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Delaunay triangulations

▶ triangles with empty circumcircle

▶ dual to Voronoi diagram

▶ lexicographically maximizes the vector of non-decreasing angles

▶ partition of the convex hull

▶ basic and ubiquotous geometric structure

▶ computable in O(n log n), and lower bound of Ω(n log n)

▶ several paradigms: incremental, randomized incremental, divide
and conquer, via Voronoi diagram, via CH in 3d, etc.

▶ a 2-dimensional ”extension” of sorting
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Delaunay triangulations - locality

▶ testing whether a given triangulation is a Delaunay triangulation

▶ suffices local test of each triangle with its ≤ 3 neighbor triangles
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Delaunay triangulations - locality

▶ testing whether a given triangulation is a Delaunay triangulation

▶ suffices local test of each triangle with its ≤ 3 neighbor triangles

▶ Θ(n log n) to build Delaunay triangulation

▶ Θ(n) to test if a given triangulation is Delaunay
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Euclidean MST

▶ Given a set P of points in R2, compute its Euclidean MST

▶ EMST(P) ⊂ DT(P)

▶ EMST(P) in O(n log n) time via DT(P)

▶ Non-obvious local testing for a candidate EMST(P)
O(n log∗ n) expected time via DT(P) [Devillers 1992]
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Predictions

▶ Prediction: additional information, possibly inaccurate or noisy,
which may assist an algorithm to be more effective
(= ’better’ solution, faster, etc.)

▶ Analyze the performance of the algorithm parameterized by how
good is the prediction

▶ Easy example: sorting a list of numbers that is nearly sorted

▶ Prediction: the list itself

▶ Parameter: a measure on how sorted the input list is

▶ Algorithms with predictions [Mitzenmacher, Vassilvitskii ’20]

▶ Multiple focused events since 2020

▶ https://algorithms-with-predictions.github.io/

List of 364 papers as of January 2026
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Our aim

Computational
Geometry ??

Algorithms
with

Predictions

▶ focus in fundamental object: Delaunay triangulation (and EMST)
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Related work

▶ Point location with a finger [Iacono, Langerman ’03]

▶ Searching a point target in Rd with an estimate of the
distance to the target [Cabello, Giannopoulos ’24]

face
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Related work

▶ Point location with a finger [Iacono, Langerman ’03]

▶ Searching a point target in Rd with an estimate of the
distance to the target [Cabello, Giannopoulos ’24]

▶ Computing DT (P) with additional information:

• DT(P) from EMST(P) [Devillers ’92]
• merging: DT(P ∪ Q) from DT(P) and DT(Q)

[Chazelle ’92, Chan ’16]
• splitting: DT(P) from DT(P ∪ Q)

[Chazelle et al ’02; Chazelle, Mulzer ’11]

▶ (Extension of) verification of structures

• Given a spanning tree of P, is it EMST(P)?
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Sample of our results
▶ Input: a set P of n points and
a triangulation G of P, hopefully close to DT(P)

▶ Measure of the prediction:
(unknown) number D of edges in E (G ) \ DT(P)

G DT(P)
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Sample of our results
▶ Input: a set P of n points and
a triangulation G of P, hopefully close to DT(P)

▶ Measure of the prediction:
(unknown) number D of edges in E (G ) \ DT(P)

G DT(P)

▶ We can compute DT(P) in O(n + D log n) expected time

▶ Smooth interpolation between O(n) for D = 0
and O(n log n) for D = Θ(n).

▶ Optimal, randomized

▶ Deterministic in O(n + D log3 n)
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Sample of our results II

▶ Input: a set P of n points and
a spanning tree T of P, hopefully similar to EMST(P)

▶ Measure of the prediction:
(unknown) number Demst of edges in E (T ) \ E (EMST(P))

T EMST(P)
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Sample of our results II

▶ Input: a set P of n points and
a spanning tree T of P, hopefully similar to EMST(P)

▶ Measure of the prediction:
(unknown) number Demst of edges in E (T ) \ E (EMST(P))

T EMST(P)

▶ We can compute EMST(P) in O
(
(n + Demst log n) log

∗ n)
expected time

▶ When D = 0, we recover the O(n log∗ n) for testing
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Sample of our results III

Model with probabilistic noise

▶ R ⊂random E (DT(P))
each edge selected independently with probability ρ

▶ G a triangulation extending R, or R with info about embedding

▶ Measure of the prediction: (unknown) probability ρ

R DT(P)

▶ We can compute DT(P) in O(n loglog n + n log(1/ρ)) whp

▶ For ρ = 1/ log n a small fraction of E (DT (P)) is kept
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Conclusions

Computational
Geometry ??

Algorithms
with

Predictions

▶ New paradigm in Computational Geometry
▶ Basic premise: checking correctness faster than constructing
from scratch

▶ We also use other measures of how close to DT(P)
▶ Some of our optimal algorithms are randomized.
Deterministic?

▶ Some other algorithms are (not expected?) to be optimal
log∗ n and loglog n factors?

THANKS for your time!!

Sergio Cabello ITCS 2026



Conclusions

Computational
Geometry ??

Algorithms
with

Predictions

▶ New paradigm in Computational Geometry
▶ Basic premise: checking correctness faster than constructing
from scratch

▶ We also use other measures of how close to DT(P)
▶ Some of our optimal algorithms are randomized.
Deterministic?

▶ Some other algorithms are (not expected?) to be optimal
log∗ n and loglog n factors?

THANKS for your time!!
Sergio Cabello ITCS 2026


