
Chapter 1

Introduction

Visualization of data is a basic and important topic; it helps to analyze or
extract information from the data, as well as to communicate it. If we restrict
ourselves to spatial or geographical data, then we are talking about cartography,
and, in particular, about the generation of maps.

The design of a map is a very complex task. A cartographer cannot just
project the data onto a piece of paper, but he has to worry about its readability.
The way to improve the quality of the map is by using so-called white lies.
For example, in a road map of Europe, if the thickness of a road would be
proportional to its width in real world, the user would not notice it on the map.
Therefore, the cartographer needs to make it thicker on the map than it would
be otherwise according to the map scale.

Furthermore, the design of a map is not only a complex task, but it also
involves subjective decisions. For example, the cartographer has to decide what
information is not relevant and can be omitted from the map, how to improve
its readability in cluttered areas, where to put labels with relevant features,
what legend to use, and so on. “How to Lie with Maps”, by Monmonier [103],
is a classical, nice-to-read book on how these decisions affect the map.

1.1 Automated cartography

The appearance of computers in the 20th century has affected many fields,
and cartography has not been kept aside of this revolution, leading to the so-
called automated cartography research field. Initially the topics consisted of
automating certain tasks originally done by cartographers; later, the area mixed
with the research on geographic information systems.

Automated generalization is, probably, the most recurrent topic within au-
tomated cartography. According to Heywood et al. [87], generalization is “the
process by which information is selectively removed from a map in order to sim-
plify pattern without distortion of overall content”. Another relevant topic is
automated labelling of a map, that is, placing labels with the entities of a map,
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Figure 1.1: Detail of the underground map of London, a classical example of a
schematic map.

such as names of cities or rivers. These two processes are done so often during
the design of a map that automating them saves hours of work.

In recent years, the concept of interactive maps and maps on demand, that
is, maps that are tailored to the user’s wishes or necessities, are getting an
increased interest, mostly due to the widespread use of Internet. These maps
include route maps based on queries as a special case. Given that there is a lot
of demand for such maps, their construction has to be fully automated.

One of the types of maps that allow for automated construction is the
schematized map, which inspired most of the research presented in this the-
sis. In a schematic map, a set of nodes and their connections are displayed in a
highly simplified form, since the precise shape of the connections and position
of the nodes is not so important; see Figure 1.1. To preserve the recognizability
for map readers, the approximate layout must be maintained, however.

Cartograms are another interesting type of map that gives rise to challenging
computational problems; see Figure 1.2. A cartogram is a map in which the
size of each entity is proportional to some value associated with the entity [35,
Chapter 14][47, Chapter 10]. Area cartograms are the most common example, in
which the area of each region is proportional to some function of the region, like
for example, its population. In linear cartograms, we want to display a network
in such a way that the length of a connection is related to some characteristic
of the connection. In ordinary maps, this length is correlated (through a planar
projection of the sphere) to the length of the connection in the real world.
However, we may be interested in showing, for instance, the travel time for each
connection, or the amount of traffic on each connection. Part of this thesis is
concerned with linear cartograms.

We have analyzed some of the steps, or considerations, that cartographers
face when designing schematic maps and linear cartograms. We have abstracted
them, and converted them into mathematically formulated computational prob-
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Figure 1.2: Cartogram of the United States based on the electoral votes in the
1992 presidential elections (from Edelsbrunner and Waupotitsch [61]).

lems. The abstraction process is fundamental to be able to deal with the prob-
lems in the context of computational geometry. Furthermore, this allows that
the considered problems find applications not only in cartography, but also in
robotics, visualization of data, and graph drawing, to name a few other research
areas.

We want to stress that our research is, by no means, trying to completely
solve the problem of automatically generating maps, but is aimed at providing
tools that will successfully perform specific tasks that cartographers may find
useful when designing a cartographic network. This is the main purpose of the
research contained in this thesis.

In the following sections, we describe the context in which the results of this
thesis are embedded: computational geometry. Then, we discuss the related
work that has been done. At the end of this chapter, we give a thesis overview,
explaining the computational problems that are analyzed in subsequent chap-
ters, and discussing their motivation within cartography.

1.2 Computational geometry

We have considered the problems from a computational geometry perspective.
Computational geometry is the branch of algorithmics that deals with problems
with a strong geometric flavour. Generally, the problems are considered in
constant-dimensional spaces. In fact, most of the research has been done in two
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or three dimensions because of the numerous applications.
In computational geometry, effort is put into designing efficient algorithms,

where efficiency is measured both in the asymptotic running time and in the
required memory space.

The field started in the seventies, and the first books on the topic were
by Edelsbrunner [58], and by Preparata and Shamos [110]. The book by de
Berg et al. [45] contains (more than) the appropriate background you need to
understand this thesis. A more programming oriented book of computational
geometry is by O’Rourke [108], and a more discrete and combinatorial slant can
be found in the book by Matoušek [100].

Some of the problems that we considered are instances of geometric opti-
mization problems, that is, optimization problems with an essential geometric
component. In this context, the concepts of approximation algorithms and ap-
proximation schemes play an important role. A good introduction to these
concepts with a geometric flavour is by Bern and Eppstein [20]. The surveys
about geometric optimization by Agarwal and Sharir [6], and by Arora [10] are
also relevant.

Besides cartography and geographical information systems, the field of com-
putational geometry also shares interests with other research areas: data struc-
tures, motion planning, virtual environments, computational biology, graph
drawing, discrete and combinatorial geometry, computer graphics, computer vi-
sion, shape matching and recognition, computational topology, and many more.

1.3 Related work

In this section, we give an overview of some of the research that has been
done in automated cartography. We start with general references, and then we
concentrate on more relevant work on schematic maps and linear cartograms.
In each chapter, we give relevant references for the specific problem that we
consider.

A good introduction to cartography is the book by Dent [47], and a more
informal one is the one by Monmonier [103]. Recent research results on au-
tomated cartography are presented at the International Cartographic Confer-
ence, Auto-Carto (Proceedings of the International Symposium on Computer-
Assisted Cartography), the International Symposium on Spatial Data Handling,
the Dagstuhl seminars on Computational Cartography (September 1999, May
2001, September 2003), and some other conferences.

Schematic maps have become a quite standard way to convey information,
and therefore the work on this area has increased over the past years. For exam-
ple, the PhD thesis by Avelar [11] and an ArcGIS Schematic package, produced
by ESRI [1], have appeared recently. However, the automated construction of
schematic maps has already been studied in earlier papers. Elroi [65, 66, 67]
describes an approach where the paths are first simplified, then they are placed
on a grid to assure restricted orientations, and then crowded areas are locally
enlarged to avoid regions with too high density. No technicalities of the algo-
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rithm or running-time analysis are given in these papers. Avelar and Müller [13]
describe an iterative procedure that attempts to rotate all links of an input net-
work into one of the four main orientations. No upper bound on the running
time can be given. Also, the output may contain links in other orientations
than the desired ones. Barbowsky, Latecki and Richter [15] have used an iter-
ative discrete curve evolution, based on a local measure, to simplify the curves
while keeping the local spatial ordering. All these methods rely on iterative
approaches where the connections should converge to the major orientations,
while displacing the junctions. For this type of techniques, it is difficult or even
impossible to guarantee the convergence of the procedure.

The paper by Neyer [107] describes a line-simplification algorithm where the
final paths must have links in one of c given orientations only, and stay close
enough to the original path. The algorithm minimizes the number k of links in
the output in O(n2k log n) time, and when it is applied to disjoint paths, the
output may have intersections, which change the topology of the map. In a
paper by Raghavan et al. [112], a wiring is made by connecting pairs of points
by non-intersecting, 2-link orthogonal paths. This can be seen as a schematic
map where only two different schematic paths are possible for each pair of
points. The problem can be solved in O(n log n) time, as shown by Imai and
Asano [90], but the model is too restrictive and the relative positions in the
resulting network may be different than in the original network, making the
recognizability of the features harder. For depicting the schematic paths, the
work by Duncan et al. [55] is also worth mentioning, where paths are redrawn
in the same homotopic class and with maximal separation.

We are not aware of any research done for the construction of linear car-
tograms. However, there is much research done on the problem of drawing
graphs with specified edge lengths. For cartographic purposes we have the nat-
ural restriction that the drawing should be planar, and then the problem has
been considered by Di Battista and Vismara [52], Eades and Wormald [56], and
Whitesides [120].

If we drop the planarity condition, then the problem has been studied in
the fields of computational geometry [41, 69, 115, 122], rigidity theory [40, 83,
91], sensor networks [36, 114], and structural analysis of molecules [19, 42, 84].
It appears frequently when only distance information is known about a given
structure, such as the atoms in a protein [19, 42, 84] or the nodes in an ad-hoc
wireless network [36, 111, 114].

Other research related to schematic maps is map generalization for road
networks and line simplification. However, the objectives in such problems are
quite different. In general one does not consider achieving a given number of
links per path and/or having restricted orientations, but instead tries to keep
the main features of each path while reducing the number of coordinates to
describe it. One of the most popular algorithms for simplification of paths is by
Douglas and Peucker [54], but much more research has been done; see the notes
by Weibel [119] for a general reference.

Also related is the research on VLSI layout design [76, 97], where the number
of edges in the output is generally not considered critical, and research on graph
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drawing [51, 118], where the positions of the endpoints are usually not fixed. A
recent, related topic that is relevant to schematization is the rendering of par-
ticular routes under queries [7, 12]. In this case, the paths are also simplified,
but there is more flexibility to distort the input map because only the objects in
the surroundings of the route are displayed. Another interesting research topic
within cartographic networks is using graphs for displaying the train intercon-
nection data in the railway network. This problem has been treated by Brandes
et al. [23, 24].

1.4 Thesis overview

Consider a drawing of a transportation network, such as road or railway map.
To design a schematic version of it, or to produce a linear cartogram, the car-
tographer performs actions that can be classified into three types: displace the
nodes (or junctions) of the network, modify the shape of the connections, or
both together. Let us analyze these actions independently.

1.4.1 Displacing nodes

Consider the actions that displace nodes, which from now on we will imagine to
be points. Independent of the reason to displace a point, its new position has to
be close to the original one. A natural way to abstract this is by restricting the
new position of a point to be inside a fixed region around the original position,
and then the problem becomes: given a collection S1, . . . , Sn of regions in R

2,
find a “good”placement p1, . . . , pn with pi ∈ Si. There are two issues we have
to handle: what is a “good” placement, and which regions are the appropriate
ones?

The cartographer displaces the points with respect to their original position
to improve the quality of the map under construction. So, let us assume that
we have a quality function Q : S1 × · · · × Sn → R that measures the quality of
a placement (p1, . . . , pn) ∈ S1 × · · · × Sn. We can then say that our objective
would be to provide a best placement, that is, points p∗

1, . . . , p
∗
n, with pi ∈ Si

such that

Q(p∗1, . . . , p
∗
n) = max

(p1,...,pn)∈S1×···×Sn

Q(p1, . . . , pn).

A quality function that evaluates all the aspects of the placement would be very
complex, and becomes infeasible from the computational point of view. Instead,
we have considered two particular quality functions that play a fundamental role
in the design of schematic maps for networks.

The first quality function captures the fact that, in a schematic map, the con-
nections between nodes are usually displayed by a small number of straight-line
segments, and usually horizontal, vertical, or also diagonal (45 or 135 degrees)
segments are preferable; see Figure 1.1. This leads to the problem of, given a
graph on the points p1, . . . , pn, find a placement that maximizes the number of
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straight-line edges that have horizontal, vertical, and perhaps diagonal orienta-
tion. Because a picture is worth a thousand words, take a look at Figure 1.3.
We refer to this problem as the aligning-points problem. We show that finding a
best placement under this criterion is NP-hard, and provide several approxima-
tion schemes whose performance depend on various parameters. These results,
previously published in [34], are described in Chapter 2.

Figure 1.3: The aligning-points problem. In thin black, the original network is
shown. The disk around each point represents the region where it can be moved.
We want to maximize the number of edges with horizontal, vertical, or diagonal
orientation. In this case, a possible optimal solution is the thick network shown.

Regarding the second quality function that we will consider, a rule of thumb
tells that the readability of the map improves as the separation between its
features increases. This leads to the problem of maximizing the distance between
the placed points, and, in particular, the problem of maximizing the distance
between any pair of points as much as possible. Take a look at Figure 1.4
to see an example. We refer to this problem as the spreading-points problem.
The problem was shown to be NP-hard by Baur and Fekete [16], and Fiala,
Kratochv́ıl, and Proskurowski [71]. When the regions are disks, we provide
efficient approximation algorithms with constant-factor approximation. These
results were previously published in [28], and we report them in Chapter 3.

Let us remark that in these problems, we did not deal with the actual choice
of the regions, or which regions are preferable, but we assume that the regions
are already given. Under this assumption, both problems belong to the area of
geometric optimization.

1.4.2 Deforming connections

Let us consider one of the connections in the original map, and the corresponding
connection in the schematic map. If a road passes to the North of an important
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Figure 1.4: The spreading-points problem. On the left, we have a collection
of points. We consider a disk around each of them (center left), and then we
allow each point to be displaced within its disk. The objective is to maximize
the distance of the closest pair, and for the depicted example, we would get the
situation shown on the right.

α β

Figure 1.5: Are the paths α and β homotopic, that is, can α be continuously
deformed into β without touching any of the points?

city, we do not want the schematized version to pass to the South of that city, but
to keep the relative positions. If we think of the construction of the schematic
path as a continuous deformation of the original path, we can formulate this
requirement as follows: the original path is transformed into the schematic one
in a continuous way, fixing its endpoints and without crossing any “important
point”, where “important point” refers to a city or any other point feature whose
relative position with respect to the path we want to maintain.

Homotopy of paths is a well-known concept in topology that captures this
idea. Therefore, to understand the problem and extract its features, we consider
the basic decision problem: given two paths and a set of “important points” P ,
can we deform one path into the other one without passing over any point in P ?
Or, using the topological terminology, are the two paths homotopic in the plane
minus P ? See Figure 1.5 for an example. If both the paths and the point set P
have complexity n, then we can decide it in O(n log n) time in case the paths are
simple, and in O(n3/2 log n) time in case the paths self-intersect. Lower bounds
for both cases (simple and self-intersecting paths) are also presented, and, in
particular, they show that the algorithm for the simple case is asymptotically
optimal. These results were previously published in [32], and we present them
in Chapter 4.

Next we return to the problem of constructing a schematic map. We assume
that the input is a planar embedding of a graph consisting of polygonal paths
between specified points called endpoints. We are interested in producing an-
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other planar embedding where all endpoints have the same positions, and every
path is displayed as a two-link or three-link path where links are restricted to
certain orientations; see Figure 1.6. Furthermore, as discussed above, the out-
put map should be equivalent to the input map in the sense that a continuous
deformation exists such that no path passes over an endpoint during the trans-
formation. For maps whose paths do not intersect, this equivalence implies that
the cyclic order of paths around endpoints is maintained.

Chapter 5 contains our formalization of the problem, a computationally
optimal algorithm to deal with it, and discusses the quality of the schematic
maps given by our implementation. These results were previously published in
[30], improving our previous works [29, 33]. Figure 1.6 has been produced by
our implementation, and more examples are shown in the figures of Chapter 5,
where we also discuss extensions of the algorithm.

Figure 1.6: Northwest of the Iberic Peninsula. Left: the original map. Right:
the schematized version made by the implementation described in Chapter 5.

1.4.3 Doing everything at the same time

To construct a schematic map by displacing points and deforming paths, both
simultaneously, is too complex. Let us be more specific: so far, no algorithm
provides provable results in this context. Some authors [11, 12, 13, 15, 65, 66, 67]
give iterative processes that do everything at once, and that in general may
give nice, pleasant results. However, there is no provable guarantee that the
output will be optimal, or even good. For example, it may well happen that
the algorithm cannot modify anything in the original map. More specifically,
no combinatorial algorithms have been proposed that can handle connections
and nodes together.

If there are no such theoretical, provable results, where is then the difficulty?
The basic issue is that many simpler problems are already computationally in-
tractable. For example, consider the problem of generating a linear cartogram.
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The construction of such a map can be modeled by defining the length of each
edge appropriately and trying to realize the graph with these edge lengths. So
we can abstract the generation of a linear cartogram to the following natural
problem: given a graph G, can we construct a planar straight-line embedding
of G where the edges have a prescribed length? Observe that in real-life appli-
cations, we would also like to keep some resemblance with the original network,
and so we may restrict where the vertices of the graph can be embedded. How-
ever, as we show in Chapter 6, the problem is already NP-hard without this
restriction; that is, there is little hope that efficient algorithms will exist for
this problem. This is true even for a very restricted class of graphs, such as
3-connected, bounded degree, and bounded face degree graphs. This problem
is discussed in Chapter 6, whose contents were previously published in [31].
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