Many distances in planar graphs

Sergio Cabello IMFM
Ljubljana, Slovenia

supported by EC/FP6 Marie Curie Fellowship

Overview

- the problem: many distances in graphs
- new result
- previous results
- toolbox: Klein; Frederickson + Miller
- main ideas for the new result

Many distances in graphs

G a graph with edge lengths
\Rightarrow distance function $d_{G}(u, v)$
k-many distances in G :

> Given G and pairs $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$, \quad compute $d_{G}\left(u_{1}, v_{1}\right), \ldots, d_{G}\left(u_{k}, v_{k}\right)$
we: planar graphs; $\quad n=|V(G)|=\Theta(|E(G)|)$

Many distances in graphs

Given planar G and pairs $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$, compute $d_{G}\left(u_{1}, v_{1}\right), \ldots, d_{G}\left(u_{k}, v_{k}\right)$

Natural problem

Many distances in graphs

Given planar G and pairs $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$, compute $d_{G}\left(u_{1}, v_{1}\right), \ldots, d_{G}\left(u_{k}, v_{k}\right)$

Natural problem

Personal motivation: Shortest non-contractible cycle for graphs embedded on surface of genus g

Thm [with Mohar]: Let $\tilde{n}=O\left(g^{O(g)} n\right)$. Finding a shortest noncontractible cycle can be reduced in $O(\tilde{n})$ time to computing $O(\tilde{n})$ distances in a planar graph with $O(\tilde{n})$ vertices.

New result

Thm: The k-many distances in planar graphs can be solved in $O^{*}\left(n^{2 / 3} k^{2 / 3}+n^{4 / 3}\right)$ time

New result

Thm: The k-many distances in planar graphs can be solved in $O^{*}\left(n^{2 / 3} k^{2 / 3}+n^{4 / 3}\right)$ time

Improvement for $k \in\left(n^{5 / 6}, n^{2} / \log ^{6} n\right)$

For $k=n: O^{*}\left(n^{4 / 3}\right)$ time.

Obvious open problem: in $O^{*}(n+k)$ time?

New result

Thm: The k-many distances in planar graphs can be solved in $O^{*}\left(n^{2 / 3} k^{2 / 3}+n^{4 / 3}\right)$ time

Idea: data structure for distances + queries to it

Not used: the problem is offline.

Previous results

Who	k-many distances	For $k=n$
Djidjev	$O\left(n^{3 / 2}+k^{1 / 2} n\right)$	
	$O\left(n^{3 / 2}+k^{1 / 3} n^{4 / 3}\right)$	$O\left(n^{3 / 2}\right)$
	$O^{*}\left(n^{5 / 3}+k^{1 / 2} n\right)$	
Fakcharoenphol, Rao	$O^{*}\left(n+k n^{1 / 2}\right)$	$O^{*}\left(n^{3 / 2}\right)$
Henzinger et al	$O(k n)$	$O\left(n^{2}\right)$
Here	$O^{*}\left(n^{4 / 3}+n^{2 / 3} k^{2 / 3}\right)$	$O\left(n^{4 / 3}\right)$

Frederickson: APSP in $O\left(n^{2}\right)$ time
Chen, $\mathrm{Xu}: f(n, p)=O^{*}\left(n^{5 / 3}+k^{1 / 2} n\right)$

Overview

- the problem: many distances in graphs
- new result
- previous results
- toolbox: Klein; Frederickson + Miller
- main ideas for the new result

Toolbox: Klein'05

G a planar embedded graph F a fixed face of G

Toolbox: Klein'05

G a planar embedded graph F a fixed face of G

Thm: Data structure for queries: " $d_{G}(u, v)$ with $u \in F$?" $O(n \log n)$ preprocessing time, $O(\log n)$ time per query.

Toolbox: Klein'05

G a planar embedded graph F a fixed face of G

Thm: Data structure for queries: " $d_{G}(u, v)$ with $u \in F$?" $O(n \log n)$ preprocessing time, $O(\log n)$ time per query.

Topological result $\left\{\begin{array}{l}\text { uses embedding } \\ \text { two shortest paths do not cross twice }\end{array}\right.$

Distances within a cycle

Lem: pairwise distances in a cycle C in $O^{*}\left(n+|C|^{3}\right)$ time

Distances within a cycle

Lem: pairwise distances in a cycle C in $O^{*}\left(n+|C|^{3}\right)$ time

Distances within a cycle

Lem: pairwise distances in a cycle C in $O^{*}\left(n+|C|^{3}\right)$ time

Construct $K_{C} \Rightarrow O^{*}\left(n+|C|^{2}\right)$ time
APSP in $K_{C} \Rightarrow O\left(|C|^{3}\right)$ time

Toolbox: Frederickson + Miller

G a (3-conn) planar graph with n vertices $r \in(0, n)$ a parameter

Toolbox: Frederickson + Miller

G a (3-conn) planar graph with n vertices $r \in(0, n)$ a parameter

Thm: We can decompose G into n / r pieces, each piece with $O(r)$ vertices and a boundary cycle of $O(\sqrt{r})$ vertices

Structural result $\left\{\begin{array}{l}\text { separators } \\ \text { cycles }\end{array}\right.$

Toolbox: Frederickson + Miller

G a (3-conn) planar graph with n vertices $r \in(0, n)$ a parameter

Thm: We can decompose G into n / r pieces, each piece with $O(r)$ vertices and a boundary cycle of $O(\sqrt{r})$ vertices

Warning!! A piece may have "complicated" boundary

Toolbox: Frederickson + Miller

G a (3-conn) planar graph with n vertices $r \in(0, n)$ a parameter

Thm: We can decompose G into n / r pieces, each piece with $O(r)$ vertices and a boundary cycle of $O(\sqrt{r})$ vertices

Warning!! A piece may have "complicated" boundary

Main ideas for the new result

n / r pieces
$O(r)$ vertices
boundary cycle $O(\sqrt{r})$ vertices

Main ideas for the new result

n / r pieces
$O(r)$ vertices boundary cycle $O(\sqrt{r})$ vertices

pairwise distances in the boundary: $O^{*}\left(n+r^{3 / 2}\right)$

Lem: pairwise distances in a cycle C in $O^{*}\left(n+|C|^{3}\right)$ time

Main ideas for the new result

n / r pieces
$O(r)$ vertices
boundary cycle $O(\sqrt{r})$ vertices

pairwise distances in the boundary: $O^{*}\left(n+r^{3 / 2}\right)$
store Klein's DS for \bar{B}

Main ideas for the new result

n / r pieces
$O(r)$ vertices
boundary cycle $O(\sqrt{r})$ vertices

pairwise distances in the boundary: $O^{*}\left(n+r^{3 / 2}\right)$
store Klein's DS for \bar{B}
distances from boundary to piece: $O\left(r^{3 / 2}\right) \bar{B}$

SSSP from each boundary vertex
$O(\sqrt{r}) \times O(r)$

Main ideas for the new result

n / r pieces
$O(r)$ vertices
boundary cycle $O(\sqrt{r})$ vertices

pairwise distances in the boundary: $O^{*}\left(n+r^{3 / 2}\right)$
store Klein's DS for \bar{B}
distances from boundary to piece: $O\left(r^{3 / 2}\right)$

Total time: $\frac{n}{r} \times O^{*}\left(n+r^{3 / 2}\right)=O^{*}\left(n^{2} / r+n r^{1 / 2}\right)$

$$
\text { At least } O^{*}\left(n^{4 / 3}\right) \text { time }
$$

Main ideas for the new result

 n / r pieces
store Klein's DS for \bar{B}
distances from boundary to piece: $O\left(r^{3 / 2}\right)$
Total time: $O^{*}\left(n^{2} / r+n r^{1 / 2}\right)$

Main ideas for the new result

n / r pieces

store Klein's DS for \bar{B}

distances from boundary to piece: $O\left(r^{3 / 2}\right)$
Total time: $O^{*}\left(n^{2} / r+n r^{1 / 2}\right)$
Lem: each distance can be answered in $O^{*}\left(r^{1 / 2}\right)$

Main ideas for the new result

n / r pieces

store Klein's DS for \bar{B}

distances from boundary to piece: $O\left(r^{3 / 2}\right)$
Total time: $O^{*}\left(n^{2} / r+n r^{1 / 2}\right)$
Lem: each distance can be answered in $O^{*}\left(r^{1 / 2}\right)$

$$
\Rightarrow O^{*}\left(n^{2} / r+n r^{1 / 2}+k r^{1 / 2}\right) \text { time in total. }
$$

Choose best r.

Summary

G planar graph with n vertices.

- k-many distances in $O^{*}\left(n^{2 / 3} k^{2 / 3}+n^{4 / 3}\right)$
- improvement for $k \in\left(n^{5 / 6}, n^{2} / \log ^{6} n\right)$

Open problems:

- n-many distances in $O^{*}(n)$ time?
- Pairwise distances between \sqrt{n} vertices?
- Does "off-linety" help?

Summary

G planar graph with n vertices.

- k-many distances in $O^{*}\left(n^{2 / 3} k^{2 / 3}+r^{4 / 3}\right)$
- improvement for $k \in\left(n^{5 / 6} n^{2} \times \log ^{8} n\right)$

Open problems:

- n-many distances in $0 *(n)$ time?
- Pairwise distances between \sqrt{n} vertices?

Does "offlinety" help?
Sergio Cabello

