex v, deg(v) is the number of neighbours of v in G. It holds that∑
v∈V (G) deg(v) = O(|E(G)|).

2

2 Geometric preliminaries

In this section we prove some geometric lemmas needed to argue the correctness of our
algorithm. Some of these results are implicit in previous works.

Lemma 1. Let vi be a vertex of G and let Ui be the set of vertices visible from vi. The
order of the vertices of Ui along C is the same as the (clockwise or counterclockwise) order
of the edges {viu | u ∈ Ui} around vi.

Proof. Assume that C gives the counterclockwise ordering along the boundary of P ; the
clockwise ordering is similar. Consider any two edges viu and viu

′ with u, u′ ∈ Ui. Assume
that u′ ∈ C(u, vi) (see Figure 1). Then viu

′ lies counterclockwise between viu and vivi−1.
Indeed, the diagonal viu cuts the polygon P into two polygons P ′ and P ′′. Let P ′ be the
polygon defined by C(u, vi), vi and u. The vertex u′ belongs to P ′. This means that viu

′

is a diagonal of P ′ and it lies counterclockwise between viu and vivi−1.

vi

u

u′

vi−1

Figure 1: Since u′ ∈ C(u, vi), viu
′ lies counterclockwise between viu and vivi−1.

Let Kt be a clique in G. A consequence of the previous lemma is that the order of the
vertices of Kt along the convex hull of V (Kt) is the same as the order along the boundary
of P . Indeed, the circular ordering along the convex hull of V (Kt) is the same as the
circular ordering of the edges of E(Kt) from any vertex of V (Kt).

The following lemma gives a tool to extend cliques. See Figure 2, left, for an illustra-
tion.

Lemma 2. Let v1, v`, vi, vn be distinct vertices of V (G) with v` ∈ C(v1, vi). Let U be a
subset of vertices from C(v1, v`) such that U ∪ {v1, v`, vi, vn} is a clique in G. Possibly U
is empty. Let vj ∈ C(vi, vn). If vj sees v1, v`, vi, vn, then U ∪ {v1, v`, vi, vj , vn} is a clique
in G.

Proof. Consider the closed polygonal curve Q that follows the vertices of U , in the same
order as they appear along C(v1, v`), followed by v`, vi, vj , vn, v1. Since all vertices of Q
are visible from v1 and have increasing indices, the path Q does not self-intersect. Thus
Q is a polygon. Since Q is made of edges from E(G), it is contained in P . All the vertices
of Q, but those at vi, vj , vn, are convex because U ∪{v1, v`, vi, vn} is a clique. The vertices
vi, vj , vn of Q are convex because the edges v`vj , vivn, vjv1 are in E(G), respectively.

The following lemma shows that, in a certain configuration, the vertices visible from
vj have a very precise structure determined by a single index. See Figure 2, right, for an
illustration.

3

vnv1

vi

v`
vj

vq

vnv1

vi

vm[j]

vj

v`

Figure 2: Illustrations for Lemmas 2 (left) and 3 (right). Solid edges belong to the
visibility graph by hypothesis. Left: U = {vq} and the dotted polygonal curve shows Q.
Right: The dotted polygonal curve shows Q`. Since Qm[j] is convex, so is Q`.

Lemma 3. Let v1vivn be a triangle in G and let U be the set of vertices visible simul-
taneously from v1, vi and vn. Let vj be a vertex from U ∩ C(vi, vn). There exists some
index m[j] ∈ (1, i) such that U ∩ C(v1, vm[j]] = {v` | v` ∈ U ∩ C(v1, vi), v`vj ∈ E(G)}.

Proof. Let m[j] = max{` ∈ (1, i) | v` ∈ U, v`vj ∈ E(G)}. Clearly,

U ∩ C(v1, vm[j]] ⊇ {v` | v` ∈ U ∩ C(v1, vi), v`vj ∈ E(G)}.

Consider any index ` ∈ (1,m[j]] such that v` ∈ U . We want to argue that v` is visible
from vj . We argue this showing that the closed polygonal path Q` = v1v`vivjvnv1 is a
convex pentagon. Note that Q` cannot self-intersect: all vertices are visible from v1 and
thus radially sorted around v1 because of Lemma 1. Thus Q` is a polygon. We have
chosen m[j] in such a way that Qm[j] is convex.

Since the edges v1vi, vivn, vjv1, and vnv` are in E(G), Q` has a convex angle at all
vertices, but possibly at vi. Around vi we have the following circular order of visible
vertices because of Lemma 1: vj , vn, v1, v`, vm[j]. Thus, the internal angle of Q` at vi is
smaller than the internal angle of Qm[j] at vi, which was convex. It follows that all angles
of Q` are convex and thus vj sees v`.

Lemma 4. Consider the setting and notation in Lemma 3. Let vj and v′j be vertices
U ∩ C(vi, vn) with j′ > j. Then m[j′] ≥ m[j].

Proof. Consider any v` ∈ U ∩ C(v1, vi). Because of a statement symmetric to the one in
Lemma 3, if v` sees vj , then it also sees vj′ . Therefore

{v` ∈ U ∩ C(v1, vi) | v`vj ∈ E(G)} ⊆ {v` ∈ U ∩ C(v1, vi) | v`vj′ ∈ E(G)}

and the result follows from Lemma 3.

3 The algorithm

Let Kt be a clique in G. An edge vivj of Kt is lateral if all the vertices of Kt − {vi, vj}
are in C(vi, vj) or in C(vj , vi). Alternatively, vivj is lateral for Kt if Kt is contained in
any of the two polygons obtained by cutting P through the diagonal vivj . In Section 3.1

4

we describe a subroutine LateralMaxClique(G,C, e) to find a maximum clique that
has e as lateral edge. This subroutine is deterministic.

The main idea of the algorithm for the general case is based on sampling several edges
e of G, finding for each e a maximum clique in G that has e as lateral edge, and returning
the largest of the cliques that are found. The precise details and analysis are given in
Section 3.2.

Before we proceed, we give an algorithm to preprocess the representation of the graph.
We want to have an adjacency list representation of G where, for each vertex vi, the list
Adj[i] has the (indices of the) neighbours of vi in the same order as they appear along C,
starting from vi+1 and finishing with vi−1. As discussed in Lemma 1, the ordering along
Adj[i] agrees with the clockwise or counterclockwise ordering of the edges emanating
from vi.

Lemma 5. We can compute in O
(
|E(G)|2/ω(G)

)
time all the lists Adj[i], vi ∈ V (G).

Proof. For each vertex vi ∈ V (G), we collect the indices of the vertices adjacent to vi, sort
them in O(deg(vi) log(deg(vi))) = O(deg(vi) log |V (G)|) time, and store them in Adj[i]
sorted from i + 1 to i − 1. It remains to analyze the resulting time bound. Over all
vertices, this takes time

O

(∑
i

deg(vi) log |V (G)|

)
= O(|E(G)| log |V (G)|).

When ω(G) ≤ |V (G)|/ log |V (G)|, we have

|E(G)| log |V (G)| ≤ |E(G)| |V (G)|
ω(G)

≤ |E(G)|2

ω(G)
.

When ω(G) ≥ |V (G)|/ log |V (G)|, we have

|E(G)| ≥
(
ω(G)

2

)
≥ 1

4
· |V (G)|2

log2 |V (G)|
≥ 1

4
· ω(G) log |V (G)|

and thus

|E(G)| log |V (G)|) ≤ |E(G)| · 4 · |E(G)|
ω(G)

.

In either case O(|E(G)| log |V (G)|) = O
(
|E(G)|2/ω(G)

)
.

3.1 Maximum clique with a fixed lateral edge

Here we describe an algorithm LateralMaxClique(G,C, e) to find a maximum clique
that has a given edge e = vivj as lateral edge. The running time of the algorithm is
O(|E(G)|).

If e = vivj does not belong to the cycle C, then we can decompose P along the
diagonal e into two polygons P ′ and P ′′, search a largest clique containing e in each of
the polygons P ′ and P ′′, and return the largest of both cliques. The visibility graphs of
P ′ and P ′′ can be easily constructed in O(|E(G)|): one is the subgraph of G induced by
C(vi, vj) ∪ {vi, vj} and the other is induced by C(vj , vi) ∪ {vi, vj}. Similarly, the cycle
defining the boundary of both polygons P ′ and P ′′ is easily obtained from C. Therefore,
it suffices to consider the case when e belongs to the cycle C.

Our algorithm goes along the lines of a dynamic-programming algorithm by Fis-
cher [Fis97] to solve the following problem: Given a set of points in the plane labelled

5

either “positive” or “negative” and a positive point p, find a convex polygon Q of max-
imum area such that: (i) p is the bottom vertex of Q; (ii) the vertices of Q are positive
points; (iii) Q does not contain any negative point. The algorithm of Fisher can easily be
adapted to optimize other criteria, instead of the area, like for example the number of pos-
itive points in the boundary of Q. We recommend the presentation by Bautista-Santiago
et al. [BSDBL+11], where the running time of Fischer is slightly improved.

We have to make two adaptations of the idea of Fisher to our setting. First, we do
not have the coordinates of the vertices so we cannot deduce which vertices are above
or below some given vertex. We work around this issue by using e as a reference: the
vertices that are visible from both vertices of e lie in one halfplane defined by the line
supporting e. Second, we adapt the dynamic programming to achieve a running time of
|E(G)|. We next explain in detail the algorithm.

Without loss of generality we will assume henceforth that e = v1vn.
We first select the (indices of the) vertices of P that are visible from both v1 and

vn. Let J = {i ∈ (1, n) | vi visible from v1 and vn}. The set J can be constructed from
Adj[1] and Adj[n] in time O(|V (G)|) = O(|E(G)|).

For each i ∈ J let us define

J<i = {j ∈ J | j < i, vjvi ∈ E(G)} and J>i = {j ∈ J | j > i, vivj ∈ E(G)}.

See Figure 3, left. Note that, for example, J<i uses information about the visibility from
vi. Thus, J<i ∪J>i is potentially smaller than J . For the algorithm we will need that J<i
and J>i are represented as lists storing the elements sorted in increasing order. We can
construct the lists J<i, for all i ∈ J , in O(|E(G)|) time, as follows. We first make a binary
table B[1..n] such that B[j] is true if and only if j ∈ J . After this, we can construct J<i
in time O(deg(vi)) by scanning Adj[i]: if j ∈ Adj[i] satisfies j < i and B[j] is true, then
we add j to J<i. A similar approach works to construct in time O(|E(G)| the lists J>i,
for all i ∈ J . Since the elements of Adj[i] are sorted, we also obtain the lists J<i and J>i
sorted, as desired.

If J contains one single vertex or J<i is empty for all i ∈ J , then the largest clique
containing e as lateral edge has size 3. We assume henceforth that J has more than an
element and there are some edges vivj with i, j ∈ J .

v1 vn

vi

vnv1

v`∗

vi
vj

Figure 3: Left: Vertices filled in gray belong to J<i, while vertices filled in white belong
to J>i. Right: Vertex vj can be added to the clique associated to Opt[`∗, i] (whose lateral
edges are dotted) because it is visible from v`∗ , vi, v1, and vn.

For each i ∈ J and j ∈ J>i, we define Opt[i, j] as the number of vertices in the
maximum clique that has vi, vj , vn and v1 as consecutive vertices in the convex hull.
Alternatively, Opt[i, j] is the number of vertices in the maximum clique using vertices
{vi, vj , vn, v1} and a subset of C(v1, vi). The algorithm finds the values Opt[i, ·], i ∈ J ,

6

for increasing values of i, as follows. The following statement shows the recursive behavior
of Opt[·, ·].

Lemma 6. If i ∈ J and j ∈ J>i, then

Opt[i, j] =

{
4 if @` ∈ J<i, v`vj ∈ E(G),

1 + max{Opt[`, i] | ` ∈ J<i, v`vj ∈ E(G)} otherwise.
(1)

Proof. This is a standard proof in dynamic programming. We use induction on i. Consider
i ∈ J and j ∈ J>i.

If {` ∈ J<i | v`vj ∈ E(G)} is empty, then no vertex in C(v1, vi) is visible simultaneously
from v1, vn, vi, vj , and thus Opt[i, j] = 4, as the lemma says. This covers all base cases.

Consider the case where {` ∈ J<i | v`vj ∈ E(G)} is nonempty. We have to show that
Opt[i, j] = 1 + max{Opt[`, i] | ` ∈ J<i, v`vj ∈ E(G)}. We do this in two steps.

Let U ⊆ C(v1, vi) be such that U ∪ {vi, vj , vn, v1} is a maximum clique defining
Opt[i, j]. Let vt be the vertex with highest index in U and set U ′ = U \ {vt}. Clearly
t ∈ J<i and vtvj ∈ E(G). Since U ′ ∪ {vt, vi, vn, v1} is a clique with U ′ ⊂ C(v1, vt), we
have by induction that Opt[t, i] ≥ |U ′|+ 4 = |U |+ 3. Therefore

Opt[i, j] = |U |+ 4 ≤ 1 +Opt[t, i] ≤ 1 + max{Opt[`, i] | ` ∈ J<i, v`vj ∈ E(G)}. (2)

To show the other inequality, consider `∗ ∈ J<i such that v`∗vj ∈ E(G) and

Opt[`∗, i]} = max{Opt[`, i] | ` ∈ J<i, v`vj ∈ E(G)}.

See Figure 3, right. By induction hypothesis, there exists U ⊆ C(1, `∗) such that U ∪
{v`∗ , vi, vn, v1} is a clique of size Opt[`∗, i]. Since v`∗vj , vivj , v1vj , vnvj ∈ E(G), it follows
that U ∪ {v`∗ , vi, vj , vn, v1} is a clique because of Lemma 2. Thus

Opt[i, j] ≥ 1 + Opt[`∗, i]} = 1 + max{Opt[`, i] | ` ∈ J<i, v`vj ∈ E(G)}. (3)

Combining Equations (2) and (3), the remaining case is done.

Using Equation (1), each value Opt[i, j] can be computed in O(deg(vi)) time. This
means that all Opt[i, j], i ∈ J and j ∈ J>i can be computed in O((deg(vi))

2) time.
However, this can be done faster by using a few additional observations, as we will show
next.

Lemma 7. Assume that the values Opt[`, i] are already available for each ` ∈ J<i. Then
we can compute the values Opt[i, j] for all j ∈ J>i in O(deg(vi)) time.

Proof. We obtain the values Opt[i, ·] in increasing order of the second term. We use the
following properties; see Lemmas 3 and 4:

• For each j ∈ J>i, there is a value m[j] ∈ J<i such that

J<i ∩ (1,m[j]] = {` ∈ J<i | v`vj ∈ E(G)}.

• If j, j′ ∈ J>i and j < j′, then m[j] ≤ m[j′]. In other words, m[j] is nondecreasing
in j ∈ J>i.

7

'

&

$

%

Algorithm Finding m[j]
(∗ We treat J<i and J>i as lists storing the indices in increasing order ∗)
1. j ← first element in J>i;
2. `← first element in J<i;
3. while j 6= NULL and ` 6= NULL
4. if v`vj ∈ E(G) then
5. m[j]← `;
6. `← element after ` in J<i;
7. else
8. j ← element after j in J>i;
9. m[j]← element before ` in J<i;

Figure 4: Algorithm used in the proof of Lemma 7.

For each ` ∈ J<i, let

B[`] = max{Opt[`′, i] | `′ ∈ J<i, `′ ≤ `}.

We compute the values B[`], ` ∈ J<i, in O(deg(vi)) by scanning Opt[·, i] and keeping the
prefix maximum.

Next, we compute the index m[j] for all j ∈ J>i in O(deg(vi) time. This is a simple
loop with two indices; details are provided in Figure 4. Here it is useful to treat J<i and
J>i as lists where the elements are stored in increasing order. Finally, we use that, for
each j ∈ J>i

Opt[i, j] =

{
4 if m[j] is undefined,

1 +B[m[j]] if m[j] is defined.

Since the tables B[·] and m[·] can be computed in O(deg(vi)) time, the result follows.

When the entire table Opt[·, ·] has been filled, we traverse it to find its maximum
value. This maximum value is precisely LateralMaxClique(G,C, e). Notice that we
can also find a largest clique containing e if we augment each entry of the table Opt
with extra information: for a given position [i, j] we also store the value t such that
Opt[i, j] = Opt[t, i] + 1. We conclude the following.

Lemma 8. There is an algorithm LateralMaxClique(G,C, e) that, after O(|E(G)|2/ω(G))
preprocessing time, has the following property: for any given e ∈ E(G) we can find in
time O(|E(G)|) a maximum-size clique in G that has e as lateral edge.

Proof. We preprocess the graph as discussed in Lemma 5. After this, we compute the
entries Opt[i, j], j ∈ J>i, for increasing values of i ∈ J . Using Lemma 7, we spend
O(deg(vi)) per i ∈ J . So the total time to compute all entries Opt[·, ·] isO

(∑
i∈J deg(vi)

)
=

O(|E(G)|). Finally, we return max{Opt[i, j] | i ∈ J, j ∈ J>i}. Correctness follows from
the definition of Opt[·, ·].

3.2 General case

Calling LateralMaxClique(G,C, e) for each edge e ∈ E(G) and returning the largest
clique that is found, we obtain the following result.

Theorem 9. Given the visibility graph G of a simple polygon P and a Hamiltonian cycle
describing the order of the vertices of P along its boundary, we can compute a maximum
clique in time O(|E(G)|2).

8

'

&

$

%

Algorithm RandMaxClique
Input: graph G, Hamiltonian cycle C, parameter δ ∈ (0, 1)
Output: maximum clique in G with probability at least 1− δ
1. Preprocess G to solve LateralMaxClique; (* Lemma 8 *)
2. ω̂ ← 0; (* size largest found cycle *)
3. i← 0; (* counter number of iterations *)
4. repeat
5. choose edge e ∈ E(G) uniformly at random;
6. ω̂ ← max{ω̂,LateralMaxClique(G,C, e)}
7. i← i+ 1;
8. until ω̂ ≥ (|E(G)|/i) ln(1/δ)
9. return ω̂

Figure 5: Algorithm RandMaxClique.

We now describe a randomized variant. In Figure 5 we give the algorithm Rand-
MaxClique.

Theorem 10. Given the visibility graph G of a simple polygon P , a Hamiltonian cycle
describing the order of the vertices of P along its boundary, and a parameter δ ∈ (0, 1),
with probability at least 1 − δ, RandMaxClique computes a clique in G of maximum

size in time O(|E(G)|2
ω(G) log(1/δ)).

Proof. Since ω̂ is smaller than or equal to ω(G), the condition to exit the repeat loop
implies that there are at least

m(G, δ) :=

⌈
|E(G)|
ω(G)

ln(1/δ)

⌉
iterations of the repeat loop.

Let A be the event that, in the first m(G, δ) iterations of the repeat loop, at least once
we select an edge e that is lateral for a maximum-size clique. If the event A occurs, then:

• the algorithm returns ω(G), and

• there are exactly m(G, δ) iterations of the repeat loop, so the time complexity is

O
(
|E(G)|2
ω(G) +m(G, δ) · |E(G)|)

)
= O

(
|E(G)|2
ω(G) log(1/δ)

)
because of Lemma 8.

We next show that A occurs with probability at least 1− δ, which finishes the proof.
Consider any iteration of the repeat loop. Since a maximum-size clique has ω(G) lateral

edges, with probability at least ω(G)
|E(G)| the selected edge e is lateral for some maximum-size

clique. Let Ac be the complement of A: in each of the first m(G, δ) iterations, e is not a
lateral edge for any maximum-size clique. The probability of Ac is at most(

1− ω(G)

|E(G)|

)m(G,δ)

≤
(

1− ω(G)

|E(G)|

) |E(G)|
ω(G)

ln(1/δ)

≤ e− ln(1/δ) = δ,

where we have used that (1− 1/x)x ≤ 1/e holds for any x ∈ R. Thus, the event A occurs
with probability at least 1− δ and the proof is finished.

9

References

[AR85] D. Avis and D. Rappaport. Computing the largest empty convex subset of a
set of points. In Proc. 1st Symp. Computational Geometry, pages 161–167.
ACM, 1985.

[BSDBL+11] C. Bautista-Santiago, J. M. Dı́az-Báñez, D. Lara, P. Pérez-Lantero, J. Urru-
tia, and I. Ventura. Computing optimal islands. Oper. Res. Lett., 39(4):246–
251, 2011.

[Cha91] B. Chazelle. Triangulating a simple polygon in linear time. Discrete &
Computational Geometry, 6:485–524, 1991.

[Fis97] P. Fischer. Sequential and parallel algorithms for finding a maximum convex
polygon. Comput. Geom., 7(3):187–200, 1997.

[GG] S. K. Ghosh and P. P. Goswami. Unsolved problems in visibility graphs
of points, segments and polygons. Available at http://arxiv.org/abs/

1012.5187, last revision in 2012.

[Gho97] S. K. Ghosh. On recognizing and characterizing visibility graphs of simple
polygons. Discrete Comput. Geom., 17(2):143–162, 1997.

[Gho07] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University
Press, 2007.

[GM91] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing
visibility graphs. SIAM J. Comput., 20(5):888–910, 1991.

[GSBG07] S. K. Ghosh, T. C. Shermer, B. K. Bhattacharya, and P. P. Goswami.
Computing the maximum clique in the visibility graph of a simple polygon.
J. Discrete Algorithms, 5(3):524–532, 2007.

[Her89] J. Hershberger. An optimal visibility graph algorithm for triangulated sim-
ple polygons. Algorithmica, 4(1):141–155, 1989.

10

