
Covering Many or Few Points with Unit Disks∗

Mark de Berg† Sergio Cabello‡ Sariel Har-Peled§

December 15, 2006

Abstract

Let P be a set of n weighted points. We study approximation algorithms for the
following two continuous facility-location problems.

In the first problem we want to place m unit disks, for a given constant m > 1,
such that the total weight of the points from P inside the union of the disks is
maximized. We present algorithms that compute, for any fixed ε > 0, a (1 − ε)-
approximation to the optimal solution in O(n log n) time.

In the second problem we want to place a single disk with center in a given
constant-complexity region X such that the total weight of the points from P inside
the disk is minimized. Here we present an algorithm that compute, for any fixed
ε > 0, in O(n log2 n) expected time a disk that is, with high probability, a (1 + ε)-
approximation to the optimal solution.

1 Introduction

Let P be a set of n points in the plane, where each point p ∈ P has a given weight wp > 0.
For any P ′ ⊆ P , let w(P ′) =

∑
p∈P ′ wp denote the sum of the weights over P ′. We consider

the following two geometric optimization problems:

• max(P, m). Here we are given a weighted point set P and a parameter m, where m
is an integer constant with m > 1. The goal is to place m unit disks that maximize
the sum of the weights of the covered points. With a slight abuse of notation, we
also use max(P, m) to denote the value of an optimal solution, that is,

max(P, m) = max {w(P ∩ U) | U is the union of m unit disks} .

∗A preliminary version of this work will appear in Approximation and Online Algorithms – WAOA
2006, volume 4368 of LNCS.

†Department of Computer Science, TU Eindhoven, the Netherlands. MdB was supported by the Nether-
lands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.

‡Department of Mathematics, FMF, University of Ljubljana, and Department of Mathematics, IMFM,
Slovenia. Partially supported by the European Community Sixth Framework Programme under a Marie
Curie Intra-European Fellowship, and by the Slovenian Research Agency, project J1-7218.

§Department of Computer Science, University of Illinois, USA.

1

• min(P, X). Here we are given a weighted point set P and a region X of constant
complexity in the plane. The goal is to place a single unit disk with center in X
that minimizes the sum of the weights of the covered points. Note that this problem
is uninteresting if X is unbounded. We use min(P, X) as the value of an optimal
solution, that is,

min(P, X) = min {w(P ∩D) | D is a unit disk whose center is in X} .

The problems under consideration naturally arise in the context of locational analysis,
namely when considering placement of facilities that have a fixed area of influence, such
as antennas or sensors. max(P, m) models the problem of placing m of such new facilities
that maximize the number of covered clients, while min(P, X) models the placement of
a single obnoxious facility. min(P, X) can also model the placement of a facility in an
environment of obnoxious points.

Related work and other variants. Facility location has been studied extensively in
many different variants and it goes far beyond the scope of our paper to review all the work
in this area. We confine ourselves to discussing the work that is directly related to our
variant of the problem. For a general overview of facility-location problems in the plane,
we refer to the survey by Plastria [Pla01].

The problem max(P, m) for m = 1 was introduced by Drezner [Dre81]. Later Chazelle
and Lee [CL86] gave an O(n2)-time algorithm for this case. An approximation algorithm
has also been given: Agarwal et al.[AHR+02] provided a Monte-Carlo (1−ε)-approximation
algorithm for max(P, 1) when P is an unweighted point set. If we replace each point p ∈ P
by a unit disk centered at p, then max(P, 1) boils down to finding a point of maximum
depth in the arrangement of disks. This implies that the results of Aronov and Har-
Peled [AHP05] give a Monte-Carlo (1− ε)-approximation algorithm for unweighted point
sets that runs in O(nε−2 log n) time. Both the running time and the approximation factor
hold with high probability. The algorithm, although it is described for the unweighted
case, can be extended to the weighted case, giving an algorithm that uses O(nε−2 log2 n)
time.

Somewhat surprisingly, the problem max(P, m) seems to have not been studied so far
for m > 1. For m = 2, however, Cabello et al.[CaBS+] have shown how to solve a variant
of the problem where the two disks are required to be disjoint. (This condition changes
the problem significantly, because now issues related to packing problems arise.) Their
algorithm runs in O(n8/3 log2 n) time.

The problem min(P, X) was first studied by Drezner and Wesolowsky [DW94], who
gave an O(n2)-time algorithm. Note that if as before we replace each point by a unit
disk, the problem min(P, X) boils down to finding a point with minimum depth in an
arrangement of disks restricted to X. This means that for unweighted point sets, we can
again apply the result of Aronov and Har-Peled [AHP05] to get, with high probability, a
(1+ε)-approximation for min(P, X) in O(nε−2 log n) expected time. For technical reasons,
however, this algorithm cannot be trivially modified to handle weighted points.

2

The extension of min(P, X) to the problem of placing m unit disks, without extra
requirements, would have a solution consisting of m copies of the same disk. Hence, we
restrict our attention to the case m = 1. (Following the paper by Cabello et al.[CaBS+]
mentioned above one could study this problem under the condition that the disks be
disjoint, but in the current paper we are interested in possibly overlapping disks.)

When m is considered as part of the input, the max(P, m) problem is related to the
problem of minimizing the number of unit disks that are needed to cover a given point set.
This latter problem is known to be NP-hard [HM85], and therefore max(P, m) is NP-hard
when m is taken as part of the input.

There are also papers studying these problems for other shapes than unit disks. The
problem min(P, X) for unit squares—this problem was first considered by Drezner and
Wesolowsky [DW94]—turns out to be significantly easier than for disks and one can get sub-
quadratic exact algorithms: Katz, Kedem, and Segal [KKS02] gave an optimal O(n log n)
algorithm that computes the exact optimum. For disks this does not seem to be possible:
Aronov and Har-Peled [AHP05] showed that for disks min(P, X) and also max(P, 1) are
3SUM-HARD [GO95], that is, these problems belong to a class of problems for which no
subquadratic algorithm is known. (For some problems from this class, an Ω(n2) lower
bound has been proved in a restricted model of computation.) The problem max(P, 1) has
also been studied for other shapes [AHR+02]. We will limit our discussion to disks from
now on. Our algorithms can be trivially modified to handle squares, instead of disks, or
other fixed shapes of constant description.

Our results. As discussed above, max(P, m) is already 3SUM-HARD for m = 1 and
also min(P, X) is 3SUM-HARD. Since we are interested in algorithms with near-linear
running time we therefore focus on approximation algorithms. For max(P, m) we aim
to achieve (1 − ε)-approximation algorithms; given a parameter ε > 0, such algorithms
compute a set of m disks such that the total weight of all points in their union is at least
(1− ε) max(P, m). Similarly, for min(P, X) we aim for (1+ ε)-approximation algorithms,
that is, an algorithm that finds a disk centered in X and covering a total weight of at most
(1 + ε) min(P, X). When stating our bounds we consider m > 1 to be a constant and
assume a model of computation where the floor function takes constant time.

For max(P, m) we give deterministic (1 − ε)-approximation algorithms that run in
O(n log n + nε−4m+4 log2m−1(1/ε)) time if m > 4, in O(n log n + nε−6m+6 log(1/ε)) time if
m = 2, 3, and in O(n log n + nε−3) time if m = 1. The different cases depending on m
arise because of using specialized subroutines to compute so-called (1/r)-approximations.
However, the core of the algorithm is the same in all cases. With a slight modification in the
subroutine, we also give a randomized version that, with high probability, gives a (1− ε)-
approximation in O(nε−2 log n) time if m = 1, and O(nε−4m+4 log2m−1 n) time if m = 2, 3.
As subroutine for our approximation algorithms, we show how to solve max(P, m) exactly
in O(n2m−1 log n) time. For large values of m, we also give an exact algorithm that uses
nO(

√
m) time.

These are the first (1 − ε)-approximation algorithms for max(P, m) that use near-

3

linear time for m > 1. For m = 1, only randomized algorithms using near-linear time
were known previously. For this case, m = 1, our randomized algorithm improves previous
results, while our deterministic algorithm is incomparable: we have larger dependency on
ε but smaller on n.

For min(P, X) we give a randomized algorithm that runs in O(n(log2 n + ε−2 log n))
expected time and gives a (1 + ε)-approximation with high probability. This is the first
near-linear time approximation algorithm for this problem that can handle weighted points.

2 Notation and preliminaries

Grids. It will be convenient to define a unit disk as a closed disk of radius 1. Let s :=
√

2,
so that a square of side s can be covered by a unit disk, and let ∆ = 3ms. (Recall that
m is the number of disks we want to place.) We assume without loss of generality that
no coordinate of the points in P is a multiple of s. For a positive integer I we use the
notation [I] to denote the set {0, 1, 2, . . . , I − 1}. For a pair (a, b) ∈ [3m]2, we use G(a,b)

to denote the grid of spacing ∆ such that (as, bs) is one of the grid vertices, and we define
G := G(0,0). We consider the cells of a grid to be open sets. Finally, we let L(a,b) denote
the set of grid lines that define G(a,b). Thus L(a,b) is given by

{(x, y) ∈ R2 | y = bs + k ·∆ and k ∈ Z} ∪ {(x, y) ∈ R2 | x = as + k ·∆ and k ∈ Z}

The following lemma follows from an easy counting argument.

Lemma 1. Let U := D1∪· · ·∪Dm be the union of m unit disks. There is some (a, b) ∈ [3m]2

such that L(a,b) does not intersect U , which means that each disk Di is fully contained in
a cell of G(a,b).

Proof. For a ∈ [3m], let La be the vertical lines of L(a,·). Each Di is intersected by La for
at most 2 values of a ∈ [3m]. It follows that at most 2m of the 3m possible values for a
intersect U = D1 ∪ · · · ∪Dm, and therefore there is some a0 ∈ [3m] such that La0 does not
intersect U . The same applies to the horizontal lines: there is some b0 ∈ [3m] such that
the horizontal lines of L(·,b0) do not intersect U . Then, no line of L(a0,b0) intersects U .

Samples and high probability. Throughout the paper we use the expression with high
probability, or whp for short, to indicate that, for any given constant c > 0, the failure
probability can be bounded by n−c. (In our algorithms, the value c affects the constant
factor in the O-notation expressing the running time.)

An integer-weighted point set Q is a weighted point set with integer weights. We can
see Q as a multiset where each point is repeated as many times as its weight. We use P for
arbitrary weighted point sets and Q for integer-weighted point sets. A p-sample R of Q, for
some 0 6 p 6 1 is obtained by adding each point of the multiset Q to R with probability p,
independently. If R is a p-sample of Q and p · w(Q) > c log n, for an appropriate constant
c, then it follows from Chernoff bounds that R has Θ(p · w(Q)) points whp.

4

3 Approximation algorithms for max(P, m)

Our algorithm uses (1/r)-approximations [Cha01, Cha04, Mat95]. In our application they
can be defined as follows. Let U be the collection of sets U ⊂ R2 that are the union of m unit
disks, and let P be a weighted point set. A weighted point set A is a (1/r)-approximation
for P if for any U ∈ U we have: |w(U ∩ A)− w(U ∩ P)| 6 w(P)/r. There are different
constructions of (1/r)-approximations. For our application, the following lemma will give
the best results for m > 4. Other constructions that are more suitable when m 6 3 will
be considered in the Appendix.

Lemma 2. Let P be a weighted point set with n points and let 1 6 r 6 n be a parameter.
We can construct in O(n r12 log6 r) time a (1/r)-approximation A for P consisting of
O(r2 log r) points.

Proof. We assume that the reader is familiar with (1/r)-approximations for general range
spaces [Cha01, Cha04, Mat95]. Let V be the infinite set of cells that can arise in a vertical
decomposition [Hal04] of any collection of unit circles in the plane. The shatter function
of the range space (P,V) has exponent 6, that is, the set {P ∩ c | c ∈ V} consists of at
most O(n6) subsets of P . To see this, consider a set P ∩ c, where c is a cell arising in the
vertical decomposition of some collection of unit disks. Then P ∩ c is characterized by at
most six points from P , namely the leftmost point in P ∩ c, the rightmost point in P ∩ c,
one or two points for the top boundary, and one or two points for the bottom boundary.
(The points for the top boundary, for example, are the points that can be reached when
the disk bounding c from above is translated and or rotated down.)

Let r′ = v · r, where v = v(m) is the maximum number of cells that the vertical
decomposition of m unit circles can have. Since m is a fixed constant, r′ = O(r). Con-
sider a (1/r′)-approximation A for P with respect to the ranges V . Then A is a (1/r)-
approximation for P : for any U ∈ U , if V(U) denotes the vertical decomposition given by
the unit disks that define U , we have

|w(U ∩ P)− w(U ∩ A)| =

∣∣∣∣∣∣
∑

c∈V(U), c⊆U

w(c ∩ P)− w(c ∩ A)

∣∣∣∣∣∣
6

∑
c∈V(U), c⊆U

|w(c ∩ P)− w(c ∩ A)| 6 v · w(P)

r′
=

w(P)

r
.

When P is an unweighted point set, we can use known algorithms [Cha01, Cha04] to find
a (1/r′)-approximation A for P with respect to V consisting of O((r′)2 log r′) = O(r2 log r)
points in O(n((r′)2 log r′)6) = O(n r12 log6 r) time. Moreover, Matoušek [Mat95] shows
how an algorithm for finding (1/r)-approximations for unweighted point sets can be used
as subroutine to find (1/r)-approximation for weighted point sets, without affecting the
asymptotic running time or the number of points in the approximation.

5

At first sight it may seem that this solves our problem: compute a (1/r)-approximation
for r = 1/ε, and solve the problem for the resulting set of O(ε−2 log(1/ε)) points. Unfortu-
nately, this is not true: the error in the approximation is w(P)/r, not w(U ∩P)/r. Hence,
when w(P) is significantly larger than w(U ∩ P) we do not get a good approximation.
Indeed, to obtain a good approximation we need to choose r = w(P)/(ε ·max(P, m)). But
now r may become quite large—in fact Θ(n) in the worst case—and it seems we do not
gain anything. Nevertheless, this is the route we take. The crucial fact is that, even though
the size of the approximation may be Θ(n), we can still gain something: we can ensure
that any cell of G = G(0,0) contains only a few points. This will allow us to compute the
optimal solution within a cell quickly. By combining this with a dynamic-programming
approach and using several shifted grids, we can then obtain our result. We start with a
lemma guaranteeing the existence of an approximation with few points per grid cell.

Lemma 3. Let 0 < ε < 1 be a parameter and let P be a set with n weighted points.
Let r := w(P)/(ε max(P, m)); note that the value of r is not known. We can find in
O(n log n + n ε−12 log6(1/ε)) time a (1/2r)-approximation A for P consisting of at most n
points and such that any cell of G contains O(ε−2 log(1/ε)) points from A.

Proof. Let C be the collection of cells from G that contain some point of P . For a cell C ∈ C,
define PC := P∩C. Set r′ := 72m2/ε. For each cell C ∈ C, compute a (1/r′)-approximation
AC for PC . We next show that the set A :=

⋃
C∈C AC is a (1/2r)-approximation for P with

the desired properties.
For any cell C we have w(PC) 6 9m ·max(P, m) because C can be decomposed into 9m

rectangles of size s×ms, and for each of these rectangles R we have w(R∩P) 6 max(P, m).
Since AC is a (1/r′)-approximation for PC , we therefore have for any U ∈ U ,

|w(U ∩ AC)− w(U ∩ PC)| 6 w(PC)

r′
6

9m ·max(P, m)

72m2/ε
=

ε

8m
·max(P, m).

A unit disk of U ∈ U can intersect at most 4 cells of G, and therefore any U ∈ U can
intersect at most 4m cells of G. If CU denotes the cells of G intersected by U , we have
|CU | 6 4m, so

|w(U ∩ A)− w(U ∩ P)| =

∣∣∣∣∣∑
C∈CU

(w(U ∩ AC)− w(U ∩ PC))

∣∣∣∣∣
6
∑

C∈CU

|w(U ∩ AC)− w(U ∩ PC)|

6
∑

C∈CU

ε

8m
·max(P, m)

6 (ε/2) ·max(P, m)

= w(P)/2r.

We conclude that A is indeed a (1/2r)-approximation for P .

6

For constructing the set A, we can classify the points P by cells of G in O(n log n) time,
and then for each non-empty cell C apply Lemma 2 to get a (1/r′)-approximation AC for
PC . Since m is a fixed constant, we have r′ = O(1/ε), and according to Lemma 2, AC

will contain O((r′)2 log(r′)) = O(ε−2 log(1/ε)) points. Also, computing AC takes O(|PC | ·
(r′)12 log6 r′) = O(|PC | · ε−12 log6(1/ε)) time, and adding the time over all cells C ∈ C, we
obtain the claimed running time.

It is not hard to show that choosing the value of r as in Lemma 3 indeed leads to a
(1− ε)-approximation.

Lemma 4. Let 0 < ε < 1 be a parameter and let P be a set with n weighted points. Let
A be a (1/2r)-approximation for P , where r = w(P)/(ε max(P, m)). If U∗

A is an optimal
solution for max(A, m), then w(P ∩ U∗

A) > (1− ε) ·max(P, m).

Proof. Let U∗ be an optimal solution for P , that is, w(U∗ ∩ P) = max(P, m). Since U∗
A

is optimal for A, we have w(U∗
A ∩ A) > w(U∗ ∩ A). On the other hand, since A is a

(1/2r)-approximation for P , we have

|w(U∗
A ∩ A)− w(U∗

A ∩ P)| 6 (1/2r) · w(P) = (ε/2) ·max(P, m)

and
|w(U∗ ∩ A)− w(U∗ ∩ P)| 6 (ε/2) ·max(P, m).

Therefore

w(U∗
A ∩ P) = w(U∗

A ∩ A)− w(U∗
A ∩ A) + w(U∗

A ∩ P)

> w(U∗
A ∩ A)− (ε/2) ·max(P, m)

> w(U∗ ∩ A)− (ε/2) ·max(P, m)

= w(U∗ ∩ P)− w(U∗ ∩ P) + w(U∗ ∩ A)− (ε/2) ·max(P, m)

> w(U∗ ∩ P)− (ε/2) ·max(P, m)− (ε/2) ·max(P, m)

= (1− ε) ·max(P, m).

It remains to find an optimal solution U∗
A for A. For a point set B, an integer m, and a

cell C, define max(B, m, C) to be the maximum sum of weights of B that can be covered by
placing m unit disks contained in C. Assume that we have an algorithm Exact(B, m, C)—
later we will provide such an algorithm—that finds the exact value max(B, m, C) in
T (k, m) time for point sets B with k points, For technical reasons, we also assume that
T (k, m) has the following two properties: T (k, j) 6 T (k, m) for j 6 m and T (k, m) is su-
perlinear but polynomially bounded for any fixed m. The next lemma shows that we can
then compute the optimal solution for A quickly, using a dynamic-programming approach.

Lemma 5. Let A be a point set with at most n points such that each cell of G contains
at most k points. We can find max(A, m) in O(n log n + (n/k) · T (k, m)) time.

7

Proof. For each (a, b) ∈ [3m]2, let max(a,b)(A, m) be the optimal weight we can cover with
m unit disks that are disjoint from L(a,b). Lemma 1 implies that

max(A, m) = max
(a,b)∈[3m]2

max(a,b)(A, m).

We will show how to compute each max(a,b)(A, m) in O(n log n + (n/k) · T (k,m)) time,
which proves our statement because m2 = O(1). First we give the algorithm, and then
discuss its time bound.

Consider a fixed (a, b) ∈ [3m]2. Let C = {C1, . . . , Ct} be the cells of G(a,b) that contain
some point from P ; we have |C| = t 6 n. For any cell Ci ∈ C, define Ai = A ∩ Ci.

For each cell Ci ∈ C and each j ∈ {1, . . . ,m}, compute max(Ai, j, Ci) by calling the
procedure Exact(Ai, j, Ci). From the values max(Ai, j, Ci) we can compute max(a,b)(A, m)
using dynamic programming across the cells of C, as follows. Define Bi = A1∪· · ·∪Ai. We
want to compute max(a,b)(Bi, j) for all i, j. To this end we note that an optimal solution
max(a,b)(Bi, j) will have ` disks inside Ai, for some 0 6 ` 6 j, and the remaining j − `
disks spread among the cells C1, . . . , Ci−1. This leads to the following recursive formula:

max(a,b)(Bi, j) =

{
max(A1, j, C1) if i = 1
max06`6j{max(Ai, `, Ci) + max(a,b)(Bi−1, j − `)} otherwise

Since max(a,b)(Bt, m) = max(a,b)(A, m), we end up computing the value max(a,b)(A, m).
This finishes the description of the algorithm.

The time used to compute max(a,b)(A, m) can be bounded as follows. Firstly, observe
that constructing Ai for all Ci ∈ C takes O(n log n) time. For computing the values
max(Ai, j, Ci) for all i, j we need time

∑
Ci∈C

m∑
j=1

T (|Ai|, j) 6
∑
Ci∈C

m · T (|Ai|, m) = O

(∑
Ci∈C

T (|Ai|, m)

)
,

where the first inequality follows because for j 6 m we have T (k, j) 6 T (k,m) by assump-
tion, and the second one follows since m is a constant. We have |Ai| 6 4k for any Ci ∈ C
because Ci intersects at most 4 cells of G. Moreover, because T (k,m) is superlinear in k for
fixed m, the sum is maximized when the points concentrate in as few sets Ai as possible.
Therefore, the needed time can be bounded by

O

(∑
Ci∈C

T (|Ai|, m)

)
6 O

dn/4ke∑
i=1

T (4k,m)

 = O((n/4k) ·T (4k,m)) = O((n/k) ·T (k,m)),

where we have used that T (4k, m) = O(T (k,m)) because T is polynomially bounded by
assumption. Once we have the values max(Ai, j, Ci) for all i, j, the dynamic program-
ming requires computing O(tm) = O(n) values max(a,b)(Bi, j), and each element requires
O(m) = O(1) time. Therefore, the dynamic programming takes O(n) time. We conclude
that finding max(a,b)(A, m) takes O(n log n+(n/k)·T (k,m)) time for any (a, b) ∈ [3m]2.

8

Putting everything together, we obtain the following result.

Lemma 6. For any weighted point set P with n points, we can find a set of m disks that
cover a weight of at least (1−ε) max(P, m) in O(n log n+n ε−12 log6(1/ε)+(n/k) ·T (k, m))
time, where k = O(ε−2 log(1/ε)).

Proof. Given P and a parameter ε, consider the (unknown) value r = w(P)
ε·max(P,m)

. We use

Lemma 3 to compute a point set A with at most n points and such that A is a (1/2r)-
approximation for P and any cell of G contains O(ε−2 log(1/ε)) points.

We then use Lemma 5 to find an optimal solution U∗
A for max(A, m) in O(n log n +

(n/k) · T (k,m)), where k = O(ε−2 log(1/ε)). From Lemma 4, we know that w(U∗
A ∩ P) >

(1− ε) max(P, m), and the result follows.

Theorem 9 below states there is an algorithm for the exact problem with T (k,m) =
O(k2m−1 log k) for m > 1. For m = 1, we have T (k, 1) = O(k2) because of the results of
Chazelle and Lee [CL86] mentioned in the Related Work of Section 1. This bound T (k,m)
satisfies the two technical conditions mentioned above, so we can apply the previous lemma
to it. A simple calculation shows that we obtain a (1− ε)-approximation algorithm using
O(n log n + n ε−12 log6(1/ε) + n ε−4m+4 log2m−1(1/ε)) time. When m > 4, the second term
is absorbed by the third term, and this is the best algorithm we will obtain for this case.
This proves Theorem 7(i) below.

Considering different variants of Lemma 2, while leaving the rest of the algorithm basi-
cally unchanged, we can obtain results that have a better dependency on ε for m = 1, 2, 3.
These results require no significant new ideas, and we have included them in Section A of
the Appendix. Here, we only summarize the final results.

Theorem 7. Given a parameter 0 < ε < 1 and a weighted point set P with n points, we
can find a set of m disks that cover a weight of at least (1− ε) max(P, m)

(i) in O(n log n + n ε−4m+4 log2m−1(1/ε)) time if m > 4;

(ii) in O(n log n + nε−6m+6 log(1/ε)) time if m = 2, 3;

(iii) in O(n log n + nε−3) time if m = 1.

Also, there is a randomized algorithm that, with high probability, returns a set of m disks
that cover a weight of at least (1− ε) max(P, m)

(iv) in O(nε−4m+4 log2m−1 n) time if m = 2, 3;

(v) in O(nε−2 log n) time if m = 1.

The term O(n log n) in the running times of cases (i)–(iii) comes from the classifica-
tion of points according to cells. Using hashing, this can be done with O(n) expected
time [KT05, Chapter 13]. Therefore, we can remove the term O(n log n) in the running
times, and obtain a bound on the expected running time.

9

3.1 Exact algorithms for max(P, m, C)

We want an algorithm that solves exactly the problem of placing m unit disks contained
in a grid cell C such the sum of the weights of the covered points is maximized. We denote
by max(P, m, C) the optimal value. This problem was used as subroutine in Lemma 5.
The only property of C that will be used is that C has bounded description complexity.
Therefore, the same discussion provides exact algorithms for the problem max(P, m). Let
X be the set of possible centers for a unit disk contained in C—the domain X is simply a
square with the same center as C and of side length ∆− 2 instead of ∆.

For a point p ∈ P , let Dp be the unit disk centered at p. The weight of Dp is wp, the
weight of p. Let DP := {Dp : p ∈ P} be the set of all disks defined by P . For a point
q ∈ R2 and a set D of weighted disks, we define depth(q,D) to be the sum of the weights of
the disks from D that contain q. Let A denote the arrangement induced by the disks from
DP . For any point q inside a fixed cell c of A, the function depth(q,DP) is constant; we
denote its value by depth(c,DP). Because each disk Dp has the same size, the arrangement
A can be constructed in O(n2) time [CL86]. Moreover, a simple traversal of A allows us
to compute depth(c,DP) for all cells c ∈ A in O(n2) time.

Let VA be the set of vertices of A, let VX be the intersection points of the boundary of
X with the boundary of some disk Dp, p ∈ P , and let Vleft be set of leftmost points from
each disk Dp, p ∈ P . Finally, let V = (VA ∪ VX ∪ Vleft) ∩ X. See Figure 1, left. If V = ∅,
then X is contained in some cell of A and the problem can trivially be solved. Otherwise
we have

max(P, m, C) = max {w(P ∩ U) | U union of m unit disks with centers at V } ,

that is, we only need to consider disks whose centers are in V . Based on this observation,
we can solve max(P, m, C) for m > 1. We first consider the case m = 2.

Lemma 8. We can compute max(P, 2, C) in O(n3 log n) time.

Proof. Our approach is similar to the one used by Katz and Sharir [KS97]. Let A∗ the
arrangement induced by the set DP of disks and the sets X and V . Let G be the plane
graph obtained by considering the restriction of A∗ to X: the vertices of G are the vertices
of A∗ contained in X and the edges of G are the edges of A∗ fully contained in X—see
Figure 1, right. For simplicity, let us assume that each vertex in G has degree 4, meaning
that no three points of P are cocircular and no intersection of the boundary of two disks
lies on the boundary of X. This condition can be enforced considering the max problem
for disks of radius 1 + δ, where δ > 0 is a formal infinitesimal: since we consider closed
unit disks in the problem, the quality of the solution is not affected by making the disks
infinitesimally larger. Consider a spanning tree of G and double each edge to obtain an
Euler path π. The path π has O(n2) edges and it visits each vertex of V at least once and
at most four times.

The idea of the algorithm is as follows. We want to find two vertices q, v ∈ V , such
that P ∩ (Dq ∪Dv) has maximum weight. If we fix q and let DP (q) ⊂ DP denote the disks
in DP not containing q, then the best pair q, v (for this choice of q) covers a weight of

10

Figure 1: Left: Example showing the points V . The dots indicate VA ∩ X, the squares
indicate VX , and the crosses indicate Vleft ∩X. Right: planar graph G with V as vertices
and connected using portions of A or the boundary of X as edges.

depth(q,DP) + maxv∈V depth(v,DP (q)). So our approach is to walk along the tour π to
visit all possible vertices q ∈ V , and maintain the set D := DP (q)—we call this the set
of active disks—such that we can efficiently perform the following operations: (i) report a
vertex v ∈ V maximizing depth(v,D), and (ii) insert or delete a disk into D. Then we can
proceed as follows. Consider two vertices q′, q′′ that are connected by an edge of π. The
sets DP (q′) and DP (q′′) of active disks can differ by at most two disks. So while we traverse
π, stepping from a vertex q′ to an adjacent one q′′ along an edge of π, we can update D with
at most two insertions/deletions, and then report a vertex v ∈ V maximizing depth(v,D).
Next we show how to maintain D such that both operations—reporting and updating—can
be performed in O(n log n) time. Since π has O(n2) vertices, the total time will then be
O(n3 log n), as claimed.

The main problem in maintaining the set of active disks D is that the insertion or
deletion of a disk can change depth(v,D) for Θ(n2) vertices v ∈ V . Hence, to obtain
O(n log n) update time, we cannot maintain all the depths explicitly. Instead we do this
implicitly, as follows.

Let T be a balanced binary tree on the path π, where the leftmost leaf stores the first
vertex of π, the next leaf the second vertex of π, and so on. Thus the tree T has O(n2)
nodes. For an internal node ν we denote by Tν the subtree of T rooted at ν. Furthermore,
we define π(ν) to be the subpath of π from the leftmost vertex in Tν to the rightmost vertex
in Tν . Note that if µ1 and µ2 are the children of ν, then π(ν) is the concatenation of π(µ1)
and π(µ2). Also note that π(root(T)) = π. Finally, note that any subpath from π can be
expressed as the concatenation of the subpaths π(ν1), π(ν2), . . . of O(log n) nodes—this is
similar to the way a segment tree [dBvKOS00] works.

Now consider some disk Dp ∈ DP . Since Dp has O(n) vertices from V on its boundary,
the part of π inside Dp consists of O(n) subpaths. Hence, there is a collection N(Dp)

11

of O(n log n) nodes in T —we call this set the canonical representation of Dp—such that
π ∩Dp is the disjoint union of the set of paths {π(ν) : ν ∈ N(Dp)}. We store at each node
ν the following two values:

• Cover(ν): the total weight of all disks Dp ∈ D (that is, all active disks) such that
ν ∈ N(Dp).

• MaxDepth(ν): the value max{depth(v,D(ν)) : v ∈ π(ν)}, where D(ν) ⊂ D is the set
of all active disks whose canonical representation contains a node µ in Tν .

Notice that MaxDepth(root(T)) = maxv∈V depth(v,D), so MaxDepth(root(T)) is exactly
the value we want to report. Hence, it remains to describe how to maintain the values
Cover(ν) and MaxDepth(ν) when D is updated. Consider the insertion of a disk Dp into
D; deletions are handled similarly. First we find in O(n log n) time the set N(Dp) of nodes
in T that forms the canonical representation of Dp. The values Cover(ν) and MaxDepth(ν)
are only influenced for nodes ν that are in N(Dp), or that are an ancestor of such a node.
More precisely, for ν ∈ N(Dp), we need to add the weight of Dp to Cover(ν) and to
MaxDepth(ν). To update the values at the ancestors we use that, if µ1 and µ2 are the
children of a node ν, then we have

MaxDepth(ν) = Cover(ν) + max(MaxDepth(µ1), MaxDepth(µ2)).

This means we can update the values in a bottom-up fashion in O(1) time per ancestor,
so in O(n log n) time in total. This finishes the description of the data structure—see
Katz et al. [KKS02] or Bose et al. [BvKM+03] for similar ideas, or how to reduce the space
requirements.

Theorem 9. For any fixed m > 1, we can compute max(P, m, C) in O(n2m−1 log n) time.

Proof. For m > 2, fix any m − 2 vertices v1, . . . , vm−2 ∈ V , compute the point set P ′ =
P \ (Dv1 ∪ · · · ∪Dvm−2), and compute max(P ′, 2, C) in O(n3 log n) time using the previous
lemma. We obtain a placement of disks covering a weight of w(P \ P ′) + max(P ′, 2, C).
This solution is optimal under the assumption that the first m − 2 disks are placed at
v1, . . . , vm−2. Iterating this procedure over the O(|V |m−2) = O(n2m−4) possible tuples of
vertices v1, . . . , vm−2, it is clear that we obtain the optimal solution for placing m disks with
centers at X. The time we spend can be bounded as O(n2m−4n3 log n) = O(n2m−1 log n).

3.2 A faster algorithm for large m

If m is large, we can adapt an algorithm of Agarwal and Procopiuc [AP02] to get a faster
solution to our problem. The approach is based on the following observation: for any
optimal solution, there exists a line of the integer grid (either horizontal or vertical) that
stabs O(

√
m) of its disks. Indeed, consider the m unit disks used by an optimal solution

U . All the unit disks that are stabbed by a single point are contained in a disk of radius 2,

12

Figure 2: Example showing that there are cases where some points pierce Θ(m) disks of
any optimal solution for max(P, m,C).

which could be covered by 7 unit disks. It follows that no point can stab more than seven
disks of the optimal solution U . Then, two cases are distinguished depending on whether
U is contained in a vertical strip of width

√
m or not. In the first case, one can argue that

there is a horizontal line of the integer grid with the desired property, while in the second,
one can argue for a vertical line. See [AP02] if more detail is needed.

We use dynamic programming to find the optimal solution, as follows. Consider all
the lines of the integer grid that are in distance at most 4 from one of the points of P .
There are O(n) such lines. We start with a bounding rectangle that contains all the points
of P . At each stage, we guess the above cutting line for the optimal solution, and the
O(
√

m) unit disks that cut this line (there are O(n2) candidate unit disks overall). We
also guess the number of disks in each side of the cutting line in the optimal solution, and
solve recursively in each side. In this recursive algorithm, a subproblem is composed of
a rectangle (there are O(n4) such choices), a guess of O(

√
m) unit disks of the optimal

solution intersecting the boundary of the rectangle (there are nO(
√

m) such choices), and
the number of disks fully contained in the rectangle (there are m such choices). Hence, the
dynamic programming to compute the maximum number of covered points can be done in
nO(

√
m) time. We summarize.

Theorem 10. For any fixed m > 1, we can compute max(P, m) in nO(
√

m) time.

This algorithm cannnot be directly adapted to solve the problem max(P, m, C): it is
not longer true that any point stabs at most a constant number of disks in an optimal
solution; see Figure 2. Reusing the ideas involved in Lemmas 1–6, one can give another
algorithm that employs Theorem 10 as subroutine. However, the constants involved in the
exponent O(

√
m) of Theorem 10 make this approach uninteresting, unless m is large.

13

4 Approximation algorithms for min(P, X)

We now turn our attention to the problem min(P, X) where we wish to place a single
disk D in X as to minimize the sum of the weights of the points in P ∩D. Our approach
to obtain a (1 + ε)-approximation consists of two stages. First, we make a binary search
to find a value T that is a constant factor approximation for min(P, X). For this to
work, we give a decision procedure that drives the search for the value T . Second, we
use the constant factor approximation T to find a (1 + ε)-approximation of min(P, X).
Both stages of our algorithm are based on the same idea: convert the point set P to
an integer-weighted point set Q by scaling and rounding appropriately, and then solve
the problem for a random sample of Q. We first provide two technical lemmas to be
used later on. Lemma 11, Lemma 13 and Lemma 16 are simple adaptations of results by
Aronov and Har-Peled [AHP05]. The proofs are given here for the sake of clearness and
self-containment.

As it happens with the max(P, m) problem, we also use a subroutine to exactly solve
a slight modification of the min(P, X) problem. The following lemma describes the sub-
routine we will use. Here, like before, Da denotes the unit disk centered at a point a.

Lemma 11. Let Q be an integer-weighted point set with at most n points, let X be
a domain of constant complexity, let A be a set of at most n points, and let κ be a
value. We can decide in O(nκ + n log n) expected time if min

(
Q,X \ (

⋃
a∈A Da)

)
6 κ or

min
(
Q,X \ (

⋃
a∈A Da)

)
> κ. In the former case we can also find a unit disk D that is

optimal for min
(
Q, X \ (

⋃
a∈A Da)

)
. The running time is randomized, but the result is

always correct.

Proof. Let A be the arrangement induced by the O(n) disks Da, a ∈ A, and Dq, q ∈ Q,
and let Aκ be the portion of A that has depth at most κ. The portion Aκ has complexity
O(nκ) [Sha91] and it can be constructed using a randomized incremental construction, in
O(nκ + n log n) expected time [CS89]. Then, we just discard all the cells of Aκ that are
covered by any disk Da with a ∈ A, and for the remaining cells we check if any has depth
over κ and intersects X. Since X has constant complexity, in each cell we spend time
proportional to its complexity, and the result follows.

The following lemma bounds the error when scaling and rounding the weights.

Lemma 12. Let P be a weighted point set with n points, let S > 0 be a value, and let Q
denote the integer-weighted point set obtained by picking each point from P with weight
bwp/Sc. Then, for any disk D we have

w(D ∩ P)− n · S 6 S · w(D ∩Q) 6 w(D ∩ P).

Proof. For any disk D we have

w(D ∩ P)− n · S 6
∑

p∈D∩P

(wp − S) 6
∑

p∈D∩P

bwp/Sc · S = w(D ∩Q) · S

14

and
w(D ∩Q) · S =

∑
p∈D∩P

bwp/Sc · S 6
∑

p∈D∩P

(wp/S) · S = w(D ∩ P).

4.1 Finding a constant factor approximation

Our algorithm uses the following combinatorial result for random sampling.

Lemma 13. Let Q be an integer-weighted point set with at most n points, let Y be any
domain, and let ∆Q = min(Q, Y). Given a value k, set p = min{1, ck−1 log n}, where
c > 0 is an appropriate constant. If R is a p-sample of Q and ∆R = min(R, Y), then whp
it holds

(i) if ∆Q > k/2, then ∆R > kp/4;

(ii) if ∆Q 6 2k, then ∆R 6 3kp;

(iii) if ∆Q /∈ [k/8, 6k], then ∆R /∈ [kp/4, 3kp].

Proof. If p = 1, then the result is clearly true. The case p < 1 is handled considering each
claim separately and using Chernoff bounds.

(i) Assume that ∆Q > k/2. Consider a fixed unit disk D centered in Y and the random
variable W = w(D ∩ R). Since w(D ∩Q) > ∆Q > k/2, we have µ := E[W] > kp/2,
and therefore µ− kp/4 > µ/2. Using Chernoff bounds we obtain

Pr
[
W 6 kp

4

]
= Pr

[
−W > −kp

4

]
= Pr

[
µ−W > µ− kp

4

]
6 Pr

[
|W − µ| > µ

2

]
6 e

−Ω

(
µ
(

1
2

)2
)

= e−Ω(µ) = e−Ω(kp) 6 e−Ω(c log n)

6 n−Ω(c).

We conclude that whp w(D ∩ R) > kp/4. This only holds for the fixed disk D.
However, since there are at most O(n2) combinatorially different unit disks, that is,
{Q ∩D | D unit disk} has at most O(n2) elements, it follows from the union bound
that whp w(D∩R) > kp/4 for any disk D centered in Y . Therefore, whp ∆R > kp/4.

(ii) Assume that ∆Q 6 2k. Let D∗ be a unit disk centered in Y such that w(D∗ ∩Q) =
∆Q 6 2k. Consider the random variable W = w(D∗∩R). We have µ := E[W] 6 2kp,
and therefore kp/µ > 1/2. Using Chernoff bounds, we obtain

Pr [W > 3kp] = Pr [W − 2kp > kp] 6 Pr [W − µ > kp]

6 Pr
[
W − µ > kp

µ
· µ
]

6 e
−Ω

(
µ(kp

µ)
2
)

6 e
−Ω

(
(kp)2

µ

)
6 e−Ω(kp) 6 e−Ω(c log n)

6 n−Ω(c).

We conclude that whp w(D∗ ∩R) 6 3kp, and therefore ∆R 6 3kp.

15

(iii) This is done exactly in the same way as (i) and (ii).

The idea for the decision version is to distinguish between heavy and light points.
The heavy points have to be avoided, while the light ones can be approximated by a set
of n integer-weighted points with similar weights. Then we can take a random sample
of appropriate size and use the previous combinatorial lemma to decide. This decision
procedure is then used as subroutine in Lemma 15 to find a constant-factor approximation
for min(P, X).

Lemma 14. Let X be a domain with constant complexity. Given a weighted point set
P with n points and a value T , we can return in O(n log n) expected time whether (i)
min(P, X) < T , or (ii) min(P, X) > 2T , or (iii) min(P, X) ∈ (T/10, 10T), where the
returned answer is correct whp.

Proof. First we describe the algorithm then show its correctness and finally discuss its
running time.

Algorithm. We compute the sets A = {p ∈ P | wp > 2T} and P̃ = P \ A, as well as
the domain Y = X \

⋃
a∈A Da. If Y = ∅, then we can report min(P, X) > 2T , since

any disk with center in X covers some point with weight at least 2T . If Y 6= ∅, we
construct the integer-weighted point set Q obtained by picking each point from P̃ with
weight b2nwp/T c. Set k = 2n, and p = min{1, ck−1 log n}, where c is an appropriate
constant. We construct a p-sample R of Q, and decide as follows: If min(R, Y) < kp/4
then return min(P, X) < T ; if min(R, Y) > 3kp then return min(P, X) > 2T ; otherwise
return min(P, X) ∈ (T/10, 10T).

Correctness. We have to show that, whp, the algorithm gives a correct answer. Note that
min(P, X) 6 2T if and only if min(P, Y) 6 2T , and in that case we have min(P, X) =
min(P, Y). Therefore, we only need concentrate our attention to min(P, Y). Define
∆Q = min(Q, Y) and ∆P = min(P, Y). For any unit disk D centered in Y we have
w(D ∩ P) = w(D ∩ P̃), and therefore

w(D ∩ P)− T/2 6 (T/2n) · w(D ∩Q) 6 w(D ∩ P)

because of Lemma 12. This implies that

∆P − T/2 6
T

2n
·∆Q 6 ∆P . (1)

The value ∆R = min(R, Y) provides us information as follows:

• If ∆R < kp/4, then ∆Q < k/2 = n whp because of Lemma 13(i), and using equation
(1) we obtain that

∆P 6
T

2n
·∆Q +

T

2
<

T

2n
· n +

T

2
= T.

16

• If ∆R > 3kp, then ∆Q > 2k = 4n whp because of Lemma 13(ii), and using equation
(1) we obtain that

∆P >
T

2n
·∆Q >

T

2n
· 4n = 2T.

• If ∆R ∈ [kp/4, 3kp], then ∆Q ∈ [k/8, 6k] = [n/4, 12n] whp by Lemma 13(iii). Using
equation (1) we obtain that whp

∆P 6
T

2n
·∆Q + T/2 <

T

2n
· 12n + T/2 < 10T

and

∆P >
T

2n
·∆Q >

T

2n
· n

4
>

T

10
.

It follows that the algorithm gives the correct answer whp.

Running time. We can compute A, P̃ , Q, R in linear time, and check if Y = ∅ in O(n log n)
expected time by constructing

⋃
a∈A Da explicitly using a randomized incremental con-

struction. Note that kp = O(log n) and R consists of at most n points. Because Y =
X \

⋃
a∈A Da, we can use Lemma 11 to find if ∆R = min(R, Y) > 3kp or otherwise

compute ∆R exactly, in O(|R| log |R|+ |R|kp) = O(n log n) expected time.

Lemma 15. Let X be a domain with constant complexity. Given a weighted point set
P with n points, we can find in O(n log2 n) expected time a value T that, whp, satisfies
T/10 < min(P, X) < 10T .

Proof. The idea is to make a binary search. For this, we will use the previous lemma for
certain values T . Note that, if at any stage, the previous lemma returns that min(P, X) ∈
(T/10, 10T), then we have found our desired value T , and we can finish the search. In total,
we will make O(log n) calls to the procedure of Lemma 14, and therefore we obtain the
claimed expected running time. Also, the result is correct whp because we make O(log n)
calls to procedures that are correct whp.

Define the interval Ip = [wp, (n + 1) · wp) for any point p ∈ P , and let I =
⋃

p∈P Ip.
It is clear that min(P, X) ∈ I, since the weight of the heaviest point covered by an
optimal solution can appear at most n times in the solution. Consider the values B =
{wp, (n + 1) · wp | p ∈ P}, and assume that B = {b1, . . . , b2n} is sorted increasingly.
Note that for the (unique) index i such that min(P, X) ∈ [bi, bi+1), it must hold that
bi+1 6 (n + 1)bi

We first perform a binary search to find two consecutive elements bi, bi+1 such that
min(P, X) ∈ [bi, bi+1). Start with ` = 1 and r = 2n. While r 6= ` + 1, set m = b(` + r)/2c
and use the previous lemma with T = bm:

• if min(P, X) < T , then set r = m.

• if min(P, X) > 2T , then set ` = m.

• if T/10 < min(P, X) < 10T , then we just return T as the desired value.

17

Note that during the search we maintain the invariant min(P, X) ∈ [b`, br). Since we end
up with two consecutive indices ` = i, r = i + 1, it must hold that min(P, X) ∈ [bi, bi+1).

Next, we perform another binary search in the interval [bi, bi+1) as follows. Start with
` = bi and r = bi+1. While r/` > 10, set m = (`+r)/2 and call the procedure of Lemma 14
with T = m:

• if min(P, X) < T , then set r = m.

• if min(P, X) > 2T , then set ` = m.

• if T/10 < min(P, X) < 10T , then we just return T as the desired value.

Since bi+1 6 (n + 1)bi, it takes O(log n) iterations to ensure that r/` 6 10. During the
search we maintain the invariant that min(P, X) ∈ [`, r), and therefore we can return the
last value ` as satisfying min(P, X) ∈ (`/10, 10`).

4.2 Finer sampling and (1 + ε)-approximation

Assuming that we have a constant factor approximation to the value min(P, X), we will
provide an algorithm that gives a (1+ε)-approximation. First, we provide a combinatorial
lemma that resembles Lemma 13 but takes the parameter ε into account.

Lemma 16. Let Q be an integer-weighted point set with at most n points, let Y be any
domain, and let 0 < ε < 1 be a parameter. Assume that you are given a value k such
that min(Q, Y) = Ω(k), and set p = min{1, ck−1ε−2 log n}, where c > 0 is an appropriate
constant. If R is a p-sample of Q and DR is an optimal unit disk for min(R, Y), then
w(DR ∩Q) 6 (1 + ε/2) min(Q, Y) whp.

Proof. If p = 1, then R = Q and the claim is evident. Otherwise, let ∆Q = min(Q, Y)
and ∆R = min(R, Y). Consider the value Z = (1 + ε/4) p ∆Q. We have the following two
properties:

• Whp, ∆R < Z. Indeed, if we consider a disk D∗ centered at Y such that w(D∗∩Q) =
∆Q, we can apply Chernoff bounds to the random variable W = w(D∗∩R) to obtain

Pr [w(D∗ ∩R) > Z] 6 Pr
[
W > (1 + ε

4
)p ∆Q

]
= Pr

[
W > (1 + ε

4
)E[W]

]
6 e

−Ω
(

E[W](ε
4)

2
)

6 e−Ω(p ∆Q ε2)

6 e−Ω(ck−1 ∆Q log n) 6 n−Ω(c),

where we have used that ∆Q/k = Ω(1).

• Whp, for all unit disks D with w(D ∩ Q) > (1 + ε/2) ∆Q we have w(D ∩ R) > Z.
Indeed, consider any such disk D and the related random variable W = w(D ∩ R).

18

Note that E[W] > (1 + ε/2) p ∆Q. Using that (1 + ε/4) 6 (1− ε/6) (1 + ε/2) for any
ε ∈ (0, 1), we have

Pr [w(D ∩R) < Z] = Pr
[
W <

(
1 + ε

4

)
p ∆Q

]
6 Pr

[
W <

(
1− ε

6

) (
1 + ε

2

)
p ∆Q

]
6 Pr

[
W <

(
1− ε

6

)
E[W]

]
6 e

−Ω
(

E[W](ε
6)

2
)

6 e−Ω(p ∆Q ε2) 6 n−Ω(c).

Since there are at most O(n2) combinatorially different unit disks, the claim follows
from the union bound.

The first item implies that, whp, an optimal unit disk DR satisfies w(DR ∩R) = ∆R < Z.
But w(DR ∩ R) = ∆R < Z implies that, whp, w(DR ∩ Q) < (1 + ε/2) ∆Q because of the
second item.

Lemma 17. Let 0 < ε < 1 be a parameter, let P be a weighted point set with n points, and
let T be a given value such that T/10 < min(P, X) < 10T . We can find in O(n ε−2 log n)
expected time a unit disk D that, whp, satisfies w(D ∩ P) 6 (1 + ε) min(P, X).

Proof. First we describe the algorithm, then show its correctness, and finally discuss its
running time. The ideas are similar to the ones used in Lemma 14. However, now we also
need to take into account the parameter ε.
Algorithm. We compute the sets A = {p ∈ P | wp > 10T} and P̃ = P \ A, as well
as the domain Y = X \

⋃
a∈A Da. We construct an integer-weighted point set Q by

picking each point from P̃ with weight b20nwp/εT c. Define k = b20n/εc, and let p =
min{1, ck−1ε−2 log n}, where c is the constant used in the previous lemma. Finally, compute
a p-sample R of Q, find a best disk DR for min(R, Y), and report the disk DR as solution.
Correctness. Since min(P, X) < 10T by hypothesis, we know that min(P, X) = min(P, Y) =
min(P̃ , Y), because any disk with center in

⋃
a∈A Da covers some point of A. We there-

fore concentrate on the value min(P, Y). Let ∆Q = min(Q, Y) and ∆P = min(P, Y).
We have to show that whp the disk DR returned by the algorithm satisfies w(DR ∩ P) 6
(1 + ε) min(P, X) = (1 + ε)∆P . For any unit disk D centered in Y , we have w(D ∩ P) =
w(D ∩ P̃), and therefore

w(D ∩ P)− εT

20
6

εT

20n
· w(D ∩Q) 6 w(D ∩ P). (2)

because of Lemma 12. We conclude that

∆P − εT

20
6

εT

20n
·∆Q 6 ∆P . (3)

Using this last relation and the bound ∆P > T/10 we obtain that

∆Q >
20n

εT
·∆P − n >

20n

εT
· T

10
− n =

2n

ε
− n >

n

ε
>

k

20
.

19

This means that ∆Q = Ω(k), and by Lemma 16 we conclude that w(DR∩Q) 6 (1+ε/2)∆Q.
But then we can use relations (2), (3) and the bound T 6 10 ∆P to obtain

w(DR ∩ P) 6
εT

20
+

εT

20n
· w(DR ∩Q) 6

ε · 10 ∆P

20
+

εT

20n
·
(
1 +

ε

2

)
∆Q

6
ε

2
·∆P +

(
1 +

ε

2

)
∆P = (1 + ε)∆P .

This finishes the proof of the correctness. Note that to show correctness, we only used
the assumption T < 10 ∆P . The other assumption ∆P < 10T is only used to bound the
running time.
Running time. Observe that we can compute A, P̃ , Q, R, Y in O(n log n) expected time,
like in Lemma 14. The first item in the proof of Lemma 16 shows that whp ∆R 6
(1 + ε/4) p ∆Q < 2p ∆Q. Substituting p, k, using the relation (3), and with the assumption
∆P < 10T , we conclude that, whp,

∆R = O

(
k−1ε−2 log n · 20n

εT
·∆P

)
= O

(
(n/ε)−1 ε−3n log n

)
= O

(
ε−2 log n

)
.

Since R consists of at most n points and Y = X \
⋃

a∈A Da, we can use Lemma 11 to find
a best disk for min(R, Y) in O(|R| log |R| + |R|∆R) = O(n log n + n ∆R) expected time.
Since whp we have ∆R = O(ε−2 log n), then whp we spend O(nε−2 log n) expected time.
The probability that ∆R is not bounded by O(ε−2 log n) can be bounded by O(n−3), and
in this case we can solve the problem using a quadratic-time solution. It follows that the
expected time is bounded by O(nε−2 log n).

By combining Lemma 15 and Lemma 17 we get our final result:

Theorem 18. Given a domain X of constant complexity, a parameter 0 < ε < 1, and a
weighted point set P with n points, we can find in O(n(log2 n + ε−2 log n)) expected time
a unit disk that, with high probability, covers a weight of at most (1 + ε) min(P, X).

Proof. For the given point set P , we first apply Lemma 15 to obtain a value T that, whp,
satisfies T/10 < min(P, X) < 10T . This takes O(n log2 n) expected time. Then, we
apply the previous lemma to obtain a unit disk that, whp, covers a weight of at most (1 +
ε) min(P, X). This step takes O(n ε−2 log n) expected time, and the theorem follows.

Our solution to the min(P, X) problem takes near-linear expected time and has some
probability of error. It would be interesting to find algorithms for this problem that are
always correct and take deterministic or randomized near-linear time.

References

[AHP05] B. Aronov and S. Har-Peled. On approximating the depth and related prob-
lems. In SODA 2005, pages 886–894, 2005.

20

[AHR+02] P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, and E. Welzl.
Translating a planar object to maximize point containment. In ESA 2002,
LNCS 2461, 2002.

[AP02] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms
for clustering. Algorithmica, 33(2):201–226, 2002.

[AS00] N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons, New
York, NY, 2nd edition, 2000.

[BvKM+03] P. Bose, M. van Kreveld, A. Maheshwari, P. Morin, and J. Morrison. Trans-
lating a regular grid over a point set. Comput. Geom. Theory Appl., 25:21–34,
2003.

[CaBS+] S. Cabello, J. M. Dı́az Báñez, C. Seara, J.A. Sellarès, J. Urrutia, and I. Ven-
tura. Covering point sets with two disjoint disks or squares. Manuscript.
Preliminary version appeared at EWCG’05.

[Cha01] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cam-
bridge University Press, New York, 2001.

[Cha04] B. Chazelle. The discrepancy method in computational geometry. In Hand-
book of Discrete and Computational Geometry, pages 983–996. CRC Press,
2004.

[CL86] B. Chazelle and D. T. Lee. On a circle placement problem. Computing,
36:1–16, 1986.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-
tational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[dBvKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
Germany, 2nd edition, 2000.

[Dre81] Z. Drezner. On a modified one-center model. Management Science, 27:848–
851, 1981.

[DW94] Z. Drezner and G. O. Wesolowsky. Finding the circle or rectangle containing
the minimum weight of points. Location Science, 2:83–90, 1994.

[GO95] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in compu-
tational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

[Hal04] D. Halperin. Arrangements. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 529–562.
CRC Press, 2004.

21

http://dx.doi.org/10.1007/s00453-001-0110-y
http://dx.doi.org/10.1007/s00453-001-0110-y
http://www.cs.princeton.edu/~chazelle/book.html

[HM85] D. S. Hochbaum and W. Maass. Approximation schemes for covering and
packing problems in image processing and vlsi. J. ACM, 32(1):130–136, 1985.

[KKS02] M. J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing unde-
sirable facilities. Computers and Operations Research, 29:1859–1872, 2002.

[KS97] M. J. Katz and M. Sharir. An expander-based approach to geometric opti-
mization. SIAM J. Computing, 26:1384–1408, 1997.

[KT05] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.

[Mat92] J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334,
1992.

[Mat95] J. Matoušek. Approximations and optimal geometric divide-an-conquer. J.
Comput. Syst. Sci., 50:203–208, 1995.

[Pla01] F. Plastria. Continuous covering location problems. In H. Hamacher and
Z. Drezner, editors, Location Analysis: Theory and Applications, chapter 2,
pages 39–83. Springer, 2001.

[Sha91] M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete Com-
put. Geom., 6:593–613, 1991.

A Approximation algorithms for small m

We provide here the necessary material to prove Theorem 7(ii)–(v), which concern the
cases m = 1, 2, 3. This is done considering different variants of Lemma 2, while leaving the
rest of the algorithm basically unchanged. We start with the following variant of Lemma 2,
which needs less time but gives an approximation with more points.

Lemma 19. Let P be a weighted point set with n points and 1 6 r 6 n. We can construct
a (1/r)-approximation A for P consisting of O(r3) points in O(n log r) time if r4 6 n, or
in O(n5/4) time otherwise.

Proof. Like in the proof of Lemma 2, consider the set V of all possible cells that may arise
in vertical decompositions of unit circles in the plane. As seen in the proof of Lemma 2,
it is enough to show how to construct (1/r)-approximations for an unweighted point set P
with respect to ranges V . This only affects the constants hidden in the O-notation.

Consider the following lift ` : R2 → R3 of the plane to the paraboloid: a point (x, y) ∈
R2 is mapped to the point `(p) = (x, y, x2 +y2) ∈ R3. It is easy to check that the lift of the
points of a circle are coplanar, and therefore the points of P in a given disk correspond to
the points of `(P) contained in a halfspace of R3. A cell c ∈ V is bounded by at most four
rectilinear or circular segments. and therefore, the points of P contained in c correspond to
the points of `(P) contained in the intersection of at most four halfspaces of R3, that is, a

22

http://doi.acm.org/10.1145/2455.214106
http://doi.acm.org/10.1145/2455.214106
http://dx.doi.org/10.1006/jcss.1995.1018

(possibly unbounded) simplex of R3. It follows that constructing a (1/r)-approximation for
P can be reduced to constructing a (1/r)-approximation for `(P) with respect to simplices
in R3.

Matoušek [Mat92] provides tools to construct (1/r)-approximations with respect to
simplices in R3 of size O(r3) in O(n log r) time if r3 6 n1−δ, and in O(n1+δ) time otherwise,
where δ > 0 is an arbitrary fixed constant1. In particular, fixing δ = 1/4, we conclude
that a (1/r)-approximation with respect to simplices in R3 of size O(r3) can be found in
O(n log r) time if r4 6 n and in O(n5/4) time otherwise. The result follows.

Equipped with this result we can revise the construction in Lemma 3, and prove the
remaining items of Theorem 7 that concern deterministic algorithms.

Lemma 20. For any weighted point set P with n points, we can find a set of m disks that
cover a weight of at least (1 − ε) max(P, m) in O(n log n + n ε−2 + (n/k) · T (k,m)) time,
where k = O(ε−3).

Proof. Consider the construction in Lemma 3: after classifying P by cells of the grid G in
O(n log n) time, for each cell C in G we construct a (1/r′) approximation AC for PC = P∩C,
where r′ = O(1/ε). For each cell C we do this using Lemma 19 if |PC | > (r′)3, and taking
AC = PC if |PC | < (r′)3. It is clear from the construction that each grid cell contains
O((r′)3) = O(ε−3) points. The time we use is bounded by∑

C∈C, |PC |>(r′)4

O(|PC | log r′) +
∑

C∈C, (r′)36|PC |<(r′)4

O(|PC |5/4) +
∑

C∈C, |PC |6(r′)3

O(|PC |)

6 O(n log r′) +
n

(r′)3
·O
((

(r′)4
)5/4
)

+ O(n)

6 O(n log(1/ε)) + O(n ε−2)

= O(n ε−2).

We conclude that we can rephrase Lemma 3 with a running time of O(n log n + n ε−2)
time and with the property that each cell of G contains O(ε−3) points. Leaving the rest of
the discussion up to Lemma 6 unaltered, we obtain the result.

Proof of Theorem 7 (ii),(iii). As discussed in Section 3, we have the bounds T (k,m) =
O(k2m−1 log k) for m > 1, and T (k,m) = O(k2) for m = 1. For m > 1 we have O((n/k) ·
T (k, m)) = O(nk2m−2 log k) = O(n ε−6m+6 log(1/ε)), and the previous lemma implies the
bound claimed in case (ii). (For m > 4, the bound we obtain by this method is not an
improvement.) For m = 1 we have O((n/k) · T (k, 1)) = O(nk) = O(n ε−3), and we obtain
the bound claimed in case (iii).

An alternative approach based on random sampling gives the following counterpart of
Lemma 2.

1The first case is given in the abstract and discussed after Theorem 4.7, while the second case follows
from combining Theorem 4.7(iii) and Observation 4.1.

23

Lemma 21. Let P be a weighted point set with n points and 1 6 r 6 n. Whp, we can
construct in O(n) time a (1/r)-approximation A for P consisting of O(r2 log n) points.

Proof. We assume that r 6 n, as otherwise the result clearly holds. Scaling the weights
appropriately, we may assume that w(P) = 2nr. We construct an integer-weighted point
set Q by placing each point p ∈ P with weight bwpc. For any U ∈ U , we have w(P∩U)−n 6
w(Q ∩ U) 6 w(P ∩ U), and therefore

|w(P ∩ U)− w(Q ∩ U)| 6 w(P)
2r

.

It follows that if R is a (1/2r)-approximation for Q, then R is also a (1/r)-approximation
for P .

Algorithmically, constructing Q requires to scale and round weights, which can be done
in O(n) time. We then take a p-sample R of Q, where p = c · w(Q)−1 r2 log nr for an
appropriate constant c. It is well-known that, if c large enough, R is indeed a (1/2r)-
approximation of Q whp [AS00, Chapter 13], and therefore, R is also (1/r)-approximation
for P . Moreover, since p·w(Q) = c·r2 log nr and r 6 n, the set R consists of O(r2 log nr) =
O(r2 log n) points whp.

Equipped with this result and revising the discussion, we obtain the following random-
ized counterpart of Lemma 6, which directly implies Theorem 7 (iv),(v). The final result
that we obtain is relevant only for m 6 3.

Lemma 22. For any weighted point set P with n points, we can find a set of m disks that
cover a weight of at least (1 − ε) max(P, m) in O(n log n + (n/k) · T (k,m)) time, where
k = O(ε−2 log n). The result and the time bound are correct whp.

Proof. Using Lemma 19 instead of Lemma 2, we can rephrase Lemma 3 with a running
time of O(n log n) time and with the property that each cell of G contains O(ε−2 log n)
points. Both events happen whp. Leaving the rest of the discussion unaltered, we obtain
the result.

24

	Introduction
	Notation and preliminaries
	Approximation algorithms for MAX(P,m)
	Exact algorithms for MAX(P,m,C)
	A faster algorithm for large m

	Approximation algorithms for MIN(P,X)
	Finding a constant factor approximation
	Finer sampling and (1+eps)-approximation

	Approximation algorithms for small m

