
Matching Point Sets with respect to the Earth Mover’s Distance∗

Sergio Cabello† Panos Giannopoulos‡ Christian Knauer§ Günter Rote§

Abstract

The Earth Mover’s Distance (EMD) between two weighted point sets (point distri-
butions) is a distance measure commonly used in computer vision for color-based image
retrieval and shape matching. It measures the minimum amount of work needed to trans-
form one set into the other one by weight transportation.

We study the following shape matching problem: Given two weighted point sets A and
B in the plane, compute a rigid motion of A that minimizes its Earth Mover’s Distance to
B. No algorithm is known that computes an exact solution to this problem. We present
simple FPTASs and polynomial-time (2 + ε)-approximation algorithms for the minimum
Euclidean EMD between A and B under translations and rigid motions.

Keywords: Geometric Optimization, Approximation Algorithms, Shape Matching, Earth Mover’s

Distance, Weighted Point Sets, Rigid Motions.

1 Introduction

Shape matching is a fundamental problem in computer vision: given two shapes A and B, one
wants to determine how closely A resembles B, according to some distance measure between
the shapes. In order to measure the similarity of A and B independently of transformations
such as translations and/or rotations, one wants to find a transformed version of, say, A that
attains the minimum possible distance to B. The problem has received a lot of attention,
both in the computer-vision and computational-geometry community; see the surveys by
Hagedoorn and Veltkamp [15] and Alt and Guibas [3].

In a typical application such as content-based image retrieval [23], a shape, or pattern in
general, is given by a set of feature (curvature, color, etc.) weighted points in some metric
space, e.g., Euclidean space or CIE-Lab color space [22]. The weight of a point normally
represents its significance, that is, the larger the weight, the more important the point for the
whole pattern.

The Earth Mover’s Distance (EMD) is a similarity measure for weighted point sets. It
is the discrete version of the well-known Monge-Kantorovich mass transportation distance

∗A preliminary version has appeared in Cabello et al. [7]
†IMFM, Department of Mathematics, Jadranska 19, SI-1000 Ljubljana, Slovenia, sergio.cabello@imfm.uni-

lj.si; partially supported by the European Community Sixth Framework Programme under a Marie Curie
Intra-European Fellowship.

‡Corresponding author. Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6,
D-10099 Berlin, Germany, panos@informatik.hu-berlin.de; research conducted at Institut für Informatik, FU
Berlin, and IICS, Utrecht University, The Netherlands.

§Freie Universität Berlin, Institut für Informatik, Takustraße 9, D-14195 Berlin, Germany, {knauer,
rote}@inf.fu-berlin.de.

1

whose potential use for measuring shape similarity was first proposed in an influential paper
by Mumford [19]. Since then, the EMD has turned into a popular similarity measure in
computer vision with applications in colour-based image retrieval [10, 16, 18, 21, 22], shape
matching [10, 13, 14] and music score matching [24].

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two planar weighted point sets with
m ≤ n. A weighted point ai ∈ A is defined as ai = {(xai

, yai
), wi}, i = 1, . . . ,m, where

(xai
, yai

) ∈ R2 and wi ∈ R+ ∪ {0} is its weight. A weighted point bj ∈ B is defined similarly
as bj = {(xbj

, ybj
), uj}, j = 1, . . . , n. Let W =

∑m
i=1 wi and U =

∑n
j=1 uj be the total weight,

or simply weight, of A and B respectively.
Informally, a weighted point ai can be seen as an amount (supply) of earth or mass, equal

to wi units, positioned at (xai
, yai

); alternatively it can be taken as an empty hole (demand)
of wi units of earth capacity. We assign arbitrarily the role of the supplier to A and that of
the receiver/demander to B, setting, in this way, a direction of earth transportation. The
Earth Mover’s Distance of A to B measures the minimum amount of work needed to fill the
holes with earth. A formal definition of the EMD will be given shortly.

We study the following problem: Given two weighted point sets A and B find a rigid
motion (isometry) of A that minimizes its Earth Mover’s Distance (EMD) to B. Note that we
are interested in transformations that change only the position of the points, not their weights.
We only consider rigid motions that preserve the orientation (translations and rotations); if
reflections are to be allowed, we can solve the problem a second time, for a reflected copy of B.
We consider B to be fixed, while A can be translated and/or rotated relative to B. We assume
some initial positions for both sets, denoted simply by A and B. We denote by I the set of
all possible rigid motions in the plane, by Rθ a rotation about the origin by angle θ ∈ [0, 2π),
and by T~t a translation by ~t ∈ R2. Any rigid motion I ∈ I can be uniquely defined as a
translation followed by a rotation, that is, I = I~t,θ = Rθ ◦ T~t, for some θ ∈ [0, 2π) and ~t ∈ R2.

In general, transformed versions of A are denoted by A(~t, θ) = {a1(~t, θ), . . . , am(~t, θ)} for some
I~t,θ ∈ I. For simplicity, translated only versions of A are denoted by A(~t) = {a1(~t), . . . , am(~t)}.
Similarly, rotated only versions of A are denoted by A(θ) = {a1(θ), . . . , am(θ)}.

The EMD between A(~t, θ) and B, is a function EMD : I → R+ ∪ {0} defined as

EMD(~t, θ) = min
F∈F(A,B)

∑m
i=1

∑n
j=1 fijdij(~t, θ)

min{W,U} ,

where dij(~t, θ) is the distance of ai(~t, θ) to bj , and F = {fij} ∈ F(A,B) with F(A,B) being
the set of all feasible flows between A and B defined by the constraints: (i)fij ≥ 0, i =
1, . . . ,m, j = 1, . . . , n, (ii)

∑n
j=1 fij ≤ wi, i = 1, . . . ,m, (iii)

∑m
i=1 fij ≤ uj , j = 1, . . . , n, and

(iv)
∑m

i=1

∑n
j=1 fij = min{W,U}. In case that ~t or θ or both are constant, we simply write

EMD(θ), EMD(~t) and EMD respectively. We deal with the Euclidean EMD where dij is given
by the L2-norm. Our problem can be now stated as follows:

Given two weighted point sets A,B in the plane, compute a rigid motion I~topt,θopt
that

minimizes EMD(~t, θ).
The problem was first studied by Cohen and Guibas [11] who presented a Flow – Trans-

formation iteration which alternates between finding the optimum flow for a given transfor-
mation, and the optimum transformation for a given flow. They showed that this iterative
procedure converges, but not neccessarily to the global optimum. Computing the EMD for a
given transformation is actually the transportation problem, a special minimum cost network

2

flow problem [1] for the solution of which there is a variety of polynomial time algorithms;
see Section 2. However, as we discuss later on, the task of finding the optimal transformation
for a given flow is not trivial. Cohen and Guibas gave also simple algorithms that compute
the optimum translation for the special case where W = U and dij is the squared Euclidean
distance. This case is quite restrictive since, in general, the sets need not have the same
weight, and the use of squared Euclidean distance is statistically less robust than Euclidean
distance [6].

Observe that the objective function EMD(~t, θ) is not linear in ~t and θ but it is still linear in
the flow F . Thus, the minimum EMD occurs at some vertex of the convex polytope F(A,B).
This suggests the following straightforward algorithm: for every vertex F = {fij} of F(A,B)
compute the optimal rigid motion, i.e., the one that minimizes

∑m
i=1

∑n
j=1 fijdij(~t, θ). For

translations, the latter problem reduces to the Fermat-Weber [9, 12] problem where one wants
to find a point that minimizes the sum of weighted distances to a set of given points. No exact
solution to this problem is known even in the real RAM model of computation [6]. However,
Bose et al. [6] gave a O(n log n)-time (1+ε)-approximation algorithm for any fixed dimension.
Using their algorithm for every vertex of F(A,B) gives only a (1 + ε)-approximation of the
minimum EMD under translations in exponential time.

The EMD is a metric when dij is a metric and W = U [22]. When W 6= U the EMD
inherently performs partial matching since a portion of the weight of the ‘heavier’ set remains
unmatched. The case where wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n deserves special attention:
the integer solutions property of the minimum cost flow problem and the fact that 0 ≤ fij ≤ 1
imply that there is a minimum cost flow from A to B that results in a partial assignment
between A and B, that is, a perfect matching between A and a subset of B; when n = m the
problem is simply referred to as the assignment problem.

Results. In this paper, we give simple polynomial-time (1 + ε) and (2 + ε)-approximation
algorithms for the minimum EMD of two weighted point sets in the plane under translations
and rigid motions. The algorithms for translations are given in Section 4 and for rigid motions
in Section 5. In the general case where the sets have unequal total weights we compute a
(1+ε)-approximation in O((n3m/ε4) log2 n) time for translations and a (2+ε)-approximation
in O((n4m2/ε4) log2 n) time for rigid motions. When the sets have equal total weights, the
respective running times decrease to O((n2/ε4) log2 n) and O((n3m/ε4) log2 n).

We also show how to compute a (1 + ε)-approximation of the minimum cost assign-
ment under translations and rigid motions in O((n3/2/ε7/2) log5 n) and O((n7/2/ε9/2) log6 n)
time respectively. Finally, we give probabilistic (1 + ε)-approximations of the minimum cost
partial assignment under translations in O((n3/ε4) log3 n) time and under rigid motions in
O((n4m/ε5) log4 n) time; both algorithms succeed with high probability.

In Section 3, we give two simple lower bounds on the EMD that are vital to our approxi-
mation algorithms. These algorithms need to compute the EMD for a given transformation.
Computing the EMD exactly is expensive, and unnecessary since we opt for approximations
for our original problem. We begin by showing how to get a (1 + ε)-approximation of the
EMD in almost quadratic time.

3

2 Approximating the EMD

Currently, the fastest strongly polynomial-time algorithm for the minimum cost flow problem
on a graph G(V,E) is due to Orlin [20], and runs in O((|E| log |V |)(|E| + |V | log |V |)) time.
Several faster but weakly polynomial-time algorithms exist that assume integer edge costs [1]
(some even assume integer weights as well). For the transportation problem in the plane,
this assumption is very restrictive since the edge costs are given by Euclidean distances. For
the latter problem, Atkinson and Vaidya [5] presented a weakly polynomial-time algorithm
that assumes integer weights and runs in O(|V |2.5 log(|V |) log W) time, where W is the largest
weight. Since |V | = m+n and |E| = mn, Orlin’s algorithm runs in O(m2n2 log n+mn2 log2 n)
time while the algorithm by Atkinson and Vaidya runs in O(n2.5 log n log W) time.

Consider the complete bipartite graph G(V,E) with V = A ∪ B and E = {(ai, bj) : ai ∈
A, bj ∈ B}. Our main idea is to replace G(V,E) by a sparse (1 + ε)-spanner Gs(V,Es), i.e., a
graph Gs such that the shortest path between any two points in Gs is at most (1 + ε) times
the Euclidean distance of the points. As we will see below, running the algorithm of Orlin
on Gs produces an approximate value EMDs such that EMD ≤ EMDs ≤ (1 + ε)EMD. For
convenience, this simple procedure is referred to as ApxEMD(A,B, ε) and given in Figure 1.

ApxEMD(A, B, ε):

1. Construct a (1 + ε)-spanner Gs(V, Es), V = A ∪ B, such that |Es| = O(n/ε).

2. Find a minimum cost flow on Gs using the algorithm by Orlin [20], and report the cost.

Figure 1: Algorithm ApxEMD(A, B, ε).

Theorem 1 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n. For any given ε > 0, ApxEMD(A,B, ε) computes a value EMDs such
that EMD ≤ EMDs ≤ (1 + ε)EMD in O((n2/ε2) log2 n) time.

Proof: We use Θ-graphs for constructing the spanner Gs(V,Es) [4]. For any positive angle

θ ≤ π/4, the graph Θ(V, θ) is a
(

1
cos θ−sin θ

)

-spanner with O((n + m)/θ) = O(n/θ) edges

that can be constructed in O(((n + m)/θ) log(n + m)) = O((n/θ) log n) time. Since we want
1

cos θ−sin θ ≤ 1+ε, it suffices to take θ = O(ε), thus, we can construct the desired (1+ε)-spanner
Gs(V,Es) with O(n/ε) edges in O((n/ε) log n) time.

We then proceed converting Gs into a directed graph as follows: each edge (ai, bj) ∈ Es

is substituted by two directed edges (ai, bj) and (bj , ai) both with cost dij. For any pair of
vertices ai, bj , any shortest path from ai to bj in Gs is now directed; let δ(ai, bj) be such a
path and d(ai, bj) be its length. Note that since Gs is not necessarily bipartite, δ(ai, bj) might
contain one or more other vertices of A and/or B.

Let {fij} be a minimum cost flow on G. In Gs, we choose to send an amount of fij

from ai to bj over δ(ai, bj); see Figure 2 for an illustration. Consider a vertex v ∈ V that
is an intermediate node in δ(ai, bj). Then, fij enters and leaves v without affecting its total
surplus or deficit, that is, the incoming flow minus the outcoming flow. Since {fij} is a
feasible flow on G, the flow induced by the above assignment is a feasible flow on Gs. Since

4

ai

bj

fij

fij

fij

δ(ai, bj)

(ai, bj)

ai

bj

Figure 2: Two point sets A = {ai}, B = {bj}, a spanner Gs on A∪B, and a flow fij sent over δ(ai, bj)
in Gs.

d(ai, bj) ≤ (1 + ε)dij we have

EMDs ≤
∑m

i=1

∑n
j=1 fijd(ai, bj)

min{W,U} ≤
∑m

i=1

∑n
j=1 fij(1 + ε)dij

min{W,U} = (1 + ε)EMD.

Moreover, any minimum cost flow on Gs can be decomposed into flows along paths from
supply vertices to demand vertices in Gs and thereby defines some feasible flow on G. Hence,
since dij ≤ d(ai, bj), we have that EMD ≤ EMDs.

Regarding the running time, observe that constructing Gs takes O((n/ε) log n) time.
Since |Es| = O(n/ε), computing a minimum cost flow on Gs takes O(((n/ε) log n)(n/ε +
n log n)) time. In total the algorithm takes O((n/ε) log n) + O(((n/ε) log n)(n/ε + n log n)) =
O((n2/ε2) log2 n) time.

For the assignment or else minimum cost Euclidean bipartite matching problem in the
plane, Varadarajan and Agarwal [25] presented an algorithm that finds a matching with cost
at most (1 + ε) times the cost of an optimal matching in O((n/ε)3/2 log5 n) time; we refer to
this algorithm as ApxMATCH(A,B, ε).

Theorem 2 [25, Theorem 3.1] Let A and B be two sets of points in the plane with |A| =
|B| = n. For any given ε > 0, a perfect matching between A and B with cost at most (1 + ε)
times that of an optimal perfect matching can be computed in O((n/ε)3/2 log5 n) time.

3 Lower bounds on the EMD

We give two lower bounds on the EMD, that depend on the distance between two points
that belong to — or can be easily computed from — A ∪ B. As we will see in the following
sections, these lower bounds direct our search for the optimal transformation.

The following simple lower bound comes directly from the definition of the EMD.

Observation 1 Given two weighted point sets A and B, EMD ≥ mini,j dij.

Proof: Let {fij} be an optimal flow between A and B. We have

EMD =

∑m
i=1

∑n
j=1 fijdij

min{W,U} ≥
minij dij

∑m
i=1

∑n
j=1 fij

min{W,U} = min
ij

dij ,

5

since
∑m

i=1

∑n
j=1 fij = min{W,U}.

The next lower bound is due to Rubner et al. [22], and applies to sets with equal weights.
It is based on the notion of the center of mass of a weighted point set.

The center of mass C(A) of a planar weighted point set A = {(xai
, yai

), wi}, i = 1, . . . ,m,
is defined as

C(A) =

∑m
i=1 wi · (xai

, yai
)

∑m
i=1 wi

.

Theorem 3 [22] Let A and B be two weighted point sets with equal weights. Then EMD ≥
d(C(A), C(B)).

As Klein and Veltkamp [17] noted, this lower bound implies that the center of mass is a
reference point [2] for equal weight sets, resulting in a trivial 2-approximation algorithm for
the minimum EMD under translations; see next section for details.

4 Approximation algorithms for translations

We denote by ~ti→j the translation which matches ai and bj; we call such a translation a
point-to-point translation. Observation 1 implies that the point-to-point translation that is
closest to ~topt gives a 2-approximation of EMD(~topt).

Lemma 1 Given two weighted point sets A and B,

EMD(~topt) ≤ min
i,j

EMD(~ti→j) ≤ 2EMD(~topt).

Proof: Clearly, EMD(~topt) ≤ mini,j EMD(~ti→j). Next, consider the optimal position A(~topt)
of A and an optimal flow {fij} between A(~topt) and B. Consider also the distance dij(~topt)
for every pair of points ai(~topt), bj and let di0j0(~topt) be the smallest of all these distances.
Assume that we translate A(~topt) to the position A(~ti0→j0). Then di0j0(~ti0→j0) = 0 and, since
di0j0(~topt) ≤ dij(~topt), we have that

dij(~ti0→j0) ≤ dij(~topt) + di0j0(~topt) ≤ 2dij(~topt),

for every i = 1, . . . ,m and j = 1, . . . , n. Hence, we have

min
i,j

EMD(~ti→j) ≤ EMD(~ti0→j0)

≤
∑m

i=1

∑n
j=1 fijdij(~ti0→j0)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij2dij(~topt)

min{W,U}
= 2EMD(~topt).

6

According to Observation 1, the point-to-point translation which is closest to ~topt can be at
most EMD(~topt) away from ~topt. This bound is crucial for the (1+ε)-approximation algorithm
given in Figure 3. Using a uniform square grid of suitable size we compute the EMD for a
limited number of grid translations within a small neighborhood – of size EMD(~topt) – of
every point-to-point translation. Note that we do not know EMD(~topt) but we can compute
mini,j EMD(~ti→j) which, according to Lemma 1, approximates EMD(~topt) well enough. In
order to save time, rather than computing EMD exactly, we will approximate it using the
procedure ApxEMD.

Translation(A, B, ε):

1. Let α = mini,jApxEMD(A(~ti→j), B, 1) and let G be a uniform square grid of spacing cεα,
where c = 1/

√
72.

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Place a disk D of radius α around ~ti→j .

(b) For every grid point ~tg of any cell of G that intersects D compute a value ẼMD(~tg) =
ApxEMD(A(~tg), B, ε/3).

3. Report the grid point ~tapx that minimizes ẼMD(~tg).

Figure 3: Algorithm Translation(A, B, ε).

Theorem 4 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n. For any given ε > 0, Translation(A,B, ε) computes a translation ~tapx

such that EMD(~tapx) ≤ (1 + ε)EMD(~topt) in O((n3m/ε4) log2 n) time.

Proof: According to Lemma 1

EMD(~topt) ≤ min
i,j

EMD(~ti→j) ≤ 2EMD(~topt).

From Theorem 1 we have that

EMD(~ti→j) ≤ ApxEMD(A(~ti→j), B, 1) ≤ 2EMD(~ti→j).

Hence, since α = mini,j ApxEMD(A(~ti→j), B, 1) we have that

EMD(~topt) ≤ α ≤ 4EMD(~topt).

Also, according to Observation 1, there is a point-to-point translation ~ti→j for which |~ti→j −
~topt| ≤ EMD(~topt) ≤ α. Algorithm Translation will, at some stage, consider the α-

neighborhood of such a translation, and thus, compute a value ẼMD(~tg) for some grid point
~tg for which

|~tg − ~topt| ≤
√

2(εα/
√

72)2/2 ≤ (ε/3)EMD(~topt),

and thus dij(~tg) ≤ dij(~topt) + (ε/3)EMD(~topt); see Figure 4. Assuming that {fij} is the

7

bj

ai(~tg)

ai(~topt)

EMD(~topt) ≤ α ≤ 4EMD(~topt)

Grid size:

Θ(ε × EMD(~topt))

Figure 4: A pair of points ai, bj for which dij(~topt) ≤ EMD(~topt), and a grid translation ~tg of ai for
which |~tg − ~topt| ≤ (ε/3)EMD(~topt).

optimal flow at ~topt, and similarly to the proof of Lemma 1, we have

EMD(~tg) ≤
∑m

i=1

∑n
j=1 fijdij(~tg)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij(dij(~topt) + (ε/3)EMD(~topt))

min{W,U}
= (1 + ε/3)EMD(~topt).

From Theorem 1 we have that

EMD(~tg) ≤ ẼMD(~tg) ≤ (1 + ε/3)EMD(~tg).

Hence, the algorithm reports a translation ~tapx such that

EMD(~tapx) ≤ ẼMD(~tapx)

≤ ẼMD(~tg)

≤ (1 + ε/3)EMD(~tg)

≤ (1 + ε/3)(1 + ε/3)EMD(~topt)

≤ (1 + ε)EMD(~topt),

for every ε ≤ 3. As for the running time, observe that there are nm point-to-point trans-
lations, around each of which procedure ApxEMD is run for O(α2/(α2ε2)) = O(1/ε2) grid
points. Hence, the algorithm runs in O((nm/ε2)(n2/ε2) log2 n) = O((n3m/ε4) log2 n) time.

8

4.1 Equal weight sets

In this section we consider the case of sets with equal total weights. Let ~tC(A)→C(B) be the
translation that matches the centers of mass C(A) and C(B). Theorem 3 suggests the fol-
lowing 2-approximation algorithm: compute EMD(~tC(A)→C(B)); the proof is straightforward
and very similar to the one of Lemma 1.

Also, according to Theorem 3, ~topt is at most EMD(~topt) far away from ~tC(A)→C(B).

Hence, we need to search for ~topt only within a small neighborhood of ~tC(A)→C(B). We
modify algorithm Translation as follows: First we compute C(A) and C(B). Then, we run
ApxEMD(A(~tC(A)→C(B)), B, 1) and set α to the value returned. Next, we use the same grid

size as in Translation, and run ApxEMD(A(~tg), B, ε/3) for all the grid points ~tg which
are at most α away from ~tC(A)→C(B). The minimum over all these approximations gives the
desired approximation bound; this follows easily from arguments very similar to the ones used
in the proof of Theorem 4. Note that the total number of grid points to be tested is O(1/ε2).
Hence, we have managed to save an nm term from the time bound of Theorem 4.

Theorem 5 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with equal total weights and m ≤ n. For any given ε > 0, a translation ~tapx such that
EMD(~tapx) ≤ (1 + ε)EMD(~topt) can be computed in O((n2/ε4) log2 n) time.

For the assignment problem under translations, we can use the above algorithm for equal
weight sets, running ApxMATCH instead of ApxEMD. This reduces the running time fur-
ther.

Theorem 6 For any given ε > 0, a (1 + ε)-approximation of the minimum cost assignment
under translations can be computed in O((n3/2/ε7/2) log5 n) time.

Note that the latter algorithm can be also applied to equal weight sets with bounded integer
point weights by replacing each point by as many points as its weight.

4.2 Partial assignment

In Section 3, Observation 1, we saw that, in general, there is at least one pair of points ai, bj

whose distance is at most EMD. Next, we prove that for the partial assignment case there is
a linear number of pairs of points whose distance is at most 2EMD.

Lemma 2 Given two weighted point sets A = {a1, . . . , am}, B = {b1, . . . , bn} with m ≤ n and
wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n, there are at least m/2 distances dij with dij ≤ 2EMD.

Proof: Consider an optimal flow {fij} that results in a partial assignment between A and
B. Then there are exactly m flow variables fij with fij = 1 and m(n − 1) variables with
zero flow. Since min{W,U} = m, we have that

∑m
i=1

∑n
j=1 fijdij = mEMD, where exactly

m terms dij appear in the sum. Since dij ≥ 0, it follows that there are at most k out of m
distances dij with dij ≥ (m/k)EMD. Equivalently, there are at least m−k distances dij with
dij ≤ (m/k)EMD. We choose k = m/2, and the lemma follows.

Note that algorithm Translation tests all possible nm pairs of points ai, bj in order
to find at least one for which dij(~topt) ≤ EMD(~topt). Based on the above lemma, we can
easily prove that testing a linear number of pairs suffices in order to find one for which
dij(~topt) ≤ 2EMD(~topt) with high probability. Algorithm RandomTranslation is given in
Figure 5; it is a straightforward probabilistic version of algorithm Translation.

9

RandomTranslation(A, B, ε):

1. Repeat (2/ log e)n log n times:

(a) Choose a random pair (ai, bj) ∈ A × B.

(b) Let αij = 2·ApxEMD(A(~ti→j), B, 1).

(c) Let G be a uniform square grid of spacing cεαij where c = 1/
√

288.

(d) Place a disk D of radius αij around ~ti→j .

(e) For every grid point ~tg of any cell of G that intersects D compute the value ẼMD(~tg) =
ApxEMD(A(~tg), B, ε/3).

2. Report the grid point ~tapx that minimizes ẼMD(~tg).

Figure 5: Algorithm RandomTranslation(A, B, ε).

Theorem 7 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any given ε > 0,
RandomTranslation(A,B, ε) computes a translation ~tapx such that EMD(~tapx) ≤ (1 +
ε)EMD(~topt) in O((n3/ε4) log3 n) time. The algorithm succeeds with probability at least 1 −
n−1.

Proof: According to Lemma 2, there are at least m/2 distances dij(~topt) with dij(~topt) ≤
2EMD(~topt). Since there are in total nm possible distances dij(~topt), we have that

Pr[dij(~topt) > 2EMD(~topt)] ≤ 1 − m/(2nm) = 1 − 1/(2n)

for a random pair ai, bj . Thus, the probability that K random draws of a pair ai, bj will all
fail to give a pair for which dij(~topt) ≤ 2EMD(~topt) is at most (1 − 1/2n)K ≤ e−K/2n. By
choosing K = (2/ log e)n log n the latter probability is at most e−(log n)/ log e = n−1.

The rest of the proof is almost identical to the proof of Theorem 4. That is, if a pair ai, bj

for which dij(~topt) ≤ 2EMD(~topt) is tested, then the algorithm will compute a value αij such
that

2EMD(~topt) ≤ αij < 8EMD(~topt).

Moreover, for that pair the algorithm will try a translation ~tg such that

EMD(~topt) ≤ EMD(~tapx) ≤ EMD(~tg) ≤ (1 + ε)EMD(~topt)

and report ~tapx. The algorithm takes O(((n log n)/ε2)(n/ε)2 log2 n) = O((n3/ε4) log3 n) time,
and it fails if and only if all random pairs satisfy dij > 2EMD(~topt), which happens with
probability at most n−1.

5 Approximation algorithms for rigid motions

We first give (2 + ε) and (1 + ε)-approximation algorithms for rotations for the general and
partial assignment case respectively. Then, we combine these algorithms with the (1 + ε)-
approximation algorithms for translations to get approximation algorithms for rigid motions.

10

5.1 Rotations

Let ∠aiobj be the angle between the segments oai and obj such that 0 ≤ ∠aiobj ≤ π. Also,
let θi→j be the rotation by ∠aiobj that aligns the origin o and points ai and bj such that both
ai and bj are on the same side of o. Note that this is the rotation that minimizes dij(θ); we
call such a rotation an alignment rotation.

We begin with a simple lemma that we will need later on.

Lemma 3 Let ai and bj be two points in the plane with ∠aiobj = φ. If ai is rotated by an
angle |θ| ≤ φ, then dij(θ) ≤ 2dij.

Proof: Note that we are only interested in the rotation of ai that increases its distance to
bj . We can assume that none of ai and bj coincides with the origin. Then, without loss of
generality, we assume that xbj

> 0, ybj
= 0 and yai

> 0; we can assume that yai
6= 0, since,

otherwise, if xai
> 0 then φ = 0 and dij(θ) = dij , or if xai

< 0 then φ = π and dij(θ) ≤ dij .
First, consider the case where φ ≥ π/2. Then, the smallest possible distance dij occurs

when φ = π/2 with xai
= 0 and dij =

√

y2
ai

+ x2
bj

. The largest possible distance dij(θ) occurs

when ∠ai(θ)obj = π with dij(θ) = yai
+ xbj

. Clearly, dij(θ) ≤
√

2dij .
When φ < π/2, dij(θ) increases with θ hence, since θ ≤ φ, it suffices to bound dij(φ); see

Figure 6 for an illustration. Let ri =
√

x2
ai

+ y2
ai

be the rotation radius of ai. We have

dij =
√

r2
i + x2

bj
− 2xbj

ri cos φ

and
dij(φ) =

√

r2
i + x2

bj
− 2xbj

ri cos(2φ).

Then

4d2
ij − d2

ij(φ) = 3r2
i + 3x2

bj
+ 2xbj

ri(2 cos2 φ − 4 cos φ − 1)

≥ 3(ri − xbj
)2

≥ 0,

where in the equality we used that cos(2x) = 2 cos2 x − 1, and in the first inequality we used
that 2(cos φ − 1)2 − 3 ≥ −3. Hence, dij(θ) ≤ dij(φ) ≤ 2dij .

Consider the angle ∠ai(θopt)obj for every pair of points ai(θopt) and bj and let ∠ai0(θopt)obj0

be the smallest of all these angles. Then θi0→j0 is the alignment rotation that is closest to θopt.
Similarly to Lemma 1, and using Lemma 3, we can now prove that this alignment rotation
gives a 2-approximation of EMD(θopt). Hence, we have the following:

Lemma 4 Given two weighted point sets A and B,

EMD(θopt) ≤ min
i,j

EMD(θi→j) ≤ 2EMD(θopt).

Proof: Clearly, EMD(θopt) ≤ mini,j EMD(θi→j). Consider an optimal position A(θopt) of A
and an optimal flow {fij} between A(θopt) and B. We assume that θopt is not an alignment
rotation, otherwise the lemma holds trivially. Next, consider the angle ∠ai(θopt)obj for every

11

ri

ri

dij(φ)

bj

dij

ai

ai(φ)

φ

φ
o

Figure 6: If ∠aiobj = φ and ai is rotated about o by φ then dij(φ) ≤ 2dij .

pair of points ai(θopt) and bj, and let ∠ai0(θopt)obj0 be the smallest of all these angles. Assume
that we rotate A(θopt) by ∠ai0(θopt)obj0 to the position A(θi0→j0); this is the alignment
rotation that is closest to θopt. Then, ∠ai0(θi0→j0)obj0 = 0 and

∠ai(θi0→j0)obj ≤ ∠ai(θopt)obj + ∠ai0(θopt)obj0 ≤ 2∠ai(θopt)obj ,

for every i = 1, . . . ,m and j = 1, . . . , n. According to Lemma 3 we have that dij(θi0→j0) <
2dij(θopt). Concluding,

min
i,j

EMD(θi→j) ≤ EMD(θi0→j0)

≤
∑m

i=1

∑n
j=1 fijdij(θi0→j0)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij2dij(θopt)

min{W,U}
= 2EMD(θopt).

By approximating mini,j EMD(θi→j) with mini,jApxEMD(A(θi→j), B, ε/2) we can get a (2+
ε)-approximation of EMD(θopt). We call this algorithm Rotation(A,B, ε). Apart from the
cost value, Rotation returns the corresponding rotation θi→j as well.

Theorem 8 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n. For any given ε > 0, Rotation(A,B, ε) computes a rotation θapx such
that EMD(θapx) ≤ (2 + ε)EMD(θopt) in O((n3m/ε2) log2 n) time.

Partial assignment. For the special case where all the weights are one, we can achieve
a (1 + ε)-approximation as follows. Let a1bj1 , . . . , ambjm

be a matching corresponding to an

12

bji

ai(θopt)

o

ai(θi)

ai(θ
′

i)

ai(θi)

ai(θ
′

i)

α

ai(θopt)

mα

εα/18

k

αε/6(1 + ε/6)k

trajectory of ai

Figure 7: A pair of points ai, bji
for which diji

(θopt) ≤ mEMD(θopt), and two examples of possible
positions of ai(θopt), ai(θi) and ai(θ

′

i), depending on diji
(θopt).

optimal integer flow at an optimal rotation θopt. Observe that diji
(θopt) ≤ mEMD(θopt) since

mEMD(θopt) =
∑

i diji
(θopt). Thus, in order to find an optimal rotation we only need to

consider the rotations
{θ ∈ [0, 2π) : dij(θ) ≤ mEMD(θopt)},

for all i, j. Of course, since we do not know the EMD(θopt), we consider instead the rotations
Rij(α) = {θ ∈ [0, 2π) : dij(θ) ≤ mα}, for some value α such that EMD(θopt) ≤ α ≤
3EMD(θopt). Inside each Rij we consider sample rotations Θij according to the following.
We divide Rij(α) into two parts, R<

ij(α) = {θ ∈ [0, 2π) : dij(θ) ≤ α} and R>
ij(α) = {θ ∈

[0, 2π) : α ≤ dij(θ) ≤ mα}. Rotations in R<
ij(α) are handled by considering the set of

distances
D<

ij(α) = {k · ε α
18 ∈ [0, α] | k ∈ N},

which contains O(1/ε) values. Rotations in R>
ij(α) are handled by considering the set of

distances
D>

ij(α) = {α(1 + ε/6)k ∈ [α,mα] | k ∈ N},
which contains O(log1+ε

mα
α) = O(log1+ε m) = O(ε−1 log m) values. Figure 7 gives an illus-

tration of these two sets of distances. Let Dij(α) = {mα}∪D<
ij(α)∪D>

ij(α), and consider the

set of angles Θij = {θi→j}∪{θ ∈ [0, 2π) | dij(θ) ∈ Dij(α)}. Clearly, Θij contains O(ε−1 log m)
angles.

Our goal is to prove that the best rotation among
⋃

ij Θij provides a (1+ε)-approximation
for EMD(θopt). The main idea is that the angles in R<

ij(α) take care of distances diji
(θopt)

that are at most α by controlling the absolute error that such pairs produce in the approx-
imation, while the angles in R>

ij(α) take care of the distances diji
(θopt) that are between α

and mEMD(θopt) ≤ mα by controlling the relative error that these pairs produce.

13

A detailed description of the algorithm, referred to as PartRotation, is given in Figure 8.
The algorithm shown runs ApxEMD for the general case where m < n; when m = n,
ApxMATCH can be used instead.

PartRotation(A, B, ε):

1. Let α = mini,jApxEMD(A(θi→j), B, 1).

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Compute Dij(α) = {0, α, mα} ∪ D<
ij(α) ∪ D>

ij(α).

(b) Let Θij = {θ ∈ [0, 2π) | dij(θ) ∈ Dij(α)}
(c) For each sample rotation θ ∈ Θij

compute a value ẼMD(θ) =ApxEMD(A(θ), B, ε/3).

3. Report the sample rotation θapx that minimizes ẼMD(θ).

Figure 8: Algorithm PartRotation(A, B, ε).

Theorem 9 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point sets in the plane
with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any given ε ∈ (0, 1),
PartRotation(A,B, ε) computes a rotation θapx such that EMD(θapx) ≤ (1 + ε)EMD(θopt)
in O((n3m/ε3) log3 n) time. When m = n, the same approximation can be computed in
O((n7/2/ε5/2) log6 n) time.

Proof: First note that EMD(θopt) ≤ α ≤ 3EMD(θopt). Let a1bj1 , . . . , ambjm
be a matching

corresponding to an optimal integer flow at an optimal rotation θopt, and consider the sample

rotation θg ∈ ⋃

i Θiji
that is closest to θopt. Our objective is to show that ẼMD(θg) ≤

(1 + ε)EMD(θopt). Observe that if θopt ∈
⋃

Θij then the approximation holds trivially.
Consider one pair aibji

, and let θi, θ
′
i ∈ Θiji

be the two closest angles between which θopt

lies. We may assume that diji
(θi) ≤ diji

(θ′i). Note that since θi→ji
∈ Θiji

, this assumption
is valid even if ai(θopt) lies in between the intersection points of the trajectory of ai with
one disk around bji

, see Figure 7. Then it holds that diji
(θi) ≤ diji

(θopt) ≤ diji
(θ′i) and

diji
(θi) ≤ diji

(θg) ≤ diji
(θ′i). If diji

(θopt) < α, then θopt ∈ R<
iji

(α), and also θi, θ
′
i ∈ R<

iji
(α).

Since θi, θ
′
i are contiguous in Θiji

, we have diji
(θ′i) − diji

(θi) ≤ εα/18, and therefore

diji
(θg) − diji

(θopt) ≤ εα/18 ≤ εEMD(θopt)/6.

If diji
(θopt) > α, then θopt ∈ R>

iji
(α), and also θi, θ

′
i ∈ R>

iji
(α). Again since θi, θ

′
i are contiguous

in Θiji
, we have diji

(θ′i) ≤ (1 + ε/6)diji
(θi), and therefore diji

(θg) ≤ (1 + ε/6)diji
(θopt).

14

Then we have

EMD(θg) ≤
∑m

i=1 diji
(θg)

m

≤
∑

{i:diji
(θopt)<α} diji

(θg) +
∑

{i:diji
(θopt)>α} diji

(θg)

m

≤
∑

{i:diji
(θopt)<α} (diji

(θopt) + εEMD(θopt)/6)

m

+

∑

{i:diji
(θopt)>α}(1 + ε/6)diji

(θopt)

m

≤
∑m

i=1 diji
(θopt)

m

+

∑

{i:diji
(θopt)<α} εEMD(θopt)/6

m

+ε/6

∑

{i:diji
(θopt)>α} diji

(θopt)

m

≤ EMD(θopt) +

∑m
i=1 εEMD(θopt)/6

m
+ ε/6

∑m
i=1 diji

(θopt)

m
= EMD(θopt) + (ε/3)EMD(θopt),

and we conclude

EMD(θapx) ≤ ẼMD(θapx)

≤ ẼMD(θg)

≤ (1 + ε/3)EMD(θg)

≤ (1 + ε/3)(1 + ε/3)EMD(θopt)

≤ (1 + ε)EMD(θopt).

Regarding the running time, observe that for each pair of points ai, bj we run ApxEMD for
O(ε−1 log m) sample rotations. Hence PartRotation runs in O(nm/ε log m(n2/ε2) log2 n) =
O((n3m/ε3) log3 n) time. When n = m we can use ApxMATCH instead of ApxEMD, re-
ducing the running time to O(n2/ε log n(n/ε)3/2 log5 n) = O((n7/2/ε5/2) log6 n).

5.2 Rigid motions

We can combine algorithm Rotation with the 2-approximation algorithm for translations in
Theorem 8 to get a (4 + ε)-approximation of the minimum EMD under rigid motions in the
following way: for each point-to-point translation ~ti→j, compute a (2+ ε/2)-approximation of
the optimum EMD between A(~ti→j) and B under rotations about bj . The minimum over all
these approximations gives a 2(2 + ε/2)-approximation of EMD(~topt, θopt); see, for example,
the first step of algorithm RigidMotion shown in Figure 9 where a 6-approximation of
EMD(~topt, θopt) is computed.

Lemma 5 For any given ε > 0, a (4 + ε)-approximation of the minimum EMD under rigid
motions can be computed in O((n4m2/ε2) log2 n) time.

15

Proof: According to Observation 1, there exist two points ai0 , bj0 whose distance at an
optimal position of A is at most the minimum EMD under rigid motions. The above algorithm
will use, at some stage, bj0 as the center of rotation by translating B appropriately. Of
course for this ‘new’ position of B there is an optimal rigid motion of A, I~topt,θopt

for which

di0,j0(~topt, θopt) ≤ EMD(~topt, θopt) as well.
If A is translated by ~ti0→j0 instead of ~topt, and then rotated by θopt we have dij(~ti0→j0, θopt)

≤ dij(~topt, θopt) + |~topt − ~ti0→j0|, for every i = 1, . . . ,m and j = 1, . . . , n. Since |~topt −
~ti0→j0 | = di0,j0(~topt, θopt) ≤ EMD(~topt, θopt) we have that dij(~ti0→j0 , θopt) ≤ dij(~topt, θopt) +
EMD(~topt, θopt). Similarly to the proof of Theorem 8, we see that

EMD(~ti0→j0 , θopt) ≤ 2EMD(~topt, θopt).

If θij
opt is the optimal rotation of A(~ti→j) about bj then

EMD(~topt, θopt) ≤ EMD(~ti0→j0 , θ
i0j0
opt) ≤ EMD(~ti0→j0 , θopt).

Thus,

EMD(~topt, θopt) ≤ min
ij

EMD(~ti→j , θ
ij
opt)

≤ EMD(~ti0→j0 , θ
i0j0
opt)

≤ 2EMD(~topt, θopt).

From Theorem 8 we also have that

EMD(~ti→j , θ
ij
opt) ≤ Rotation(A(~ti→j), B, ε/2) ≤ (2 + ε/2)EMD(~ti→j, θ

ij
opt).

Putting it all together we get

EMD(~topt, θopt) ≤ min
ij

EMD(~ti→j, θ
ij
opt)

≤ min
ij

Rotation(A(~ti→j), B, ε/2)

≤ (2 + ε/2)min
ij

EMD(~ti→j, θ
ij
opt)

≤ 2(2 + ε/2)EMD(~topt, θopt)

= (4 + ε)EMD(~topt, θopt).

Since Rotation is run nm times, the algorithm runs in O(nm(n3m/ε2) log2 n) = O((n4m2/ε2)
log2 n) time.

The (2 + ε)-approximation algorithm for rigid motions is based on similar ideas. Ac-
cording to Observation 1, there exist two points ai, bj whose distance at I~topt,θopt

is at most

EMD(~topt, θopt). We place a grid of suitable size around each ~ti→j. For each grid point ~tg that
is at most EMD(~topt, θopt) away from ~ti→j we compute a (2+ε)-approximation of the optimum
EMD between A(~tg) and B under rotations about bj. The minimum over all these approxi-
mations is within a factor of (2+ε) of EMD(~topt, θopt). Since we do not know EMD(~topt, θopt),
we first compute a 6-approximation of it as shown above. Algorithm RigidMotion(A,B, ε)
is shown in Figure 9; for the partial assignment problem, a (1 + ε)-approximation can be
achieved by running PartRotation instead of Rotation.

16

RigidMotion(A, B, ε):

1. For each pair of points ai ∈ A and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to be bj by translating B appropriately.

(b) Run Rotation(A(~ti→j), B, 1) and let αij be the cost value returned.

Let α = minij αij .

2. Let G be a uniform grid of spacing cαε, where c = 1/
√

288. For each pair of points ai ∈ A
and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to be bj by translating B appropriately.

(b) Place a disk D of radius α around ~ti→j .

(c) For every grid point ~tg of any cell of G that intersects D run Rotation(A(~tg), B, ε/3).

Let ẼMD(~tg) and θg
apx be the cost value and angle returned respectively.

3. Report the grid point ~tapx that minimizes ẼMD(~tg), and the corresponding angle θapx.

Figure 9: Algorithm RigidMotion(A, B, ε).

Theorem 10 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n. For any given ε > 0, RigidMotion(A,B, ε) computes a rigid motion
I~tapx,θapx

such that EMD(~tapx, θapx) ≤ (2 + ε)EMD(~topt, θopt) in O((n4m2/ε4) log2 n) time. A

(1 + ε)-approximation of the minimum cost partial assignment under rigid motions can be
computed in O((n4m2/ε5) log3 n) time.

Proof: The proof is very similar to the proof of Lemma 5. First note that according to that
lemma, EMD(~topt, θopt) ≤ α ≤ 6EMD(~topt, θopt). Consider again a pair of points ai0 , bj0 such
that ~topt is at most EMD(~topt, θopt) away from ~ti0→j0 . Since, at some stage, the algorithm
will consider bj0 as the center of rotation, we have that ~topt ∈ D, where D is a disk of radius
α around ~ti0→j0 . For the grid translation ~tg that is closest to ~topt we have |~tg − ~topt| ≤
(1/4)εEMD(~topt, θopt). Similarly to the proof of Theorem 4 we have that

EMD(~tg, θopt) ≤ (1 + ε/4)EMD(~topt, θopt).

If θg
opt is the optimal rotation of A(~tg) about bj0 then EMD(~tg, θ

g
opt) ≤ EMD(~tg, θopt). Note

that Rotation(A(~tg), B, ε/3) returns a cost ẼMD(~tg) for which

ẼMD(~tg) ≤ (2 + ε/3)EMD(~tg, θ
g
opt).

17

Hence, in total we have

EMD(~topt, θopt) ≤ EMD(~tapx, θapx)

≤ ẼMD(~tapx)

≤ ẼMD(~tg)

≤ (2 + ε/3)EMD(~tg, θ
g
opt)

≤ (2 + ε/3)EMD(~tg, θopt)

≤ (2 + ε/3)(1 + ε/4)EMD(~topt, θopt)

≤ (2 + ε)EMD(~topt, θopt),

where the last inequality holds for any ε ≤ 2.
Since Rotation runs for O(nm/ε2) grid translations in total, the algorithm runs in

O((nm/ε2)(n3m/ε2) log2 n) = O((n4m2/ε4) log2 n) time. Note that for the partial assignment
problem a (1 + ε)-approximation can be achieved by running PartRotation instead of Ro-
tation; the running time increases to O((nm/ε2)(n3m/ε3) log3 n) = O((n4m2/ε5) log3 n).

As in the case of translations, for equal weight sets we need to search for the optimal trans-
lation only around ~tC(A)→C(B). We set the center of rotation to be C(B). A 6-approximation

of EMD(~topt, θopt) can be computed by simply running Rotation(A(~tC(A)→C(B)), B, 1). Sim-

ilarly, we need to run Rotation(A(~tg), B, ε/3) only for grid points ~tg that are close to
~tC(A)→C(B). For the assignment problem, instead of using Rotation, we can use the version
of PartRotation that runs ApxMATCH to achieve a (1 + ε)-approximation.

Theorem 11 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with equal total weights and m ≤ n. For any given ε > 0, a rigid motion I~tapx,θapx

such

that EMD(~tapx, θapx) ≤ (2+ε)EMD(~topt, θopt) can be computed in O((n3m/ε4) log2(n/ε)) time.
For the minimum cost assignment problem under rigid motions a (1 + ε)-approximation can
be computed in O((n7/2/ε9/2) log6 n) time.

Finally, for the partial assignment problem under rigid motions, we can use the same
arguments as in the translational case to convert algorithm RigidMotion – that will now
use PartRotation – into a randomized one where its two first steps are executed only for a
random selection of Θ(n log n) pairs of points. We conclude with the following:

Theorem 12 Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point sets in the
plane with m ≤ n and wi = uj = 1, i = 1, ...,m, j = 1, ..., n. For any given ε > 0, a
rigid motion I~tapx,θapx

such that EMD(~tapx, θapx) ≤ (1 + ε)EMD(~topt, θopt) can be computed in

O((n4m/ε5) log4 n) time. The algorithm succeeds with probability at least 1 − n−1.

6 Concluding remarks

We have presented polynomial-time (1 + ε) and (2 + ε)-approximation algorithms for the
minimum Euclidean EMD under translations and rigid motions.

Note that algorithm ApxEMD in Section 2 can be trivially generalized in higher dimen-
sions: for a d-dimensional point set A ∪ B, a (1 + ε)-spanner Gs with O(ε−d+1) edges can be

18

computed in O(n log n + (n/εd) log(1/ε)) time [8]. Here, the constants hidden in the nota-
tion depend exponentially in the dimension. As before, we can run Orlin’s algorithm on Gs

and ApxEMD takes O((n2/ε2(d−1)) log2(n/ε)) time. It is not clear how the approximation
algorithm of Varadarajan and Agarwal for the minimum cost bipartite matching in the plane
carries on in higher dimensions neither what time bounds are obtained. Also, note that the
lower bounds in Section 3 and Lemma 2 hold for any dimension. Hence, for the general EMD
in d-dimensional Euclidean space, a (1 + ε)-approximation of the minimum under transla-
tions can be computed in O((n3m/ε3d−2) log2(n/ε)) time. Algorithm RandomTranslation
generalizes in a similar way.

An open question is whether the (1 + ε)-approximation for partial assignment under ro-
tations can be generalized to the general case of arbitrary weights. Another interesting and
non-trivial task is to give lower and upper bounds of the complexity of the function EMD(~t, θ),
i.e., the total number of its local optima.

Acknoledgements. The authors would like to thank Sariel Har-Peled for helpful discus-
sions.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and
Applications. Prentice-Hall, 1993.

[2] O. Aichholzer, H. Alt, and G. Rote. Matching shapes with a reference point. Int. J.
Comp. Geom. & Appl., 4:349–363, 1997.

[3] H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approxi-
mation. In J.R. Sack and J. Urrutia, editors, Handbook of Comp. Geom., pages 121–153.
Elsevier Science Publishers B.V. North-Holland, 1999.

[4] S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric spanners of small
diameter: Randomized solutions. Comput. Geom. & Theory Appl., 13:91–107, 1999.

[5] D.S. Atkinson and P.M. Vaidya. Using geometry to solve the transportation problem in
the plane. Algorithmica, 13:442–461, 1995.

[6] P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances cluter-
ing and the Fermat-Weber problem. Comp. Geom. Theory & Appl., 24:135–146, 2003.

[7] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with respect
to the Earth Mover’s Distance. In Proc. of the 13th Annu. European Symp. on Algorithms
(ESA), volume 3669 of Lect. Notes Comput. Sci., pages 520–531, 2005.

[8] P.B. Callahan and S.R. Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proc. of the 4th Annu. ACM/SIGACT-SIAM Symp. on Discrete
Algorithms (SODA’93), pages 291–300, 1993.

[9] R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-Weber location
problem. Math. Programming, 46(2):219–224, 1990.

19

[10] S. Cohen. Finding Color and Shape Patterns in Images. PhD thesis, Stanford University,
Department of Computer Science, 1999.

[11] S. Cohen and L. Guibas. The earth mover’s distance under transformation sets. In Proc.
of the 7th IEEE Int. Conf. on Computer Vision (ICCV’99), pages 173–187, 1999.

[12] Z. Drezner, K. Klamroth, A. Schöbel, and G. Wesolowsky. The Weber problem. In
Z. Drezner and H. Hamacher, editors, Facility location. Application and theory, pages
1–36. Springer, 2002.

[13] P. Giannopoulos and R. C. Veltkamp. A pseudo-metric for weighted point sets. In Proc.
of the 7th Eur. Conf. on Computer Vision (ECCV’02), volume 2352 of LNCS, pages
715–731, 2002.

[14] K. Grauman and T. Darell. Fast contour matching using approximate earth mover’s
distance. In Proc. of the IEEE Conf. on Comp. Vision and Pattern Recognition, pages
220–227, 2004.

[15] M. Hagedoorn and R. C. Veltkamp. State-of-the-art in shape matching. In M. Lew,
editor, Principles of Visual Information Retrieval, pages 87–119. Springer, 2001.

[16] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd Int. Workshop on
Statistical and Computational Theories of Vision, 2003.

[17] O. Klein and R.C. Veltkamp. Approximation algorithms for computing the earth mover’s
distance under transformations. In Proc of 16th Int. Symp. on Algorithms and Compu-
tation (ISAAC), Lect. Notes Comput. Sci., page to appear, 2005.

[18] Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data structures.
In Proc. of the 13th ACM Conf. on Information and Knowledge Management, pages
208–217, 2004.

[19] D. Mumford. Mathematical theories of shape: Do they model perception? In Proc. of
the 1991 International Society for Optical Engineering (SPIE) Symposium, Geometric
Methods in Computer Vision, volume 1570, pages 2–10, 1991.

[20] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41(2):338–350, 1993.

[21] Y. Rubner, L.J. Guibas, and C. Tomasi. The earth mover’s distance, multi-dimensional
scaling, and color-based image retrieval. In Proc. of the ARPA Image Understanding
Workshop, pages 661–668, 1997.

[22] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for
image retrieval. Int. Journal of Computer Vision, 40(2):99–121, 2000.

[23] M. Tanase and R.C. Veltkamp. A survey of content-based image retrieval systems. In
O. Marques and B. Furht, editors, Content-based image and video retrieval, pages 47–101.
Kluwer Academic Publishers, 2002.

[24] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and R. van Oostrum. Using
transportation distances for measuring melodic similarity. In Proc of 4th Int. Symp. on
Music Information Retrieval (ISMIR), pages 107–114, 2003.

20

[25] K.R. Varadarajan and P.K. Agarwal. Approximation algorithms for bipartite and non-
bipartite matching in the plane. In Proc. of the 10th Annu. ACM-SIAM Symp. on
Discrete Algorithms (SODA’99), pages 805–814, 1999.

21

