
Facility location problems in the plane based
on reverse nearest neighbor queries

S. Cabello∗ J. M. Dı́az-Báñez† S. Langerman‡ C. Seara§

I. Ventura¶

9th March 2009

Abstract

For a finite set of points S, the (monochromatic) Reverse Nearest Neighbor (RNN)
rule associates with any query point q the subset of points in S that have q as its
nearest neighbor. In the Bichromatic Reverse Nearest Neighbor (BRNN) rule, sets
of red and blue points are given and any blue query is associated with the subset
of red points that have it as its nearest blue neighbor. In this paper we introduce
and study new optimization problems in the plane based on the Bichromatic Reverse
Nearest Neighbor (BRNN) rule. We provide efficient algorithms to compute a new
blue point under criteria such as: (1) the number of associated red points is maximum
(MAXCOV criterion); (2) the maximum distance to the associated red points is mini-
mum (MINMAX criterion); (3) the minimum distance to the associated red points is
maximum (MAXMIN criterion). These problems arise in the competitive location area
where competing facilities are established. Our solutions use techniques from compu-
tational geometry, such as the concept of depth of an arrangement of disks or upper
envelope of surface patches in three dimensions.

Keywords: Reverse Nearest Neighbor; Competitive Location; Computational Geometry.

∗Department of Mathematics, Institute for Mathematics, Physics and Mechanics, Slovenia. Partially
supported by the European Community Sixth Framework Programme under a Marie Curie Intra-European
Fellowship, and by the Slovenian Research Agency, project J1-7218. sergio.cabello@imfm.uni-lj.si

†Departamento de Matemática Aplicada II, Universidad de Sevilla. Partially supported by project MEC
MTM2006-03909. dbanez@us.es

‡Chercheur qualifié du FNRS, Department d’Informatique, Université Libre de Bruxelles.
stefan.langerman@ulb.ac.be

§Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. Partially sup-
ported by projects MCYT-FEDER-BFM2003-00368, Gen-Cat-2005SGR00692, and MCYT HU2002-0010.
carlos.seara@upc.edu

¶Departamento de Matemática Aplicada II, Universidad de Sevilla. Partially supported by project MEC
MTM2006-03909. iventura@us.es

1



1 Introduction

Given a database, a Nearest Neighbor (NN) query returns the data objects that are nearer
to a given query object than any other object in the database. On the other hand, in the
conceptually inverse query problem, a Reverse Nearest Neighbor (RNN) query retrieves those
objects that have a query object as their nearest neighbor. Reverse Nearest Neighbors queries
have emerged as an important class of queries for spatial and other types of databases. The
concept was first introduced by Korn et al. [19, 20]; the reader is referred to these papers
for a gathering of a large number of applications in marketing and decision support systems.
Also, see [30] for a survey on the current state-of-art and open geometric problems in another
application area.

The RNN query itself presents several variants, ranging from monochromatic or bichro-
matic versions to static or dynamic versions. In the monochromatic case, all points have
the same color. In the bichromatic case, the point set consists of red and blue points, and
the problem turns into computing those points belonging to one of the two colors for which
a query point is a bichromatic nearest neighbor. In the static version of the problem, dis-
tances between points in the set remain unchanged, whereas in the dynamic problem they
may change. Some previous related work on these problems includes [6, 22, 23, 27, 29].
High-dimensional instances of RNN and BRNN (bichromatic RNN) have hardly been con-
sidered in the past, in sharp contrast with the NN problem; and it is striking to see how
little research on (B)RNN has been carried out compared to the research on NN. This shows
that even the planar instances of (B)RNN are still worth studying at the present time.

This paper considers the RNN query as a rule or mapping to associate points from the
database to every point in a continuous space and introduces new optimization problems
by using this rule. We study new geometric optimization problems in the planar static
bichromatic variant, where data points belong to two categories. In particular, we will define
RNN facility location problems in a two dimensional space. Some points are designated as
facilities, and others as customers. In this setting, a reverse nearest neighbor query asks for
the set of customers affected by the opening of a new facility at some point (query); here we
will assume that all customers choose the nearest facility (Figure 1). We point out here that
we pick the name “reverse” from the data mining community and this concept is different
from the “inverse” or “reverse” as used sometimes in the operational research field, where
the goal is to modify the underlying space to improve the efficiency [33].

We will study optimization problems that arise when considering various optimization
criteria: maximizing the number of potential customers for the new facility (MAXCOV cri-
terion); minimizing the maximum distance to the associated clients (MINMAX criterion);
and maximizing the minimum distance to the associated clients (MAXMIN criterion). The
MAXCOV and MINMAX criteria deal with the location of an attractive facility (bars, discos,
hospitals, schools, supermarkets, fixed wireless base stations, etc), while the MAXMIN cri-
terion seeks the best location for a new obnoxious facility (rubbish dumps, chemical plants,
etc). Notice that these problems can be interpreted as the location of a new facility in a
competitive environment. Competitive facility location addresses the problem of the plac-
ing of sites by competing market players. Typically, the expected income the new facility
will generate will depend on the market share it will capture. Competitive location mod-
els have been studied in several disciplines such as geography, economics, marketing and

2



operations research. Comprehensive surveys of competitive facility location models can be
found in [14, 15, 24, 31]. A continuous analogue to the MAXCOV problem was considered
in [8, 10], where the problem of placing a new facility in a location that maximizes the area
of the corresponding Voronoi region is considered. Observe that the MAXCOV criterion can
also be seen as a greedy step in a discrete version of the Voronoi game [2].

Finally, as already pointed out above, applications of the problems under consideration
are also related to various fields that lie beyond the scope of facility location problems, for
example, advanced database applications.

customer

facility
q

Figure 1: The bichromatic RNN query. BRNN(q) has five points.

An outline of the paper is as follows. In Section 2 we state the optimization problems. In
Section 3 we propose exact and approximate algorithms for the MAXCOV problem and we
prove its 3SUM hardness. An O(n2+ε)-time algorithm for the MINMAX and the MAXMIN
problems is described in Section 4. In Section 5 we also consider several variants of the
problems which include the combination of criteria, the use of the L1 and L∞-metrics and
the reverse farthest neighbor version. Finally, concluding remarks of the paper are put
forward in Section 6.

2 Problem statement

In the sequel, unless otherwise stated, we will use the L2 metric and will d(p, q) denote the
Euclidean distance between points p and q. Let S = {p1, . . . , pN} be a set of points in the
plane. Given a point b in the plane, the reverse nearest neighbor set of b is defined as

RNN(b) = {pi ∈ S : d(pi, b) ≤ d(pi, pj),∀pj ∈ S \ {pi}}.

For the bichromatic case, assume we have a nonempty set R = {r1, . . . , rn} of n red
points (clients) and a nonempty set B = {b1, . . . , bm} of m blue points (facilities) such that

3



n ≥ m ≥ 2 and R ∩ B = ∅. Given a new query blue point b /∈ B, the bichromatic reverse
nearest neighbor set is defined as

BRNN(b) = {ri ∈ R : d(ri, b) ≤ d(ri, bj), ∀bj ∈ B}.
Notice that in the monochromatic case the size of the output of a query may differ from

the size in the bichromatic case. The following result establishes such a difference.

Lemma 1. [28] For any query point, the set RNN(b) has at most 6 points, but the size of
BRNN(b) may be arbitrarily large.

It is straightforward to note that for any blue point b /∈ B we have 0 ≤ |BRNN(b)| ≤ n.
Notice also that if ri ∈ BRNN(b), then (by definition) the open disk centered at ri and radius
d(ri, b) is empty of blue points. We formalize the optimization problems as follows.

The MAXCOV problem. Given a bichromatic point set S = R ∪B, compute

MAXCOV(S) = max{|BRNN(b)| : b ∈ R2 \B},
that is, compute the maximum number of points that BRNN(b) contains for a point b /∈ B,
and find a witness placement b0 such that |BRNN(b0)| = MAXCOV(S).

In the MAXCOV problem, we are also interested in computing the locus LS of all points
b satisfying |BRNN(b)| = MAXCOV(S). More generally, for any positive integer k, we
will consider computing the level set L(k) = {b ∈ R2 : |BRNN(b)| ≥ k}. Observe that
L(MAXCOV(S)) = LS and L(1) = {b ∈ R2 : BRNN(b) 6= ∅}.
The MINMAX problem. Given a bichromatic point set S = R∪B and a region X ⊆ L(1),
compute

MINMAX(S) = min
b∈X

max{d(b, x) : x ∈ BRNN(b)},
and find a witness placement b0 ∈ X such that max{d(b0, x) : x ∈ BRNN(b0)} = MINMAX(S).

The MAXMIN problem. Given a bichromatic point set S = R∪B and a region X ⊆ L(1),
compute

MAXMIN(S) = max
b∈X

min{d(b, x) : x ∈ BRNN(b)},
and find a witness placement b0 ∈ X such that min{d(b0, x) : x ∈ BRNN(b0)} = MAXMIN(S).

For both MINMAX and MAXMIN problems we will add the additional constraint that
the new point b has to be placed in a given region X with X ⊆ L(1), as otherwise we could
always place b such that BRNN(b) = ∅. We will assume that X is a region bounded by
O(n) pieces, each with constant description complexity. The region X has to be bounded for
the MAXMIN problem to be well-defined, and this condition is guaranteed by the fact that
X ⊆ L(1), which is always bounded. Typically, we will consider X to be a level set L(k) for
some value k. Although for some values k, the level set L(k) can reach quadratic complexity
in n, we will see that we will be able to handle this type of sets within the same asymptotic
bounds.

Note that the MAXCOV and MAXMIN/MINMAX criteria are of completely different
nature: while in the MAXCOV criterion our goal is to maximize the number of points in a
set, which is a discrete measure, in the MAXMIN/MINMAX criteria we optimize a distance,
which a is continuous measure. This difference in nature is reflected in the solutions that we
present.

4



3 The MAXCOV problem

In this section we provide exact and approximate algorithms for the MAXCOV problem, as
well as result on the hardness of the exact problem.

3.1 Exact solution

For every red point ri ∈ R, we denote by b(ri) the nearest blue point. Let Ri be the red
disk with radius d(ri, b(ri)) centered at point ri. The set of n disks {R1, . . . , Rn} can be
computed in O((n + m) log m) = O(n log m) time as follows: compute the Voronoi diagram
of B and preprocess it for point location; after O(m log m) time, a point location query can
be answered in O(log m) time [5]. By locating each ri ∈ R in the Voronoi diagram, we obtain
points b(r1), . . . , b(rn) in O(n log m), which is information sufficient to construct the set of
disks {R1, . . . , Rn}.

Let A be the arrangement generated by the set of n red disks {R1, . . . , Rn}. The idea
of the algorithm is to associate a label lc to each cell c of A. Such label lc will contain the
number of discs that makes up the cell c Next, the algorithm will look for the cells in A
with maximum label. Indeed, if a cell c has label k, it means that a blue point b inside this
cell c is contained in exactly k red disks; this means that the point b is the closest point of
the k red points corresponding to the red disks. Observe that if we do not assume general
position, the cell with greatest label may be a vertex of A, such as the vertex b in Figure 2.

b

Figure 2: Arrangement of red circles R1, . . . , Rn.

The arrangement A along with the labels lc for each cell c ∈ A can be constructed
in O(n2 log n) time using a standard sweep-line algorithm such as that of Bentley and
Ottmann [7]. Computing the arrangement determined by a set of curve segments in the
plane is a classical problem in computational geometry. A slightly faster construction of the
arrangement A with O(n2) expected running time is proposed in [12, 26]. More recently,
a deterministic algorithm that use a divide-and-conquer approach to achieve an optimal
running time O(n2) has been described in [3].

5



As we are dealing with the planar case, the computation of an arrangement of circles is
of acceptable complexity. Utilizing an arrangement of circles is reminiscent of the approach
of [19], where the RNN problem is reduced to point location among balls.

Once we have computed the arrangement A induced by the disks {R1, . . . , Rn}, we can
construct the dual graph G of the arrangement. G will contain a node for each cell c ∈ A
and an edge between two cells whenever their closures intersect. If two faces c, c′ ∈ A are
adjacent in G, it is easy to compute the label lc′ from the label lc. Therefore, making a
traversal in the dual graph G, we can compute the labels lc for all faces c ∈ A. With this
information, it is possible to compute lc for all the edges and vertices c ∈ A. Special care has
to be paid when the arrangement is degenerate, that is, if some disks in {R1, . . . , Rn} are
tangent; details are standard and will be therefore omitted. After computing lc for all cells
c ∈ A, we can find MAXCOV(S) using that MAXCOV(S) = max{lc | c ∈ A} and report
the locus LS of all optimal placement using that LS =

⋃
{c∈A:lc=MAXCOV(S)} c. We end this

discussion by stating the following theorem.

Theorem 1. The value MAXCOV(S) and the set of all optimal placements LS can be
computed in O(n2) worst-case running time.

We can also construct any of the level sets L(k) in the same running time. However,
observe that the level set L(1) is exactly the union of the n disks R1, . . . , Rn and can be
described in linear space and constructed in near-linear time [18]. Once we obtain a level
set L(k) under the MAXCOV criterion, we can compute the level that optimizes MAXMIN
or MINMAX criteria. We will show how to deal with this in Subsection 5.1.

3.2 Approximation algorithm

In the preceding we gave a quadratic running-time algorithm for solving the MAXCOV prob-
lem. Below we will show that solving the MAXCOV problem is actually 3SUM hard [16].
This implies that a sub-quadratic algorithm is unlikely to exist. In some applications, how-
ever, it may be the case that a quadratic time algorithm is not affordable. We will then
content ourselves with an approximation algorithm that places a new suboptimal facility.
The number of clients this suboptimal facility will acquire may be smaller than that of the
optimal placement, but the running time of the algorithm will in turn be close to linear.

As established above, computing MAXCOV(S) is equivalent to finding the maximum
depth in the arrangement of disks A. In other words, computing MAXCOV(S) can be
reduced to finding a point in the plane having the largest number of covering disks . It also
stems from the previous discussion that, if we find a point b whose depth in A is d, then it
can be concluded that |BRNN(b)| = d, and so MAXCOV(S) ≥ d. A probabilistic algorithm
to compute a point that (1 − ε)-approximates the maximum depth in an arrangement of n
disks is given by Aronov and Har-Peled [4], and it readily leads to the following result.

Theorem 2. Given a parameter ε > 0, we can find in O(nε−2 log n) expected time a place-
ment that, with high probability, is a (1− ε)-approximation to MAXCOV(S).

Proof. In Subsection 3.1 we showed how to compute the set of n red disks {R1, . . . , Rn} in
O(n log m) time. Hence, by using the probabilistic algorithm of Aronov and Har-Peled [4]
we can approximate the maximum depth in a family of pseudo-disks.

6



3.3 Complexity of MAXCOV

The hardness of the problem changes substantially from m = 1 to m = 2. We will show
below that for m = 2 the problem is 3SUM hard [16], and therefore is at least as hard as
many other problems for which no sub-quadratic algorithm is yet known. On the other hand,
for m = 1, the problem can be solved in O(n log n) time, and this is asymptotically optimal
in the algebraic decision tree model of computation (see Theorem 4).

Theorem 3. For m ≥ 2, computing MAXCOV(S) is 3SUM hard.

Proof. The present proof is similar to the one used in [4] for showing the 3SUM hardness of
computing the maximum depth in an arrangement of disks. In this paper, the authors used
a well-known 3SUM hard problem in the reduction: given a set of lines in the plane with
integer coefficients, decide whether any three of the lines have a point in common [16]. We
show how to reduce this problem to the problem of computing MAXCOV(S). In contrast to
that problem, where the input is a collection of disks, here we have to reduce our problem
to an instance of MAXCOV, whose input is a set of red and blue points. Since not all
collections of disks can arise from a MAXCOV problem, and furthermore since we want a
set of 2 blue points, the original reduction does not apply directly.

Let L be a set of n lines with integer coefficients and distinct slopes. See Figure 3 for the
following construction. We first find an axis-parallel rectangle Q enclosing all the vertices of
the arrangement of lines A(L). A rectangle Q can be computed in O(n log n) time by noting
that the leftmost, rightmost, topmost, and bottommost intersection points are defined by
lines with (circularly) consecutive slopes.

Let d be the diameter of Q and q the center of Q. Because the coefficients of the lines
are integers, we can compute in linear time a value ∆ such that all lines not incident to a
vertex of A(L) are at a distance at least ∆ from that vertex.

Let us assume that q lies at (0, 0), and consider the points b+ = (0, β), b− = (0,−β) for
some value β to be fixed shortly. We then represent each line ` ∈ L by using two red points
according to the following construction: let p` and p′` be the intersection points between
` and the boundary of Q, let D+

` and D−
` be the respective disks with boundary through

b+, p`, p
′
` and b−, p`, p

′
`, and let r+

` and r−` be the respective centers of D+
` and D−

` . We can
assume that the radii of the disks are large enough compared to the dimensions of Q in
order to make sure that the bounding circles of these two disks intersect the boundary of Q
in only two points, namely p` and p′`. Let B = {b+, b−}, let R be the set of 2n red points
{r+

` , r−` | ` ∈ L}, and let S = R ∪B.
For each line ` ∈ L, point r+

` is above the x-axis, while r−` is below the x-axis. Therefore,
b+ is the blue point closest to r+

` and b− is the blue point closest to r−` .
It is possible to choose β sufficient large, so that D+

` ∩D−
` is contained in a strip of width

∆ around `. This ensures that a vertex of the arrangement A(L) is contained in D+
` ∩D−

` if
and only if it is incident to `. Elementary trigonometry shows that β = ∆ + ∆−1 · d is large
enough, and therefore the construction only uses numbers polynomially bounded.

A new blue point b will capture a red point r+
` (or r−` ) if and only if it is contained in

D+
` (or D−

` , respectively). Every point inside of Q is contained either in D+
` or D−

` for every
`, and so every point in Q is contained in at least n disks, and no point outside of Q is
contained in more than n disks. Furthermore there is a point in Q contained in at least n+3

7



Q

`

p`

p′`

b+

b−

r+

`

r−`

D+

`

D−

`

Figure 3: Construction in the 3SUM hardness proof.

disks (i.e., point b ∈ Q is a witness such that MAXCOV(S) ≥ n + 3) if and only if three
lines of L intersect in a common point. The overall reduction takes O(n log n) time.

Theorem 4. The value MAXCOV(S) for a set S of n red points and one blue point can be
computed in O(n log n) time, and this is asymptotically optimal under the algebraic decision
tree model.

Proof. Let b be the only blue point and assume that there are not three points on a line.
We find an open half-plane Hb with b on its boundary that contains as many red points as
possible. This can be done in O(n log n) time by sorting the red points radially from b and
performing a rotational sweep of a half-plane with b on its boundary. We then place a new
blue point b′ close enough to b such that b′ captures all the points in R ∩Hb. It is obvious
that this is an optimal solution, and we have found it in O(n log n) time.

Next we prove a lower bound. From the discussion in Section 3.1, it is clear that it
is sufficient to show an Ω(n log n) lower bound for the problem of finding the depth of an
arrangement of n disks passing through a common point. Consider the uniform gap problem
in a quadrant of the unit circle: Given n points {p1, . . . , pn} in a quadrant of the unit circle
S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, and a value ε > 0, decide whether there is a permutation
σ : {1, . . . , n} → {1, . . . , n} such that d(pσ(i), pσ(i+1)) = ε for all i ∈ {1, . . . , n − 1}, where
the distance d(·, ·) refers to the Euclidean distance. This problem has a lower bound of
Ω(n log n) time in the algebraic decision tree model [21, 25].

Given an instance P = {p1, . . . , pn}, ε for the uniform gap problem, we make the following
reduction to our problem; see Figure 4. For each i, let qi, q

′
i be the points on S1 at distance

ε from pi, let `i, `
′
i be the lines bisecting segments piqi and piq′i, and let Di and D′

i be the
disks that have o, pi on their boundary and are tangent to `i and `′i, respectively. Note that
Di ∩D′

i lies in one of the wedges defined by `i and `′i.

8



piqi

q′
i

Di
D′

i

o

`i
`′
i

Figure 4: Reduction in Theorem 4.

Let o be the blue point, and let the centers of the disks Di be the set of 2n red points for
our instance of the MAXCOV(S) problem. Let D be the set of 2n disks {Di, D

′
i | pi ∈ P}.

The set D can be constructed in linear time; we next show how to compute the depth of the
arrangement D gives the answer to the uniform gap problem. If the answer to the instance
P, ε is yes, then all the regions D1∩D′

1r{o},. . . ,Dn∩D′
nr{o} are disjoint, and the maximum

depth of D is n + 1 (the point o has depth 2n, but since o is a blue point, we cannot place
another blue point there). On the other hand, if there are indices i, j such that d(pi, pj) < ε,
then Di ∩D′

i ∩Dj ∩D′
j r {o} 6= ∅, and therefore the depth of the arrangement is, at least,

n+2. Finally, we are left with the case when the answer to the gap problem is no because in
all permutations a pair of consecutive points are at distance larger than ε. This case can be
ruled out from the beginning by finding the leftmost and the rightmost points in P (which
are well defined because P is in one quadrant) and checking that they are at the appropriate
distance.

4 The MINMAX and MAXMIN problems

We are given a bichromatic set S = B ∪ R formed by a set of m blue points B (facilities)
and a set of n red points R (clients), n ≥ m ≥ 2, and a constraint region X ⊆ L(1).

The MINMAX problem

According to the MINMAX criterion we are interested in finding a new blue point p ∈ X
such that the maximum distance to the points in BRNN(p) is minimized. Consider the
cost function Cost : L(1) → R that measures for each point p ∈ L(1) the cost, according
to the MINMAX criterion, of placing the new blue point, or facility, at p; it follows that
Cost(p) = max{d(p, x) : x ∈ BRNN(p)}. Consider the graph of the function Cost in 3D.
Next, we are going to give a combinatorial description of this graph.

9



Embed the plane containing R,B in the plane z = 0 in 3-space, that is, consider the
point sets R, B as embedded in the xy-plane in 3D. For a “client” point ri = (xi, yi) ∈ R,
consider the (solid) cylinder

Cyli = {(x, y, z) ∈ R3 | (x− xi)
2 + (y − yi)

2 ≤ (d(ri, b(ri)))
2},

which is the vertical, solid cylinder through the disk centered at ri with radius d(ri, b(ri)),
and consider the (surface) cone

Coni = {(x, y, z) ∈ R3 | (x− xi)
2 + (y − yi)

2 = z2, z ≥ 0}

with apex at point (xi, yi, 0) ∈ R. See Figure 5 left for an example. Finally, let Σi be
the portion of the surface Coni contained in Cyli. Observe that Σi is a surface patch with
constant complexity. See Figure 5 right for an example.

Figure 5: Left: solid cylinder Cyli and cone Coni associated to the point ri ∈ R. Right:
surface patch Σi associated with ri ∈ R.

The reason for considering Σi for each point ri is the following: ρ = (x, y, t) ∈ R3 is a
point vertically above (resp. below) Σi if and only if ri ∈ BRNN(x, y) and d((x, y), ri) ≤ t
(resp. d((x, y), ri) ≥ t). To see the validity of this claim, observe that ρ has a vertical
above/below relation with Σi if and only if ρ ∈ Cyli. Moreover, by the way the cone Coni

is defined, it holds that ρ = (x, y, t) is above Coni if and only if d((x, y), ri) ≤ t. A similar
analysis applies to a point ρ below Σi and the claim follows.

Let U be the upper envelope of the surfaces Σ1, . . . , Σn. Using the discussion above we
readily obtain the following property.

Lemma 2. The upper envelope U is the graph of the function Cost.

We are interested in finding a point p ∈ X that minimizes Cost, and therefore the
problem is reduced to finding the lowest point in the envelope U restricted to the region X.
Let UX be the portion of U defined over X. If X has complexity O(n) we can argue that UX

has complexity O(n2+ε) as follows, where the complexity of an envelope UX is defined as its
number of vertices, edges, and faces. For each boundary arc a ∈ X, we consider a vertical

10



wall Wa = a × R in 3D. Since X has O(n) complexity, we have O(n) surfaces of the type
Wa.

The upper envelope UW of the surfaces Σ1, . . . , Σn together with the walls Wa for arcs a
in the boundary of X can be computed and described in O(n2+ε) time, for any fixed ε > 0 [1].
However, since we have introduced the vertical walls Wa, the domain of each patch of UW is
either fully contained in X or fully outside X. It follows that the restriction UX of U to X
can be constructed in O(n2+ε) time.

It remains to find the lower point of UX . Observe that this point does not necessarily
have to be a vertex. However, finding the lower point of UX can be done by checking each
component of UX , that is, each vertex, edge, and face. For a vertex and an edge in UX ,
the lower point can be found in constant time, while for each face in UX we can find the
minimum in time proportional to its complexity. Since the complexity of UX is O(n2+ε), we
conclude the following.

Theorem 5. The MINMAX problem can be solved in O(n2+ε) time, for any fixed ε > 0.

The MAXMIN problem

Using the same approach, the MAXMIN problem can be solved by computing the lower
envelope L of Σ1, . . . , Σn, considering its restriction LX to a given set X, and finding the
highest point in LX . The same analysis applies to this case, and we obtain the following
result.

Theorem 6. The MAXMIN problem can be solved in O(n2+ε) time, for any fixed ε > 0.

5 Extensions

In this section we consider some extensions of the problems above. First, we combine the
MINMAX or MAXMIN criteria with the MAXCOV criteria. Second, we solve the same
problems as above under the L1 and L∞-metrics. Finally, we consider a different rule to
associate clients to facilities, namely, the furthest neighbor rule.

5.1 MINMAX and MAXMIN criteria for optimal MAXCOV solutions

In Subsection 3.1 we have shown that the locus L(k) of all placements achieving k clients
can be found in near-quadratic time. Here we describe how to find the best location b within
L(k) according to the MINMAX criterion. The MAXMIN criterion can be handled similarly.

Theorem 7. According to the MINMAX criterion, the best location in the set of placements
in a level set L(k) can be computed in O(n2+ε) time, for any fixed ε > 0.

Proof. We use a combination of ideas from Subsection 3.1 and Section 4. Like in Section 4,
let U be the upper envelope of the surface patches Σ1, . . . , Σn. We are interested in finding
the lower point of U restricted to the locus L(k), for some value k. Recall that for each point
ri the circle Ri is centered at ri and has radius d(ri, b(ri)). Observe that each cell of L(k) is a
cell in the arrangement A of disks R1, . . . , Rn. Let Uk be the restriction of the upper envelope

11



U to the set L(k). We next argue that Uk has complexity O(n2+ε) and can be constructed
in O(n2+ε) time. For each disk Ri, consider the (surface) cylinder Ci = Ri × R in R3. The
upper envelope U ′ of the surfaces Σ1, . . . , Σn, C1, . . . , Cn has complexity O(n2+ε) and can be
constructed in O(n2+ε) time [1]. Moreover, because we have included C1, . . . , Cn in the set
of surfaces, the domain of each patch of U ′ is contained in a cell in the arrangement A. In
particular, the restriction of Uk to a cell of c ∈ L(k) is the same as the restriction of U ′ to the
same cell. We conclude that the envelope Uk has complexity O(n2+ε), and we can find the
lower point in Uk using O(n2+ε) time by checking each component of Uk independently.

Clearly, by finding the highest point of the corresponding lower envelope, similar result
applies if we replace the MINMAX criterion by the MAXMIN criterion. Details are omitted.

5.2 The problems under the L1 and L∞-metrics

The distance function between facilities and clients depends on the kind of applications.
Euclidean distance is appropriate when facilities and clients are spatially located. However,
it is also common in location theory to use other distances [11]. In the following, we show
how to apply the same techniques for the problems under the L1 and L∞ metrics.

Consider the L∞ metric. For the MAXCOV criterion, the ideas described in Subsec-
tion 3.1 directly apply, but they yield better running times. As above, let Ri be the disk
(square) with radius d∞(ri, b(ri)) centered at point ri, and define the arrangement A induced
by {R1, . . . , Rn}. We have to compute the maximum depth of A. Although A may have
quadratic complexity, the maximum depth in an arrangement of n rectangles can be found
in O(n log n) time. This corresponds to a maximum clique in the intersection graph of rec-
tangles [17]. Alternatively, we may use a sweep-line algorithm maintaining a segment tree
describing the depth of the line in the arrangement [9]. Since the same argument applies to
the L1 metric, this leads to the following result.

Theorem 8. In the L∞ and L1 metrics, we can compute MAXCOV(S) and a witness
placement in O(n log n) worst-case running time.

Observe that the description of all the optimal placements may take Ω(n2), since it may
consist of the union of many cells from A. Of course, the 3SUM-hardness proof does not
carry to the L∞ or L1 metric, and there is no need to consider approximation algorithms.

Theorem 9. In the L∞ and L1 metrics, the MINMAX problem can be solved in O(n2α(n))
time.

Proof. For the MINMAX criterion, the same ideas as described for the L2 metric apply.
For each point ri, we consider the square cylinders Cyli = Ri×R, and the polyhedral cones
Coni such that its section at z = t corresponds a square centered at ri and side length 2t.
Notice that Σi is a surface consisting of 4 triangles, that is, 4 piece-wise linear patches. As
above, we want to compute the upper envelope of these linear patches, which can be done
in O(n2α(n)) time [13]. The rest of the analysis carries out like before, and we obtain the
following improved bound.

12



5.3 The reverse farthest neighbor problem

In above Sections we considered the notion of “influence” of a data point on a database as
introduced in [19]. In many decision support situations the notion of the “influence set” of a
data point is given in terms of geographical proximity or similarity and the distance between
vectors is taken as a measure of dissimilarity. If we base the influence set on dissimilarity
rather than similarity, the farthest neighbor rather than nearest neighbor can be considered.
In [19, 30], finding the set of all reverse farthest neighbors for a query point under the L2

distance has been proposed as open problem in the monochromatic version. We study here
the bichromatic version for the MAXCOV optimization problem. We define the influence set
of a blue point b to be the set of all red points r such that b is further from r with respect to
any other blue point. More formally, the bichromatic reverse farthest neighbor set is defined
as

BRFN(b) = {ri ∈ R : d(ri, b) ≥ d(ri, bj),∀bj ∈ B}.
We would like to locate a new obnoxious facility and, in order to minimize the risk of this

location, maximize the number of clients far away from the new undesirable facility. In this
case, a suitable criterion is the MAXCOV as above, but using the farthest neighbor rule. To
the best of our knowledge, this problem has not been studied in the literature before this
paper. It is worth mentioning that in a recent paper [32], the problem has been examined
from a practical point of view and many interesting applications in spatial databases are
given. We formalize the new optimization problem as follows.

The farthest MAXCOV problem. Given a bichromatic point set S = R∪B and a region
X ⊂ R2, compute MAXCOV(S) = max{|BRFN(b)| : b ∈ X \ B}, that is, compute the
maximum number of points that BRFN(b) may have for a new point b ∈ X \ B, and find a
witness placement b0 ∈ X \B such that |BRFN(b0)| = MAXCOV(S).

Notice now that for this problem we also consider the additional constraint that the new
point b has to be placed in a given, bounded region X, as otherwise, we could always place
b to the infinity and the problem is trivially solved. See Figure 6 for an example.

An algorithm similar to the one of Section 3.1 can be applied. For every red point ri ∈ R,
we denote by b(ri) a farthest blue point. Let Ri be the red disk with radius d(ri, b(ri)) cen-
tered at point ri. The set of n disks {R1, . . . , Rn} can be computed in O(n log m) = O(n log n)
by using the farthest Voronoi diagram of B and preprocessing it for point location [5]. The
main observation now is that for any query b, the reverse farthest neighbors ri are those for
which the circles Ri do not include b. Therefore, given the arrangement AF produced by the
set of n red disks {R1, . . . , Rn}, the problem reduces to compute, for each cell c ∈ AF , the
number of red circles that do not contain the cell c. This value can be obtained observing
that, if a cell c has depth k, then we can attach to c the label lc = n − k. In this way, we
obtain the solution in O(n2) worst-case running time.

However, the following result shows that we only need to search for an optimal solution
in the boundary of X.

Lemma 3. If the constraint region X is bounded, there exists a witness point b0 on the
boundary of X that attains |BRFN(b0)| = MAXCOV(S).

13



X

Figure 6: Arrangement AF and the constraint region X.

Proof. Note that all the blue points B are contained in each of the disks Ri by the definition
of the disks R1, . . . , Rn are defined. Therefore, all the disks R1, . . . , Rn have a common
intersection that contains B. Let pR be any point in R1 ∩ · · · ∩Rn.

Let c be a cell of AF ∩ X that has minimum depth, among the cells of AF ∩ X. We
claim that c intersects the boundary of X, which proves the statement. Indeed, consider a
point pc ∈ c ⊆ X, and consider a straight walk from pc in the direction of the vector −−→pRpc.
Because pR ∈ R1∩· · ·∩Rn, the ray from pR to pc can only exit disks and the depth can only
decrease during this walk. Hence the minimum depth is attained when the walk reaches the
boundary of X.

As mentioned before, if X is unbounded, the problem can be trivially solved. When
X is bounded, Lemma 3 implies that the search can be restricted to the boundary ∂X
of X, which is a one-dimensional space. If the boundary of X has a constant description
complexity, the region ∂X ∩ Ri has O(1) connected components, for any disk Ri. In this
case, we can easily construct the restriction of AF to ∂X in O(n log n) time. Finally, note
that we did not explicitly use the L2 metric, and therefore, the approach also works for the
L∞ and L1 metrics. We summarize.

Theorem 10. Let X ⊂ R2 be a region with constant description complexity. In the L1, L2,
and L∞ metrics, one can solve in O(n log n) time the furthest MAXCOV problem in the
constraint region X for a set of n red points and m blue points, m ≤ n.

6 Concluding remarks

Given a query blue point, the bichromatic reverse nearest neighbor problem is to find all red
points for which the query point is a nearest blue neighbor under some given distance metric.
Such queries repeatedly arise when designing efficient algorithms in a variety of areas. In
this paper, we introduced and efficiently solved some optimization problems with a direct
interpretation in the area of Competitive Facility Location. In particular, we studied three
problems (MAXCOV, MINMAX, and MAXMIN) for L2, L1 and L∞ metrics.

14



The facility location problems usually consider weights measuring the importance of the
sites (clients). The MAXCOV problem can be solved analogously in the weighted case. We
may also consider to have multiplicative weights for the MINMAX problem, i.e., each point
ri gets a weight wi and we want to minimize the maximum wid(ri, b) where ri ∈ BRNN(b).
In this case, we only have to change the slope of the cones that we constructed, and the
results go through.

We also considered other variations of the problems that arise by combining different
criteria, and also the problem related to the farthest neighbor rule, instead of the nearest
neighbor rule. For this version, an O(n log n)-time algorithm has been proposed for the
MAXCOV criterion. However, it is still an open problem if it is possible to process the input
in a data structure (within O(n log n) time) such that the reverse farthest neighbor set for a
query point can be answered in O(log n) time for the L2 metric.

Finally, there are several natural problems for further research by considering other op-
timization problems, like for example, minimizing or maximizing the average or the sum of
the distances to BRNN(b).

We recall that our methods and analyses were designed for the planar case exclusively.
Adapting them to a higher-dimensional setting, even three dimensions, is a challenge.

Acknowledgements

We are grateful to anonymous referees and Paco Gómez for many useful comments. These
problems were posed and partially solved during the Second Spanish Workshop on Geometric
Optimization, July 5–10, 2004, El Roćıo, Huelva, Spain. The authors would like to thank the
Ayuntamiento de Almonte for their support and the other workshop participants for helpful
comments.

References

[1] P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and its
applications. Discrete Computational Geometry, 15, 1996, pp. 1–13.

[2] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and R. van Oostrum. Competitive
facility location: the Voronoi game. Theoretical Computer Science, 310, 2004, pp. 457–
467.

[3] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Computing the arrangement of curve
segments: Divide-and-conquer algorithms via sampling. Proc. 11th ACM-SIAM Sympos.
Discrete Algorithms, 2000, 705–706.

[4] B. Aronov and S. Har-Peled. On approximating the depth and related problems. Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2005.

[5] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R- Sack and J. Urrutia, edi-
tors, Handbook of Computational Geometry, Elsevier Science Publishers B. V. North-
Holland, Amsterdam, 2000, pp. 210–290.

15



[6] R. Benetis, C. S. Jensen, G. Karčiauskas, and S. Šaltenis. Nearest neighbor and reverse
nearest neighbor queries for moving objects. The VLDB Journal, 15(3), 2006, 229250.

[7] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28, 1979, pp. 643–647.

[8] O. Cheong, A. Efrat, and S. Har-Peled. On finding a guard that sees most and a shop
that sells most. Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 2004,
pp. 1098–1107.

[9] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geom-
etry, Algorithms and Applications. Springer, 1997.

[10] F. Dehne, R. Klein, and R. Seidel. Maximizing a Voronoi Region: The convex case.
Proceedings of ISAAC, 2002, pp. 624–634.

[11] Z. Drezner and H. W. Hamacher. Facility location: applications and theory, Springer,
2002.

[12] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements
of curves in the plane–topology, combinatorics, and algorithms. Theoretical Computer
Science, 92, 1992, pp. 319–336.

[13] H. Edelsbrunner, L. Guibas, and M. Sharir. The upper envelope of piecewise linear
functions: algorithms and applications. Discrete Computational Geometry, 4, 1989, pp.
311–336.

[14] H. A. Eiselt and G. Laporte. Competitive spatial models. European Journal of Opera-
tional Research, 39, 1989, pp. 231–242.

[15] H. A. Eiselt, G. Laporte, and J. F. Thisse. Competitive location models: A framework
and bibliography. Transportation Science, 27, 1993, pp. 44–54.

[16] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry Theory and Applications, 5, 1995, pp. 165–185.

[17] H. Imai and T. Asano. Finding the connected components and a maximum clique of an
intersection graph of rectangles in the plane. J. Algorithms, 4, 1983, pp. 310–323.

[18] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Computational
Geometry, 1, 1986, pp. 59–71.

[19] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries.
In W. Chen, J. Naughton and P. A. Bernstein editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Vol. 29.2 of SIGMOD Record,
2000, pp. 201–212.

[20] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggregates
over data streams. Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

16



[21] D. T. Lee and Y. F. Wu. Geometric complexity of some location problems. Algorithmica,
1, 1986, pp. 193–211.

[22] K.-I. Lin and M. Nolen. Applying bulk insertion techniques for dynamic reverse near-
est neighbor problems. Seventh International Database Engineering and Applications
Symposium, 2003.

[23] A. Maheshwari, J. Vahrenhold, and N. Zeh. On reverse nearest nighbor queries. Pro-
ceedings of the 14th Canadian Conference on Computational Geometry, 2002.

[24] F. Plastria. Static competitive location: an overview of optimisation approaches. Euro-
pean Journal of Operational Research, 129, 2001, pp. 461–470.

[25] V. Sacristán. Lower bounds for some geometric problems. Technical Report MA2-IR-
98-0034, 1998. Available at http://www-ma2.upc.es/∼vera/recerca.html

[26] M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric appli-
cations, Cambridge University Press, 1995.

[27] A. Singh, H. Ferhatosmanoglu and A. Aman Tosun. High dimensional reverse nearest
neighbor queries. Proceedings of the twelfth International Conference on Information
and Knowledge Management, New Orleans, 2003, pp. 91–98.

[28] M. Smid. Closest point problems in computational geometry. In J.-R. Sack and J.
Urrutia editors, Handbook on Computational Geometry, Elsevier Science, pp. 877–936,
1997.

[29] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search in arbitrary dimensionality.
Proccedings of the 30th VLDB Conference, Toronto, Canada, 2004.

[30] G.T. Toussaint. Geometric proximity graphs for improving nearest neighbor methods
in instance-based learning and data mining. International Journal of Computational
Geometry and Applications, 15, 2005, pp. 101–150.

[31] Q. Wang, R. Batta, and C. M. Rump. Algorithms for a facility location problem with
stochastic customer demand and immobile servers. Journal Annals of Operations Re-
search, Springer Issue, Vol. 111, No. 1-4, 2002, pp. 17–34

[32] B. Yao, F. Li, P. Kumar. Reverse Furthest Neighbors in Spatial Databases. To appear
in 25th International Conference on Data Engineering, Shanghai, China, 2009.

[33] J. Zhang, Z. Liu, and Z. Ma. Some reverse location problems. European Journal of
Operational Research, 124, 2000, pp. 77–88.

17


