Adding one edge to planar graphs makes crossing number hard

Sergio Cabello
University of Ljubljana
Slovenia

Bojan Mohar
Simon Fraser University
Canada

Crossing number

$\operatorname{cr}(G)=$ minimum number of crossings over all drawings

- vertices to points
- edges to curves
- edge-vertex incidence preserved
- no point in the interior of 3 edges
- no vertex in the interior of an edge

$$
\operatorname{cr}(\mathrm{G}) \geq 5
$$

Planar graphs

G planar $\Leftrightarrow \operatorname{cr}(G)=0$

Crossing number: algorithmic results

- "is $\operatorname{cr}(G)=0$?" decidable in linear time
- computing $\operatorname{cr}(G)$ is NP-hard
- for cubic graphs
- with rotation systems [Pelsmajer, Schaefer, Štefankovic '08]
- computing $\operatorname{cr}(G)$ is FPT wrt $\operatorname{cr}(G)$
[Hopcroft, Tarjan, '74] [Garey, Johnson '83]
[Hliněný '06]
[Grohe '04] [Kawarabayashi, Reed '07]
- $\operatorname{cr}(G)+|V(G)|$ approximable within $O\left(\log ^{3}|V(G)|\right)$
[Even, Guha, Schieber '02]
- $f(\Delta)$-approximation algorithms for special graphs of max deg Δ [Hliněný, Salazar, Chimani, C., M.]

Near-planar graphs

G near-planar if $G-e$ planar for some e.

- weak relaxation of planarity
- near-planar \Rightarrow toroidal, apex

Near-planar - Previous work

- G planar, 3-connected, and 3-regular
$\Rightarrow \operatorname{cr}(G+x y)$ is a distance in $(G-x-y)^{*}$.
[Riskin '96]
- draw $G-x y$ planarly and insert xy minimizing crossings.

- No extension to non-cubic graphs possible
[Mohar '06]

Near-planar - Previous work II

- G near-planar with max degree Δ
$\Rightarrow\left\lfloor\frac{\Delta}{2}\right\rfloor$-approximation to $\operatorname{cr}(G)$
[Cabello, Mohar '08]
- implies Riskin's result
- improves previous Δ-approximation [Hliněný, Salazar '06]
- number of edge-disjoint cycles separating x and y
- number of vertex-disjoint cycles separating x and y
- G near-planar. Why do we approximate $\operatorname{cr}(G)$?

Our new result

Theorem
Computing $\operatorname{cr}(G)$ for near-planar graphs is NP-hard.

Our new result

Theorem
Computing $\operatorname{cr}(G)$ for near-planar graphs is NP-hard.

- adding one edge messes up a lot
- we knew it for weighted crossing number
- polynomial weights would be ok
- new reduction from SAT
- previous reductions are from Linear Ordering
- new problem: anchored drawings

Tool: anchored drawings

- Ω a disk
- Anchored graph: graph G with assigned placements for a subset $A_{G} \subseteq V(G)$ of anchors on the boundary of Ω
- Anchored drawing: drawing in Ω extending the placement of A_{G}
- Anchored embedding: anchored drawing without crossings
- Anchored crossing number: minimize crossings

Tool: anchored drawings

New problem: red-blue anchored drawings

- Ω a disk
- R an anchored embedded red graph in Ω
- B an anchored embedded blue graph in Ω
- anchored drawing D of $R \cup B$ in Ω
- we may require $D_{\mid R}$ and/or $D_{\mid R}$ is an embedding
- or same combinatorial embedding
- anchored crossing number of $R \cup B$
- we may only count red-blue crossings

New problem: red-blue anchored drawings

New problem: red-blue anchored drawings

New theorem: red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of $R \cup B$.

New theorem: red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of $R \cup B$.

- also true if R and B disjoint
- also true if restricted to embeddings of R or B
- reduction from SAT

Why red-blue anchored drawings?

Why red-blue anchored drawings?

New theorem: red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of $R \cup B$.

- reduction from SAT
- proof by example
- we will use polynomial weights

Conclusions

- Crossing numbers are hard. Any doubt?
- New proof of NP-hardness for crossing numbers.
- reduction from SAT
- works cubic graphs (Hliněný)
- New problem: anchored drawing in a disk.
- approximation?
- other surfaces (\mathbb{P}^{2} is done)
- Crossing number
- approximation?
- bounded treewidth?

The end

- thanks
- thanks

