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Crossing number

cr(G ) = minimum number of crossings over all drawings

I vertices to points
I edges to curves
I edge-vertex incidence preserved
I no point in the interior of 3 edges
I no vertex in the interior of an edge

cr(G) ≥ 5
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Planar graphs

G planar ⇔ cr(G ) = 0
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Crossing number: algorithmic results

I ”is cr(G ) = 0?” decidable in linear time [Hopcroft, Tarjan, ’74]

I computing cr(G ) is NP-hard [Garey, Johnson ’83]

• for cubic graphs [Hliněný ’06]
• with rotation systems [Pelsmajer, Schaefer, Štefankovic ’08]

I computing cr(G ) is FPT wrt cr(G ) [Grohe ’04]
[Kawarabayashi, Reed ’07]

I cr(G ) + |V (G )| approximable within O(log3 |V (G )|)
[Even, Guha, Schieber ’02]

I f (∆)-approximation algorithms for special graphs of max deg ∆
[Hliněný, Salazar, Chimani, C., M.]
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Near-planar graphs

G near-planar if G − e planar for some e.

e

I weak relaxation of planarity

I near-planar ⇒ toroidal, apex
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Near-planar – Previous work

I G planar, 3-connected, and 3-regular
⇒ cr(G + xy) is a distance in (G − x − y)∗. [Riskin ’96]

• draw G − xy planarly and insert xy minimizing crossings.

x

y

I No extension to non-cubic graphs possible [Mohar ’06]
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Near-planar – Previous work II

I G near-planar with max degree ∆
⇒ b∆

2 c-approximation to cr(G ) [Cabello, Mohar ’08]

• implies Riskin’s result
• improves previous ∆-approximation [Hliněný, Salazar ’06]
• number of edge-disjoint cycles separating x and y
• number of vertex-disjoint cycles separating x and y

I G near-planar. Why do we approximate cr(G )?
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Our new result

Theorem
Computing cr(G ) for near-planar graphs is NP-hard.

I adding one edge messes up a lot

I we knew it for weighted crossing number

• polynomial weights would be ok

I new reduction from SAT

• previous reductions are from Linear Ordering

I new problem: anchored drawings
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Tool: anchored drawings

I Ω a disk

I Anchored graph: graph G with assigned placements for a subset
AG ⊆ V (G ) of anchors on the boundary of Ω

I Anchored drawing: drawing in Ω extending the placement of AG

I Anchored embedding: anchored drawing without crossings

I Anchored crossing number: minimize crossings
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Tool: anchored drawings
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New problem: red-blue anchored drawings

I Ω a disk

I R an anchored embedded red graph in Ω

I B an anchored embedded blue graph in Ω

I anchored drawing D of R ∪ B in Ω

• we may require D|R and/or D|R is an embedding
• or same combinatorial embedding

I anchored crossing number of R ∪ B

• we may only count red-blue crossings
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New problem: red-blue anchored drawings

R B
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New problem: red-blue anchored drawings
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New theorem: red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R ∪ B.

I also true if R and B disjoint

I also true if restricted to embeddings of R or B

I reduction from SAT
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Why red-blue anchored drawings?
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Why red-blue anchored drawings?
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New theorem: red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R ∪ B.

I reduction from SAT

I proof by example

I we will use polynomial weights
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Conclusions

I Crossing numbers are hard. Any doubt?

I New proof of NP-hardness for crossing numbers.

• reduction from SAT
• works cubic graphs (Hliněný)

I New problem: anchored drawing in a disk.

• approximation?
• other surfaces (P2 is done)

I Crossing number

• approximation?
• bounded treewidth?
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The end

I thanks

I thanks

I . . .
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