Packing d-dimensional balls

 into a $d+1$-dimensional containerSergio Cabello
University of Ljubljana and IMFM, Slovenia

Joint work with
Helmut Alt (FU Berlin)
Otfried Cheong (SCALGO)
Ji-won Park (Université de Lorraine, CNRS, Inria, LORIA)
Nadja Seiferth (FU Berlin)
arXiv 2110.12711

The problem

- We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) d-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit

The problem

- We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) d-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit
- Data: n unit hyperdisks in \mathbb{R}^{d+1} - given by normal vector
- Task: pack the hyperdisks using translations into a $d+1$-dim container of min volume

The problem

- We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) d-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit
- Data: n unit hyperdisks in \mathbb{R}^{d+1} - given by normal vector
- Task: pack the hyperdisks using translations into a $d+1$-dim container of min volume

Pack: pairwise disjoint relative interiors
Container:

- axis-parallel box
- arbitrarily oriented box
- convex body

Allowing rotations - not interesting.

The problems

- Algorithmic problem:

Given n unit hyperdisks in \mathbb{R}^{d+1}, find the min-volume

- axis-parallel box
- arbitrarily oriented box
- convex body
where they can be packed under translations.
- Mathematical problem:

Find a tight bound $f(n, d)$ such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into

- an axis-parallel box
- an arbitrarily oriented box
- a convex body
of volume $f(n, d)$.

What do we show?

- Algorithmic problem:

Given n unit hyperdisks in \mathbb{R}^{d+1}, find the min-volume container where they can be packed under translations.

- $d^{O(d)}$-approximation algorithms
- $O(1)$-approximation algorithms for each d

What do we show?

- Algorithmic problem:

Given n unit hyperdisks in \mathbb{R}^{d+1}, find the min-volume container where they can be packed under translations.

- $d^{O(d)}$-approximation algorithms
- $O(1)$-approximation algorithms for each d
- Mathematical problem:

Find a tight bound $f(n, d)$ such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into a container of volume $f(n, d)$.

- $f(n, d)=\Theta\left(n^{\frac{d-1}{d}}\right)$
- for $d=1, f(n, 1)=\Theta(1)$, independent of n
- for $d=2, f(n, 2)=\Theta\left(n^{1 / 2}\right)$, unbounded for $n \rightarrow \infty$

What do we show?

- Algorithmic problem:

Given n unit hyperdisks in \mathbb{R}^{d+1}, find the min-volume container where they can be packed under translations.

- $d^{O(d)}$-approximation algorithms
- $O(1)$-approximation algorithms for each d
- Mathematical problem:

Find a tight bound $f(n, d)$ such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into a container of volume $f(n, d)$.

- $f(n, d)=\Theta\left(n^{\frac{d-1}{d}}\right)$
- for $d=1, f(n, 1)=\Theta(1)$, independent of n
- for $d=2, f(n, 2)=\Theta\left(n^{1 / 2}\right)$, unbounded for $n \rightarrow \infty$
- Quite some geometry, simple algorithms

Container for all unit segments

Container for all unit segments

Container for all unit segments

Container for all unit segments

Such a result is not possible for 2-dim unit disks in \mathbb{R}^{3}. For some n unit disks in \mathbb{R}^{3}, any container needs volume $\Theta\left(n^{1 / 2}\right)$.

Potato Sack Theorem

- $\left(K_{i}\right)_{i=1}^{\infty}$ a sequence of convex bodies in \mathbb{R}^{d}
- $\operatorname{diam}\left(K_{i}\right) \leq a$ for all i
- $\sum_{i=1}^{\infty} \operatorname{vol} K_{i} \leq b$
- There exists a cube of volume $c=f(a, b, d)$ where we can pack $\left(K_{i}\right)_{i=1}^{\infty}$ using rigid motions
- Problem 10.1 by Auerbach, Banach, Mazur, and Ulam in the Scottish Book
- Solution published by Kosiński (1957)
- Survey by Fejes Tóth, 2023 - Packing and covering properties of sequences of convex bodies

The ideas

- Stabbing problem
- Connection between packing and stabbing for similar hyperdisks
- Clustering of hyperdisks with similar normals
- Quite some geometry, easy algorithms

Stabbing problem

- ℓ a line in \mathbb{R}^{d+1}
- n unit hyperdisks in \mathbb{R}^{d+1}
- Task: pack the hyperdisks using translations such that each center lies on ℓ
- minimize the length of the projection on ℓ
- minimize the furthest center-to-center distance

Stabbing problem

- ℓ a line in \mathbb{R}^{d+1}
- n unit hyperdisks in \mathbb{R}^{d+1}
- Task: pack the hyperdisks using translations such that each center lies on ℓ
- minimize the length of the projection on ℓ
- minimize the furthest center-to-center distance

- Discretization: The order of the hyperdisks decides the packing
- Key property: we only need to care about consecutive hyperdisks

A metric on unit hyperdisks

- ℓ a line in \mathbb{R}^{d+1}
- D_{1} and D_{2} two unit hyperdisks in \mathbb{R}^{d+1}
- $d_{\ell}\left(D_{1}, D_{2}\right)=$ distance between the centers of D_{1} and D_{2} when they are touching and pierced by ℓ on their centers

- Key property: this is a metric on unit hyperdisks

A metric on unit hyperdisks - proof overview

- challenging part: triangular inequality
- assume $d_{\ell}\left(D_{1}, D_{2}\right)+d_{\ell}\left(D_{2}, D_{3}\right)<d_{\ell}\left(D_{1}, D_{3}\right)$
- place D_{1} and D_{3} touching at a point p
- plane π containing ℓ and the touching point p
- $e_{i}=D_{i} \cap \pi$ a segment of unit length ($i=1,2,3$)
- between e_{1} and e_{3} there is not enough space for e_{2}

Stabbing problem - $O(1)$-approximation

- Hamiltonian path with weights $d_{\ell}(\cdot, \cdot)$.
- $\frac{3}{2}$-approximation for minimizing the center-to-center length

Stabbing problem - $O(1)$-approximation

- Hamiltonian path with weights $d_{\ell}(\cdot, \cdot)$.
- $\frac{3}{2}$-approximation for minimizing the center-to-center length
- $\frac{5}{2}$-approximation for minimizing the length of projection

A metric on unit hyperdisks - bounds

- ℓ a line in \mathbb{R}^{d+1}
- D_{1} and D_{2} two unit hyperdisks in \mathbb{R}^{d+1} with normals n_{1} and n_{2}
- $\xi=\measuredangle\left(n_{1}, n_{2}\right)$
- ϕ such that $\measuredangle\left(n_{1}, \ell\right) \leq \phi$ and $\measuredangle\left(n_{2}, \ell\right) \leq \phi$

A metric on unit hyperdisks - bounds

- ℓ a line in \mathbb{R}^{d+1}
- D_{1} and D_{2} two unit hyperdisks in \mathbb{R}^{d+1} with normals n_{1} and n_{2}
- $\xi=\measuredangle\left(n_{1}, n_{2}\right)$
- ϕ such that $\measuredangle\left(n_{1}, \ell\right) \leq \phi$ and $\measuredangle\left(n_{2}, \ell\right) \leq \phi$
- Then

$$
\sin \xi \leq d_{\ell}\left(D_{1}, D_{2}\right) \leq \frac{\sin \xi}{\cos \phi}
$$

- $\sin \xi$ is a $O(1)$-approximation to $d_{\ell}\left(D_{1}, D_{2}\right)$, when ϕ not very large.

A metric on unit hyperdisks - bounds

- consider D_{1}, D_{2} defining $d_{\ell}\left(D_{1}, D_{2}\right), p$ touching point
- h_{i} hyperplane containing D_{i}
- $g=h_{1} \cap h_{2}$ a ($n-2$)-dim flat, $p \in g$

A metric on unit hyperdisks - bounds

- consider D_{1}, D_{2} defining $d_{\ell}\left(D_{1}, D_{2}\right), p$ touching point
- h_{i} hyperplane containing D_{i}
- $g=h_{1} \cap h_{2}$ a ($n-2$)-dim flat, $p \in g$
- one $D_{i} \cap g$ contains only p OR
- D_{1} and D_{2} both contain a piece of g in the interior

A metric on unit hyperdisks - bounds

- consider D_{1}, D_{2} defining $d_{\ell}\left(D_{1}, D_{2}\right), p$ touching point
- h_{i} hyperplane containing D_{i}
- $g=h_{1} \cap h_{2}$ a ($n-2$)-dim flat, $p \in g$
- one $D_{i} \cap g$ contains only p OR
- D_{1} and D_{2} both contain a piece of g in the interior

A metric on unit hyperdisks - bounds

- consider D_{1}, D_{2} defining $d_{\ell}\left(D_{1}, D_{2}\right), p$ touching point
- h_{i} hyperplane containing D_{i}
- $g=h_{1} \cap h_{2}$ a ($n-2$)-dim flat, $p \in g$
- one $D_{i} \cap g$ contains only p OR
- D_{1} and D_{2} both contain a piece of g in the interior

Packing similar unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- assume each hyperdisk D_{i} has normal n_{i} with $\measuredangle\left(n_{i}, x_{d+1}\right) \leq \phi_{0}$
- opt $=$ volume optimal AA box

Packing similar unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- assume each hyperdisk D_{i} has normal n_{i} with $\measuredangle\left(n_{i}, x_{d+1}\right) \leq \phi_{0}$
- opt $=$ volume optimal AA box
- there exists a stabbing by x_{d+1}-axis with length O (opt)
- the volume of that stabbing is $O(1) \cdot O$ (length $)=O$ (opt)

$O\left(M_{1} \times M_{2} \times \cdots \times M_{d}\right)$ segments of length M_{d+1}

Each hyperdisk pierced at distance $\leq \frac{1}{2}$ from its center

Packing similar unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- assume each hyperdisk D_{i} has normal n_{i} with $\measuredangle\left(n_{i}, x_{d+1}\right) \leq \phi_{0}$
- opt $=$ volume optimal AA box
- there exists a stabbing by x_{d+1}-axis with length O (opt)
- the volume of that stabbing is $O(1) \cdot O$ (length $)=O$ (opt)

$O\left(M_{1} \times M_{2} \times \cdots \times M_{d}\right)$ segments of length M_{d+1}

Each hyperdisk pierced at distance $\leq \frac{1}{2}$ from its center

A collection of hyperdisks of radius $\frac{1}{2}$ pierced through the centers

Packing similar unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- assume each hyperdisk D_{i} has normal n_{i} with $\measuredangle\left(n_{i}, x_{d+1}\right) \leq \phi_{0}$
- opt $=$ volume optimal AA box
- there exists a stabbing by x_{d+1}-axis with length O (opt)
- the volume of that stabbing is $O(1) \cdot O$ (length $)=O$ (opt)

A stabbing of hyperdisks of radius $\frac{1}{2}$

Packing similar unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- assume each hyperdisk D_{i} has normal n_{i} with $\measuredangle\left(n_{i}, x_{d+1}\right) \leq \phi_{0}$
- opt $=$ volume optimal AA box
- there exists a stabbing by x_{d+1}-axis with length O (opt)
- the volume of that stabbing is $O(1) \cdot O$ (length $)=O$ (opt)

A stabbing of hyperdisks of radius $\frac{1}{2}$

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing different unit hyperdisks in AA Box

- $\phi_{0}=\arccos (1 / \sqrt{d+1})$
- the normal of D_{i} makes angle at most ϕ_{0} with some x_{j}-axis
- $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_{j} non-empty, stabbing is ok
- if two \mathcal{D}_{j} non-empty, then opt $=\Omega(1)$
- solve each \mathcal{D}_{j} by stabbing, cut into pieces, and merge

Packing unit hyperdisks in arbitrary box

- choose arbitrary D and make its normal the x_{d+1}-axis
- if all hyperdisks have similar normals, stabbing is good
- stabbing with ℓ or ℓ^{\prime}, if ℓ and ℓ^{\prime} similar, is $O(1)$-approximation because

$$
d_{\ell}\left(D_{1}, D_{2}\right)=\Theta\left(d_{\ell^{\prime}}\left(D_{1}, D_{2}\right)\right)
$$

- if two hyperdisks have very different normals, each side of opt box $\Omega(1)$, any opt axis-aligned box is $O(1)$-approximation

Packing unit hyperdisks in arbitrary box

- choose arbitrary D and make its normal the x_{d+1}-axis
- if all hyperdisks have similar normals, stabbing is good
- stabbing with ℓ or ℓ^{\prime}, if ℓ and ℓ^{\prime} similar, is $O(1)$-approximation because

$$
d_{\ell}\left(D_{1}, D_{2}\right)=\Theta\left(d_{\ell^{\prime}}\left(D_{1}, D_{2}\right)\right)
$$

- if two hyperdisks have very different normals, each side of opt box $\Omega(1)$, any opt axis-aligned box is $O(1)$-approximation
- convex container
- each convex body K in \mathbb{R}^{d} contained in a box of volume $\left.d^{3 d / 2} \operatorname{vol}(K)\right)$
- compute the smallest-volume box and return it

Worst case bounds

- a hyperdisk is represented by a point in \mathbb{S}^{d}
- geodesic distance inside $\mathbb{S}^{d} \sim d_{\ell}(\cdot, \cdot)$, for points near ℓ
- an n-point instance such that any MST/TSP has $\Omega\left(n^{\frac{d-1}{d}}\right)$
- each n points on \mathbb{S}^{d} have a MST/TSP of length $O\left(n^{\frac{d-1}{d}}\right)$

Conclusions

- Packing hyperdisks by translations, minimize volume
- $d^{O(d)}$-approximation for different containers

Conclusions

- Packing hyperdisks by translations, minimize volume
- $d^{O(d)}$-approximation for different containers
- Not known to be NP-hard, not known to be in NP
- Tight bound for $d=1$ for boxes?
- Allow a subset of all rotations, perhaps a subgroup
- Packing d-1-dim balls in \mathbb{R}^{d+1}
- Packing k-dim balls in \mathbb{R}^{d}

Conclusions

- Packing hyperdisks by translations, minimize volume
- $d^{O(d)}$-approximation for different containers
- Not known to be NP-hard, not known to be in NP
- Tight bound for $d=1$ for boxes?
- Allow a subset of all rotations, perhaps a subgroup
- Packing d-1-dim balls in \mathbb{R}^{d+1}
- Packing k-dim balls in \mathbb{R}^{d}

THANKS for your time!!

