Adding one edge to planar graphs makes crossing number hard

> Sergio Cabello University of Ljubljana Slovenia

Bojan Mohar Simon Fraser University Canada

Crossing number

cr(G) = minimum number of crossings over all drawings

- vertices to points
- edges to curves
- edge-vertex incidence preserved
- no point in the interior of 3 edges
- no vertex in the interior of an edge

 $\mathsf{cr}(\mathsf{G}) \geq 5$

Planar graphs

G planar $\Leftrightarrow cr(G) = 0$

Crossing number: algorithmic results

• "is cr(G) = 0?" decidable in linear time [Hopcroft, Tarjan, '74] computing cr(G) is NP-hard [Garey, Johnson '83] for cubic graphs [Hliněný '06] • with rotation systems [Pelsmajer, Schaefer, Štefankovic '08] • computing cr(G) is FPT wrt cr(G)[Grohe '04] [Kawarabayashi, Reed '07] • cr(G) + |V(G)| approximable within $O(\log^3 |V(G)|)$ [Even, Guha, Schieber '02] • $f(\Delta)$ -approximation algorithms for special graphs of max deg Δ [Hliněný, Salazar, Chimani, C., M.]

Near-planar graphs

G near-planar if G - e planar for some e.

- weak relaxation of planarity
- near-planar \Rightarrow toroidal, apex

Near-planar – Previous work

- ► G planar, 3-connected, and 3-regular $\Rightarrow cr(G + xy)$ is a distance in $(G - x - y)^*$. [Riskin '96]
 - draw G xy planarly and insert xy minimizing crossings.

[Mohar '06]

No extension to non-cubic graphs possible

Near-planar – Previous work II

• *G* near-planar with max degree $\Delta \Rightarrow |\frac{\Delta}{2}|$ -approximation to cr(G)

[Cabello, Mohar '08]

- implies Riskin's result
- improves previous Δ-approximation [Hliněný, Salazar '06]
- number of edge-disjoint cycles separating x and y
- number of vertex-disjoint cycles separating x and y
- ► G near-planar. Why do we approximate cr(G)?

Our new result

Theorem Computing cr(G) for near-planar graphs is NP-hard.

Our new result

Theorem

Computing cr(G) for near-planar graphs is NP-hard.

- adding one edge messes up a lot
- we knew it for weighted crossing number
 - · polynomial weights would be ok
- new reduction from SAT
 - previous reductions are from Linear Ordering
- new problem: anchored drawings

Tool: anchored drawings

- Ω a disk
- Anchored graph: graph G with assigned placements for a subset $A_G \subseteq V(G)$ of anchors on the boundary of Ω
- Anchored drawing: drawing in Ω extending the placement of A_G
- Anchored embedding: anchored drawing without crossings
- Anchored crossing number: minimize crossings

Tool: anchored drawings

New problem: red-blue anchored drawings

- Ω a disk
- R an anchored embedded red graph in Ω
- B an anchored embedded blue graph in Ω
- anchored drawing D of $R \cup B$ in Ω
 - we may require $D_{|R}$ and/or $D_{|R}$ is an embedding
 - or same combinatorial embedding
- anchored crossing number of $R \cup B$
 - we may only count red-blue crossings

New problem: red-blue anchored drawings

New problem: red-blue anchored drawings

New theorem: red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

New theorem: red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

- also true if R and B disjoint
- also true if restricted to embeddings of R or B
- reduction from SAT

Why red-blue anchored drawings?

Why red-blue anchored drawings?

New theorem: red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

- reduction from SAT
- proof by example
- we will use polynomial weights

Conclusions

- Crossing numbers are hard. Any doubt?
- New proof of NP-hardness for crossing numbers.
 - reduction from SAT
 - works cubic graphs (Hliněný)
- New problem: anchored drawing in a disk.
 - approximation?
 - other surfaces (\mathbb{P}^2 is done)
- Crossing number
 - approximation?
 - bounded treewidth?

The end

- thanks
- thanks

