
JoCG 10(1), 207–222, 2019 207

Journal of Computational Geometry jocg.org

COVERING MANY POINTS WITH A SMALL-AREA BOX∗

Mark de Berg,† Sergio Cabello,‡ Otfried Cheong,§ David Eppstein,¶ and Christian Knauer‖

Abstract. Let P be a set of n points in the plane. We show how to find, for a given integer
k > 0, the smallest-area axis-parallel rectangle that covers k points of P in O(nk2 log n +
n log2 n) time. We also consider the problem of, given a value α > 0, covering as many points
of P as possible with an axis-parallel rectangle of area at most α. For this problem we give a
probabilistic (1−ε)-approximation that works in near-linear time: In O((n/ε4) log3 n log(1/ε))
time we find an axis-parallel rectangle of area at most α that, with high probability, covers
at least (1− ε)κ∗ points, where κ∗ is the maximum possible number of points that could be
covered.

1 Introduction

In this paper we consider two closely related shape-fitting problems for a given point set P
in the plane. In both problems we are searching for an axis-parallel rectangle, or a box as we
will call it, and we are interested in the trade-off between the box area and the number of
points covered by the box. More precisely, we are interested in the following two optimization
problems.

• Given a set P of points and an integer k > 2, find

area∗(P, k) = min
{

area(R)
∣∣ R is a box with |R ∩ P | > k

}
.

That is, we are interested in covering at least k points of P with a box of minimum
area.

• Given a set P of points and a real value α > 0, find

κ∗(P, α) = max
{
|R ∩ P |

∣∣ R is a box with area(R) 6 α
}
.

That is, we are interested in covering the maximum number of points of P with a box
of area at most α.

∗Mark de Berg was supported by the Netherlands Organization for Scientific Research (NWO) under project
no. 024.002.003. Sergio Cabello was supported by the Slovenian Research Agency, program P1-0297 and
projects J1-8130 and J1-8155. Otfried Cheong was supported by ICT R&D program of MSIP/IITP [R0126-15-
1108]. David Eppstein was supported in part by NSF grants CCF-1228639, CCF-1618301, and CCF-1616248.
Christian Knauer was supported in part by DFG grant Kn 591/3-3.
†Department of Computer Science, TU Eindhoven, the Netherlands.
‡Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubljana,

Slovenia.
§School of Computing, KAIST, Korea.
¶Computer Science Department, University of California, Irvine, USA.
‖Computer Science Department, University of Bayreuth, Germany.

http://jocg.org/

JoCG 10(1), 207–222, 2019 208

Journal of Computational Geometry jocg.org

The two problems are closely related because for all finite point sets P , and all k ∈ N and
α ∈ R>0 we have

area∗(P, k) 6 α⇐⇒ κ∗(P, α) > k.

So the second problem can be solved using binary search on k and a solution to the first
problem.

When minimizing the area of the box covering k points, the set of optimal solutions
is invariant under scaling of either of the axes. This means that, if we consider any map
(x, y) 7→ ϕ(x, y) = (α1x+ β1, α2y + β2) with α1, α2 6= 0, then a box R is an optimal solution
for area∗(P, k) if and only if ϕ(R) is a solution for area∗(ϕ(P), k). Thus, minimizing the area
is especially useful when the units of each axis have incomparable meanings. In contrast, in
such a case it is meaningless to minimize the perimeter.

The problem of covering k points with a minimum-area (or minimum-perimeter) box
was previously considered by Segal and Kedem [20], who provided an algorithm suitable for
values of k close to n, with running time O(n+ k(n− k)2). In contrast, we study the case
when k is small, so that it is preferable to decrease the dependence on n at the expense of
increasing the dependence on k. For the case of small k, several papers [3, 7, 20] erroneously
claim that previous algorithms of Aggarwal et al. [2] and Eppstein and Erickson [12] solve
the problem in running time O(k2n log n) or O(n log n+ k2n), respectively. However, these
previous algorithms apply only to the minimum-perimeter version of the problem. They
do not work for the minimum-area version, because they are based on the fact that for the
minimum-perimeter version, the optimal subset of k points can be found among the O(k)
nearest neighbors to one of the points—something which is not true for the minimum-area
version. The same obstacle appears when trying to extend the algorithms of Datta et al. [8]
from the minimum-perimeter to the minimum-area problem. For the minimum-area problem
that we study here, we cannot restrict our attention to sets of nearest neighbors, and must
use alternative methods to obtain our time bounds. The results in those papers do not
depend on the mistaken claim, only the attribution of previous work is incorrect.

After our preprint was made public [9], Kaplan et al. [16] showed that the problem
of covering k points with a minimum-area box can be solved in O(n5/2 log2 n) time. This
is the first subcubic algorithm and it is more efficient than previous results for a large
range of k. For the minimum-perimeter problem, they provide an algorithm running in
O(nk3/2 log k log n) time. However, as they note, one of the steps used in their algorithm
does not work for the minimum-area problem. The difficulty is essentially as we mentioned
above: For the minimum-area problem, we do not know how to transform the problem into
O(n/k) instances of O(k) points each.

There have been several works on minimizing the size of the smallest disk that
contains k points. Here it does not matter whether we minimize the area or the perimeter.
Har-Peled and Mazumdar [13] give a randomized algorithm to find a disk that contains k
points in O(nk) expected time, improving the works by Efrat, Eppstein, Erickson, Matoušek,
and Sharir [11, 12, 18]. In follow-up work, Har-Peled and Raichel [14] aim for fast (1 + ε)-
approximations. Das et al. [7] consider covering k points with rectangles of arbitrary
orientations.

The problems that we are interested in, where we want to find an optimal box of

http://jocg.org/

JoCG 10(1), 207–222, 2019 209

Journal of Computational Geometry jocg.org

arbitrary aspect ratio, are relatively easy if we make certain assumptions about the input.
For instance, if we were given the aspect ratio of an optimal box, we could rescale one axis
to reduce the problem to finding an optimal square, a problem that is very similar to the
problem for disks. Similarly, if we had, say, a 2-approximation to the aspect ratio of the
optimal box, then we could rescale one axis and reduce the search to fat boxes. In this
scenario, finding a smallest square box gives a constant-factor approximation to the optimum
fat box, and using a grid approach, like in Har-Peled and Mazumdar [13], we only need to
solve O(n/k) instances of size O(k), which can be done in roughly O(nk2) time. Thus, we
can search for the optimal box with constant fatness in roughly O(nk2) time. Also, if we
assume that the coordinates are integers between 0 and a bound U , this approach allows
us to compute area∗(P, k) in roughly O(nk2 logU) time, by trying O(logU) different aspect
ratios in geometric progression. The main goal of our paper is to avoid any such assumptions,
and to still get similar running times.

Our results. Here is a summary of our main results and an overview of the approach. Let
P be a given set of n points in the plane.

(a) We show how to find, for a given integer k > 0, the value area∗(P, k) in O(nk2 log n+
n log2 n) time. Within the same time bound we can also construct an optimal solution,
that is, a box that contains k points of P and whose area is area∗(P, k). This is the only
known algorithm with a near-linear dependency on n; see the discussion above.

To achieve this result, we use a divide-and-conquer method that resembles the one by
Aronov et al. [4]. More precisely, we use a horizontal line ` that splits the points into
two sets of roughly the same cardinality, compute the best rectangle intersected by `,
and recursively solve the problems above and below the line. To find the best rectangle
intersected by `, we generate O(n) subproblems, each with O(k) points, where we only
have to consider boxes that contain a fixed point on the boundary. These subproblems
are generated using an idea based on proximity.

In fact, we solve a slightly more general problem that enables some improvements in the
running time of the problem discussed below, in item (b). We show how to generate in
O(nk log n+n log2 n) time all subproblems that arise in the recursive process for a given
k, and observe that these subproblems can also be used for k′ < k. This allows us to
find in O(nk2 log n) time the minimum area-area box that contains k′ points of P , for
any given k′ 6 k.

These results are presented in Section 2.

(b) We give a randomized algorithm that, for a given value α > 0 and a parameter ε 6 1/2,
with high probability runs in O((n/ε4) log3 n log(1/ε)) time and returns a box that has
area α and covers at least (1 − ε)κ∗(P, α) points of P . Note that the running time
is O(n log3 n) when ε is fixed.

An overview of the approach is as follows; a similar high-level approach is used for example
in [1,5,6,10]. First, we find a simple 4-approximation to the value κ∗(P, α). Then we use
a random sample S of P such that, for each box R with Θ (κ∗(P, α)) points of P inside,
the value |R∩S|· |P ||S| is a (1±ε)-approximation to the value |R∩P | (with high probability).

http://jocg.org/

JoCG 10(1), 207–222, 2019 210

Journal of Computational Geometry jocg.org

Figure 1: Left: Example of the scenario considered in Lemma 1. Right: Points to be reported
for each rectangle when k=2. An arrow indicates that the tail is reported for the head.

This is a common technique in approximate range counting. Choosing the size of S
appropriately we can guarantee that, with high probability, κ∗(S, α) = Θ((1/ε2) log n)
and an optimal solution for κ∗(S, α) contains (1− ε)κ∗(P, α) points of P . Thus, finding
an optimal box for the sample S we get a (1− ε)-approximation for P . The problem
for S can be solved using the algorithm of (a) for all values k′ ∈ {1, . . . , κ∗(S, α)}.
Since κ∗(S, α) = Θ((1/ε2) log n), each value of k′ is O((1/ε2) log n), each use of the the
algorithm of (a) takes near-linear time.

Some additional observations are used to slightly improve the final running time. Firstly,
instead of a linear search, we can use a binary search to find κ∗(S, α). At each step we
have to decide whether area∗(S, k′) 6 α for some given k′ = O((1/ε2) log n). Secondly,
we do not really need to compute κ∗(S, α) exactly for the random sample S, as we can
afford to use a (1− ε)-approximation instead. Finally, we are reusing always the same
set S, but the test values k′ are different. Thus, the generalized problem mentioned in
item (a) becomes useful.

These results are described in Section 3.

Notation and conventions. As noted, a box is an axis-parallel rectangle. For a box R, let
top(R) and bot(R) be its top and bottom edge. For a point p ∈ R2, we use px and py for its
x- and y-coordinate, respectively.

We assume that the point set is in general position, meaning that no two points
have the same x-coordinate or the same y-coordinate. This can be enforced by a symbolic
perturbation of the points. For example, we can index the points as p1, . . . , pn and replace
each point pi with the point pi + (i · ε, i · ε) for an infinitesimal value ε > 0. When minimizing
the area of the box covering k points, we drop in the resulting area any terms that depend
on ε. When maximizing the number of points to be covered, we allow boxes of area α+ nερ,
where ρ is the perimeter of the bounding box of P .

2 Minimizing area for a given number of points

We will use the following result for batched reporting in 2-sided rectangles. See Figure 1 for
an example.

http://jocg.org/

JoCG 10(1), 207–222, 2019 211

Journal of Computational Geometry jocg.org

q

q1

q2
q4

q3
q5

q6 q7

q8

Figure 2: Left: Example of the scenario considered in the definition of Φ(Q, q, k). Some
of the feasible boxes when k = 5 are shown. Right: The boxes considered when k = 5,
q ∈ top(R) and we consider Q8 = {q1, . . . , q8}. Thus q8 ∈ bot(R). The span of the relevant
boxes is shown with the arrows above.

Lemma 1. Let A and B be sets of at most n points in R2. For each point b ∈ B, let Rb be
the 2-sided rectangle [bx,∞)× [by,∞). In time O(kn+ n log n) we can find, for all b ∈ B,
the k points in A ∩Rb with smallest x-coordinate.

Proof. The result can be obtained in a standard manner, using a sweep-line algorithm that
sweeps the plane with a vertical line ` from left to right. For completeness we give the details.

Let A` and B` be the points to the left of ` of A and B, respectively. Consider the
family of rectangles R` = {Rb | b ∈ B`}. At each moment, we maintain the subset R′` ⊆ R`
of rectangles that do not contain k points of A`. The rectangles Rb ∈ R′` are stored in a
dynamic balanced binary search tree T sorted by the value by. Moreover, for each rectangle
Rb ∈ R′` we also store a list Lb of the points of A` that it contains and the length of the list
Lb, that is, |Rb ∩A`|.

When the line ` arrives at a point a ∈ A, we find the m rectangles of R′` that contain
a using a traversal of the tree T , which takes O(m+ log n) time. For each of the m rectangles
Rb ∈ R′` that contain a, we add a to the list Lb. Moreover, if Lb now contains k points, then
Rb does not belong to R′` anymore and we remove the record from the tree T .

When the line ` reaches a point b ∈ B, then Rb becomes an element of R` and we
insert Rb into T . If there is a point a that belongs to A and B, then we first consider it as a
point of B and then as a point of A. In this way a becomes an element of Ra.

Each insertion or deletion in T takes O(log n). We make |B| insertions and at most
|B| deletions in T , for a total of O(n log n) time. For each point a ∈ A we spend O(log n)
plus O(1) time for each rectangle Rb for which we report a. Thus, the running time is
O(kn+ n log n).

For a set Q of points, a point q ∈ Q, and a parameter k define

Φ(Q, q, k) := min {area(R) | R is a box with q ∈ top(R) or q ∈ bot(R)

and R contains at least k points of Q. }

An example is shown in Figure 2. We will reduce our problem to many instances of

http://jocg.org/

JoCG 10(1), 207–222, 2019 212

Journal of Computational Geometry jocg.org

the problem of computing Φ(Q, q, k) with |Q| = O(k). We first discuss how to solve such
instances.

Lemma 2. Given Q, q and k, we can compute Φ(Q, q, k) in O(|Q|2) time.

Proof. Let us discuss the case where q ∈ top(R), the other case being symmetric. Let
q1, q2, . . . , qm be the points of Q whose y-coordinate is not larger than qy, in decreasing order
of y-coordinate, and let Qi = {q1, . . . , qi}.

Once we have a sorted list with the elements of Qi in increasing x-coordinate, then
we can find in O(|Qi|) = O(i) time the minimum-area box R that contains k points with
q ∈ top(R) and qi ∈ bot(R), using a linear scan of the list with two pointers that are offset
by k elements. See Figure 2 for an example.

We can therefore proceed as follows: We first compute the set Qm and sort it by
x-coordinate, in time O(|Q| log |Q|). We then repeatedly compute the best box for the
current set Qi (initially i = m) in time O(i), then delete from the list the element with
the smallest y-coordinate to obtain Qi−1, again in time O(i). The total running time
is O(|Q|2).

For a set P of points, a horizontal line `, and a parameter k define

Ψ(P, `, k) := min {area(R) | R is a box intersecting `
such that R contains at least k points of P }

Recall that area∗(P, k) is the area of the optimal solution for the original, global
problem. Thus, it is obvious that area∗(P, k) 6 Ψ(P, `, k) for all P , ` and k. The following
lemma explains that when an optimal, global solution is intersected by the line `, then we
can reduce the search to a few small problems of size O(k).

Lemma 3. Given P , `, and k, we can compute in O(kn+n log n) time sets Qp ⊆ P , indexed
by p ∈ P , with the following properties:

• Qp has O(k) points for each p ∈ P .

• For each k′ 6 k, if area∗(P, k′) = Ψ(P, `, k′), then area∗(P, k′) = Φ(Qp, p, k
′) for some

p ∈ P .

Proof. For each p ∈ P let p be the point symmetric to p with respect to the line `. For each
point q of the plane, q /∈ `, we define the following objects. See Figure 3.

• Let slab(q) be the horizontal slab defined by ` and the line parallel to ` through q.

• Let R�
q be the 3-sided rectangle slab(q) ∩ {(x, y) ∈ R2 | x > qx} and let P�

q be the k
points of P with smallest x-coordinate inside R�

q .

• Let R�
q be the 3-sided rectangle slab(q) ∩ {(x, y) ∈ R2 | x 6 qx} and let P�

q be the k
points of P with largest x-coordinate inside R�

q .

http://jocg.org/

JoCG 10(1), 207–222, 2019 213

Journal of Computational Geometry jocg.org

p

slab(p)

R�
p R�

p

p

` `

p

P�
p P�

p

P�
p P�

p

Figure 3: Notation used in Lemma 3. On the right side we show the portions of the 3-sided
rectangles that contain Qp.

For each p ∈ P , we define Qp as the union of P�
p , P�

p , P�
p , and P�

p . It is clear that
each set Qp has at most 4k points, so the first property of the lemma holds.

To show the second property, consider any fixed k′ 6 k and assume that area∗(P, k′) =
Ψ(P, `, k′). Then there exists an optimal box R∗ with area(R∗) = area∗(P, k′) such that R∗

intersects `. Let t∗ and b∗ be points of P on top(R∗) and bot(R∗), respectively. Assume
without loss of generality that the distance from t∗ to ` is at least the distance from b∗ to `.
This means that R∗ ∩ P is contained in slab(t∗) ∪ slab(t∗).

We next show that R∗ ∩ P is contained in Qt∗ . Assume, for the sake of reaching a
contradiction, that R∗ ∩P contains a point a that is not in Qt∗ . See Figure 4. Therefore, a is
contained in one of the 3-sided rectangles used to define Qt∗ , namely R�

t∗ , R�
t∗ , R�

t∗
, R�

t∗
. Let

R̃ ∈ {R�
t∗ , R

�
t∗ , R

�
t∗
, R�

t∗
} be the 3-sided rectangle that contains a, let P̃ ∈ {P�

t∗ , P
�
t∗ , P

�
t∗
, P�

t∗
}

be the set contained in R̃ and let q̃ be the point of P̃ furthest from the vertical line through
t∗. Note that P̃ contains k points, as otherwise there cannot be any point of P in R̃ \ P̃ and
a cannot exist. By the way we selected the points of P̃ inside R̃ we have

|t∗x − q̃x| < |t∗x − ax|.

Here we are using general position to rule out the possibility of equality. Note that the
bounding box bb(P̃) of P̃ contains k > k′ points and has area at most

|t∗x − q̃x| · dist(t∗, `),

where dist(t∗, `) denotes the vertical distance from t∗ to the line `. On the other hand, since
R∗ intersects ` and has a and t∗ in its boundary, we have

area(R∗) > |t∗x − ax| · dist(t∗, `) > |t∗x − q̃x| · dist(t∗, `) > area(bb(P̃)).

This contradicts the optimality of R∗ for covering k′ points. This finishes the proof that
R∗ ∩ P is contained in Qt∗ , and therefore the second property holds.

It remains to show that the construction of the sets Qp, for all p ∈ P , can be done
in O(kn + n log n) time. For this we use Lemma 1 a few times, as follows. Let P+ and
P− be the points above and below `, respectively. We also define P+ = {p | p ∈ P+} and
P− = {p | p ∈ P−}. The point sets P�

q for all q ∈ P− ∪ P+, are obtained using Lemma 1
with A = P− and B = P− ∪ P+. The sets P�

q for all q ∈ P+ ∪ P−, the sets P�
q for all

q ∈ P− ∪ P+, and the sets P�
q for all q ∈ P+ ∪ P−, are computed in a similar way, using

symmetric versions of Lemma 1.

http://jocg.org/

JoCG 10(1), 207–222, 2019 214

Journal of Computational Geometry jocg.org

`

t∗

a
`

t∗

a

t∗ t∗

contains P̃

contained in R∗

Figure 4: Part of the proof of Lemma 3 where we show that a point a outside R∗ ∩ Qt∗
cannot exist. On the left we have the case when P̃ = P�

t∗ and on the right the case P̃ = P�
t∗
.

Lemma 4. Let P be a set of n points, let ` be a horizontal line, and let k be a positive
integer. After O(nk + n log n) preprocessing time, we can compute, for any given k′ 6 k, a
value V (P, `, k′) with the following properties in O(nk2) time:

• area∗(P, k′) 6 V (P, `, k′);

• if area∗(P, k′) = Ψ(P, `, k′), then V (P, `, k′) = area∗(P, k′).

Proof. We compute the sets Qp, indexed by p ∈ P , using Lemma 3. This finishes the
preprocessing and takes time O(kn+ n log n) time.

Now suppose that we are given a value k′ 6 k. For each p ∈ P , we use Lemma 2
to find the value Φ(Qp, p, k

′) in O(|Qp|2) = O(k2) time. We return the value V (P, `, k′) =
min{Φ(Qp, p, k

′) | p ∈ P}. The computation takes O(nk2) time.

Since for each p ∈ P the value Φ(Qp, p, k
′) is the area of a box containing k′ points of P ,

we have V (P, `, k′) > area∗(P, k′). If area∗(P, k′) = Ψ(P, `, k′), then Lemma 3 guarantees
that area∗(P, k′) = Φ(Qp0 , p0, k

′) for some p0 ∈ P , and therefore

area∗(P, k′) = Φ(Qp0 , p0, k
′) > min{Φ(Qp, p, k

′) | p ∈ P} = V (P, `, k′).

We conclude that V (P, `, k′) = area∗(P, k′).

Theorem 5. Given a set of n points P and a value k, we can preprocess P in O(nk log n+
n log2 n) time such that, for any given k′ 6 k, we can find in O(nk2 log n) time a minimum-
area box that contains at least k′ points of P .

Proof. Consider a horizontal line ` such that at most half of the points of P are above `
and at most half of the points are below `. Let P+ and P− be the subset of P above and
below `, respectively. For any number of points k′, where 1 6 k′ 6 n we have

area∗(P, k′) = min
{

Ψ(P, `, k′), area∗(P+, k′), area∗(P−, k′)
}
.

Indeed, an optimal solution containing k′ points is either intersected by ` or it contains points
from only one of the sets P+ and P−. This is the basis for an algorithm based on divide and
conquer.

http://jocg.org/

JoCG 10(1), 207–222, 2019 215

Journal of Computational Geometry jocg.org

In the preprocessing, we use Lemma 4 for P , ` and k, which takes O(nk+n log n) time,
and then recursively preprocess P+ and P−. Since the recursion has log n levels and since any
two point sets at the same level of the recursion are disjoint, we spend O(nk log n+ n log2 n)
time in preprocessing.

When we are given a value k′, we compute area∗(P, k′) using the same recursive
pattern. At the first level, with the point set P and the line `, we spend O(nk2) time
to compute V (P, `, k′), using Lemma 4. Then we go on to compute area∗(P+, k′) and
area∗(P−, k′) recursively, using our already-done preprocessing. Finally, we return the
minimum of V (P, `, k′), area∗(P+, k′) and area∗(P−, k′). By Lemma 4, we always have
area∗(P, k′) 6 V (P, `, k′) and, when area∗(P, k′) = Ψ(P, `, k′), we also have area∗(P, k′) =
V (P, `, k′). It follows that

area∗(P, k′) = min
{
V (P, `, k′), area∗(P+, k′), area∗(P−, k′)

}
and thus we are returning the correct value of area∗(P, k′). Since we have log n levels in the
recursion, we spend O(nk2 log n) time in total.

Corollary 6. Given a set of n points P and a value k we can find in O(nk2 log n+n log2 n)
time a minimum-area box that contains at least k points of P .

Proof. We apply Theorem 5 with k′ = k. In this scenario we can get rid of the preprocessing
step and, at each level of the recursion, compute the values Φ(Qp, p, k) immediately after
generating the sets Qp.

3 Maximizing the number of points for a given area

We now turn to the problem of finding the maximum number of points that can be covered
by a box of a area α > 0. As mentioned in the introduction, let κ∗(P, α) be this number of
points. We first compute a constant-factor approximation to κ∗(P, α). Then we explain how
to obtain a (1 + ε)-approximation using an algorithm whose running time depends on the
value κ∗(P, α). Finally, we use random sampling to get a (1 + ε)-approximation to κ∗(P, α)
in near-linear time for a fixed ε > 0.

3.1 A 4-approximation algorithm

For a horizontal line ` and a point p /∈ `, let R�
α (p, `) be the box that has area α, has

p as a corner, has an edge contained in `, and contains points with x-coordinates larger
than px. Let R�

α (p, `) be the box defined in the same way, but with points with x-coordinates
smaller than px. See Figure 5. Let Rα(`) be the set of boxes

⋃
p∈P {R�

α (p, `), R�
α (p, `)}. Let

κ∗(P, `, α) be the maximum number of points of P covered by a box of area α that intersects
the line `.

Lemma 7. There is some R ∈ Rα(`) such that |P ∩R| > κ∗(P, `, α)/4.

http://jocg.org/

JoCG 10(1), 207–222, 2019 216

Journal of Computational Geometry jocg.org

R�
α (p, `)

p

`

R�
α (p, `)

Figure 5: The boxes R�
α (p, `) and R�

α (p, `), the boxes have area α.

Proof. Let R∗ be a box of area α covering κ∗(P, `, α) points and intersecting `. Let `+ and
`− denote the closed half-planes above and below `, respectively. Define R+ := R∗ ∩ `+ and
R− := R∗ ∩ `−, and assume without loss of generality that |R+ ∩ P | > |R∗ ∩ P |/2. Let p be
the point in P ∩R∗ with maximum y-coordinate. Then R+ ⊂ R�

α (p, `)∪R�
α (p, `). Hence, at

least one of R�
α (p, `) or R�

α (p, `) must contain |R+ ∩ P |/2 > |R∗ ∩ P |/4 points.

Theorem 8. Given a set of n points P and a value α > 0, we can compute in O(n log2 n)
time a value κ(P, α) such that κ∗(P, α)/4 6 κ(P, α) 6 κ∗(P, α).

Proof. We preprocess P for box counting queries [21]. The preprocessing takes O(n log n)
time and for each query box R we can report |R ∩ P | in O(log n) time.

Then we proceed with a recursive algorithm. Take a line ` that splits P into two sets
P+ and P− of roughly equal size. Note that

κ∗(P, α) = max
{
κ∗(P+, α), κ∗(P−, α), κ∗(P, `, α)

}
.

We build the set of boxes Rα(`) in O(n) time. For each box R ∈ Rα(`) we query the
data structure to obtain |R ∩ P |. Thus, we obtain κ(P, `, α) = max{|R ∩ P | | R ∈ Rα(`)}
in O(n log n) time. By Lemma 7, we have κ∗(P, `, α)/4 6 κ(P, `, α) 6 κ∗(P, `, α). Then,
we return the best between the value κ(P, `, α) and the values κ(P+, α), κ(P−, α) obtained
recursively for P+ and P−, respectively. Since at each level of the recursion the point sets
being considered are disjoint, we spend O(n log n) time at each level of the recursion, for a
total O(n log2 n) for the whole algorithm.

Since the algorithm only considers boxes of area α, the returned value is obviously
at most κ∗(P, α). On the other hand, by induction we have κ(P+, α) > κ∗(P+, α)/4 and
κ(P−, α) > κ∗(P−, α)/4. Together with κ(P, `, α) > κ∗(P, `, α)/4 we obtain that

κ(P, α) = max{κ(P+, α), κ(P−, α), κ(P, `, α)}
> max{κ∗(P+, α)/4, κ∗(P−, α)/4, κ∗(P, `, α)/4}
= κ∗(P, α)/4.

3.2 Properties of random sampling

For the rest of this section, let P be a set of n points in the plane, and let ε be a real value
with 0 < ε < 1. We use relative approximations [15] to show that a random sample from P
can be used to count the points of P inside each box, assuming that the box has enough
points. We use s for the cardinality of the sample.

http://jocg.org/

JoCG 10(1), 207–222, 2019 217

Journal of Computational Geometry jocg.org

Lemma 9. Suppose that κ satisfies κ∗(P, α) 6 κ. Let s = min{n, c
ε2
n
κ log n}, where c is an

appropriate absolute constant, and let S be a random sample of P with s points. Then with
probability at least 1− 1/n the following properties hold simultaneously:

• For each box R of area at most α∣∣∣∣ |P ∩R|n
− |S ∩R|

s

∣∣∣∣ 6 ε · κ
n

;

• κ∗(S, α) = O
(
(1/ε2) log n

)
.

Proof. One can prove this using Chernoff bounds as we did in our first preprint [9]. A more
compact proof uses relative approximations, as described next.

We consider the case when s = c
ε2
n
κ log n. For the other case we have S = P and

κ < (c/ε2) log n, so the claims trivially hold.

Let R be the family of all boxes of area at most α. A subset S ⊆ P is a relative
(ρ, ε)-approximation for (P,R) if

∀R ∈ R :

∣∣∣∣ |P ∩R||P |
− |S ∩R|

|S|

∣∣∣∣ 6 ε ·max

{
|P ∩R|
|P |

, ρ

}
.

Har-Peled and Sharir [15, Theorem 2.11] show that the results of Li et al. [17] imply the
following: A random sample of P of size at least

c′

ε2ρ

(
δ log

1

ρ
+ log

1

q

)
,

where c′ is an appropriate absolute constant, is a relative (ρ, ε)-approximation for (P,R)
with probability at least 1− q. Here δ is the VC-dimension of the range space (P,R); in our
case δ 6 4. Setting ρ = κ/n and q = 1/n, we obtain that a random sample of size at least

s =
c′

ε2ρ

(
δ log

1

ρ
+ log

1

q

)
6

c′n

ε2κ

(
4 log

n

κ
+ log n

)
6

5c′

ε2κ
n log n

is a relative (κ/n, ε)-approximation for (P,R) with probability at least 1−1/n. The constant c
in the statement of the lemma is then 5c′.

It remains to show that, if S is a relative (κ/n, ε)-approximation for (P,R), then
both properties in the lemma hold. Since S is a relative (κ/n, ε)-approximation we have

∀R ∈ R :

∣∣∣∣ |P ∩R|n
− |S ∩R|

s

∣∣∣∣ 6 ε ·max

{
|P ∩R|

n
,
κ

n

}
= ε · κ

n
,

where in the last step we used |P ∩R| 6 κ∗(P, α) 6 κ. This shows the first item.

For the second item we note that, for any box R of area at most α, we have

|S ∩R| 6 s
(|P ∩R|

n
+ ε · κ

n

)
6

s

n

(
κ+ εκ

)
= (1 + ε)

sκ

n
= (1 + ε)

c

ε2
log n.

It follows that κ∗(S, α) = O
(
(1/ε2) log n

)
.

http://jocg.org/

JoCG 10(1), 207–222, 2019 218

Journal of Computational Geometry jocg.org

3.3 A (1− ε)-approximation algorithm

We start by giving an output-sensitive (1− ε)-approximation algorithm whose running time
depends quadratically on the size of the output.

Lemma 10. Given a set P of n points, a value α > 0, and a parameter ε with 0 < ε < 1,
we can compute in O

(
n(κ∗)2 log n log(1/ε) + n log2 n

)
time a box R of area at most α that

covers at least (1− ε)κ∗ points of P , where κ∗ = κ∗(P, α).

Proof. Using Theorem 8 we compute a 4-approximation value κa satisfying κ∗/4 6 κa 6 κ∗.
We apply Theorem 5 with the value 4κa, which is an upper bound for κ∗. We spend
O(nκa log n+ n log2 n) = O(nκ∗ log n+ n log2 n) time in the preprocessing and then, for any
given k′ 6 κa, we can compute area∗(P, k′) in O

(
n(κ∗)2 log n

)
time.

Consider the set K of values of the form κa + i · εκa, with i ∈ N, inside the interval
[κa, 4κa]. We perform binary search on K to find the value k̃ ∈ K such that area∗(P, k̃) 6 α
but area∗(P, k̃ + εκa) > α. We then have

κa 6 k̃ 6 κ∗ 6 k̃ + εκa 6 k̃ + εκ∗,

and thus
k̃ > κ∗ − εκ∗ = (1− ε)κ∗.

Since K has O(1/ε) values, the binary search performs O(log(1/ε) steps. At each step
we have to compute area∗(P, k′) for some value k′ 6 4κa, which takes O

(
n(κ∗)2 log n

)
time.

In total, we spend O
(
n(κ∗)2 log n log(1/ε)

)
time after O(nκ∗ log n+ n log2 n) preprocessing

time.

Theorem 11. Given a set of n points P in the plane and a value α > 0, let κ∗(P, α)
be the maximum number of points from P that can be covered with a box of area α.
Given a parameter ε, where 0 6 ε 6 1/2, with probability at least 1 − 1/n we can find
in O

(
(n/ε4) log3 n log(1/ε)

)
time a box R̃ of area α that covers at least (1−ε)κ∗(P, α) points

from P .

Proof. Using Theorem 8 we compute in O(n log2 n) time a value κa satisfying

κ∗(P, α)/4 6 κa 6 κ∗(P, α).

Set κ = 4κa, so that κ∗(P, α) 6 κ, set s = min{n, c
ε2
n
κ log n}, and take a sample S of P

with s points. Henceforth we assume that S satisfies the properties of Lemma 9, which
occurs with probability at least 1− 1/n.

Using Lemma 10 for the sample S, we compute a box R̃ of area α covering at least
(1− ε)κ∗(S, α) points of S. We return R̃.

Let us analyze the running time of the algorithm. By Lemma 9, we have κ∗(S, α) =
O
(
(1/ε2) log n

)
. This means that the algorithm of Lemma 10 takes time

O
(
|S| (κ∗(S, α))2 log |S| log(1/ε) + |S| log2 |S|

)
.

http://jocg.org/

JoCG 10(1), 207–222, 2019 219

Journal of Computational Geometry jocg.org

Substituting the value κ∗(S, α) = O
(
(1/ε2) log n

)
and |S| 6 n we get the time bound

O
(
|S|
(
(1/ε2) log n

)2
log |S| log(1/ε) + |S| log2 |S|

)
= O

(
(n/ε4) log3 n log(1/ε)

)
.

Finally, we analyze the approximation error. Let R∗ be an optimal solution for P : A
box of area α that contains κ∗(P, α) points of P . Since R̃ covers (1− ε)κ∗(S, α) points of
the sample S, Lemma 9 implies that

|P ∩ R̃|
n

>
|S ∩ R̃|

s
− εκ

n

>
(1− ε)κ∗(S, α)

s
− εκ

n

> (1− ε) |S ∩R
∗|

s
− εκ

n

> (1− ε) |P ∩R
∗|

n
− εκ

n
− εκ

n

= (1− ε)κ
∗(P, α)

n
− 2ε

κ

n
.

This means that
|P ∩ R̃| > (1− ε)κ∗(P, α)− 2εκ,

and using that κ = 4κa 6 4κ∗(P, α), we get

|P ∩ R̃| > (1− ε)κ∗(P, α)− 2ε(4κ∗(P, α)) > (1− 9ε)κ∗(P, α).

Repeating the analysis with ε′ = ε/9 in place of ε, the result follows.

3.4 Can we make the algorithm deterministic?

To make our approximation algorithm deterministic, we would need a deterministic con-
struction of a relative (ρ, ε)-approximation with respect to boxes. It is currently unclear if a
relative approximation of the desired size can be computed deterministically in an efficient
manner. Another option would be to use ε-approximations for boxes. Given a set of points
P in the plane, a subset A ⊆ P is a δ-approximation1 with respect to boxes if

∀ boxes R :

∣∣∣∣ |R ∩ P ||P |
− |R ∩A|

|A|

∣∣∣∣ 6 δ.

δ-approximations are good for counting the number of points inside each box with an error
of δ|P |. After we have a constant-factor approximation κa to the value κ∗(P, α), we could
thus use a δ-approximation with δ = εκa. There are δ-approximations with respect to boxes
of size roughly O(1/δ), which would be better than the random sample we are currently using.
However, constructing such a δ-approximation takes roughly O(n/δ3) time; see Phillips [19]
for the latest results. For example, when κa = Θ(κ∗) = Θ(

√
n), this means that we need

roughly Õ(n5/2) time. Thus, building δ-approximations deterministically in near-linear time
is the current bottleneck for this approach.

1We use δ rather than ε here to avoid confusion with the different roles of ε.

http://jocg.org/

JoCG 10(1), 207–222, 2019 220

Journal of Computational Geometry jocg.org

4 Conclusions

There are several avenues that can be pursued to improve our results:

Improving Lemma 2 directly improves our time bounds for computing area∗(P, k).
One approach would be to reduce the problem of Lemma 2 to the following problem: Maintain
a set of O(k) points on the real line under insertions such that, after each insertion, we can
recover the smallest interval that contains k of the points. Moreover, we know the order of
the insertions in advance. If we can handle each insertion in o(k) time, then the result in
Lemma 2 can be improved, and consequently area∗(P, k) can be computed faster.

One may also try to compute the k values area∗(P, 1), . . . , area∗(P, k) faster than
using the algorithm for each k′ ∈ {1, . . . , k} independently. In particular, if in Lemma 2 we
could compute all the values Φ(Q, q, 1),Φ(Q, q, 2), . . . ,Φ(Q, q, |Q|) in o(|Q|3) time, then a
better algorithm could be obtained for this problem.

The following additional open problems remain:

• Is it possible to derandomize the algorithm described in Section 3 (see the discussion
in Section 3.4)?.

• In R3, can we find the smallest box covering k points in time roughly O(nk3)? Note
that any running time of the form Õ(nkc), for some constant c, would lead to a
near-linear-time randomized (1− ε)-approximation algorithm for the dual problem of
covering as many points as possible with a box of given volume.

• Is there a non-trivial lower bound, such as Ω(nk), for computing area∗(P, k) exactly?

Acknowledgments

Some parts of this work have been done at the Fourth Annual Workshop on Geometry and
Graphs, held at the Bellairs Research Institute in Barbados, March 6–11, 2016. The authors
are grateful to the organizers and to the participants of the workshop, especially to Luis
Barba for suggesting the problem. We would also like to thank Xavier Goaoc for fruitful
discussions on the subject.

References

[1] Pankaj K. Agarwal, Torben Hagerup, Rahul Ray, Micha Sharir, Michiel H. M. Smid,
and Emo Welzl. Translating a planar object to maximize point containment. In Proc.
10th Annual European Symposium (ESA), volume 2461 of Lecture Notes in Computer
Science, pages 42–53. Springer, 2002.

[2] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with
minimum diameter and related problems. J. Algorithms, 12(1):38–56, 1991.

http://jocg.org/

JoCG 10(1), 207–222, 2019 221

Journal of Computational Geometry jocg.org

[3] Hee-Kap Ahn, Sang Won Bae, Erik D. Demaine, Martin L. Demaine, Sang-Sub Kim,
Matias Korman, Iris Reinbacher, and Wanbin Son. Covering points by disjoint boxes
with outliers. Comput. Geom., 44(3):178–190, 2011.

[4] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel
rectangles and boxes. SIAM J. Comput., 39(7):3248–3282, 2010.

[5] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM J. Comput., 38(3):899–921, 2008.

[6] Sergio Cabello, José Miguel Díaz-Báñez, and Pablo Pérez-Lantero. Covering a
bichromatic point set with two disjoint monochromatic disks. Comput. Geom.,
46(3):203–212, 2013.

[7] Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest k-point enclosing
rectangle and square of arbitrary orientation. Inf. Process. Lett., 94(6):259–266, 2005.

[8] Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, and Michiel H. M. Smid. Static
and dynamic algorithms for k-point clustering problems. J. Algorithms, 19(3):474–503,
1995.

[9] Mark de Berg, Sergio Cabello, Otfried Cheong, David Eppstein, and Christian Knauer.
Covering many points with a small-area box. CoRR, abs/1612.02149, 2016.

[10] Mark de Berg, Sergio Cabello, and Sariel Har-Peled. Covering many or few points with
unit disks. Theory Comput. Syst., 45(3):446–469, 2009.

[11] Alon Efrat, Micha Sharir, and Alon Ziv. Computing the smallest k-enclosing circle and
related problems. Comput. Geom., 4:119–136, 1994.

[12] David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding minimal
polytopes. Discrete Comput. Geom., 11(3):321–350, 1994.

[13] Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest
k-enclosing circle. Algorithmica, 41(3):147–157, 2005.

[14] Sariel Har-Peled and Benjamin Raichel. Net and prune: A linear time algorithm for
Euclidean distance problems. J. ACM, 62(6):44, 2015.

[15] Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry.
Discrete & Computational Geometry, 45(3):462–496, 2011.

[16] Haim Kaplan, Sasanka Roy, and Micha Sharir. Finding axis-parallel rectangles of fixed
perimeter or area containing the largest number of points. In Proc. 25th Annual
European Symposium (ESA), volume 87 of LIPIcs, pages 52:1–52:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[17] Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample
complexity of learning. J. Comput. Syst. Sci., 62(3):516–527, 2001.

http://jocg.org/

JoCG 10(1), 207–222, 2019 222

Journal of Computational Geometry jocg.org

[18] Jiří Matoušek. On enclosing k points by a circle. Inf. Process. Lett., 53(4):217–221,
1995.

[19] Jeff M. Phillips. Algorithms for ε-approximations of terrains. In Proc. 35th
International Colloquium, Automata, Languages and Programming, (ICALP), volume
5125 of Lecture Notes in Computer Science, pages 447–458. Springer, 2008.

[20] Michael Segal and Klara Kedem. Enclosing k points in the smallest axis parallel
rectangle. Inform. Process. Lett., 65(2):95–99, 1998.

[21] Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985.

http://jocg.org/

	Introduction
	Minimizing area for a given number of points
	Maximizing the number of points for a given area
	A 4-approximation algorithm
	Properties of random sampling
	Approximation algorithm
	Can we make the algorithm deterministic?

	Conclusions

