Packing *d*-dimensional balls into a d + 1-dimensional container

Sergio Cabello University of Ljubljana and IMFM, Slovenia

Joint work with Helmut Alt (FU Berlin) Otfried Cheong (SCALGO) Ji-won Park (Université de Lorraine, CNRS, Inria, LORIA) Nadja Seiferth (FU Berlin) arXiv 2110.12711

The problem

- \blacktriangleright We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) *d*-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit

The problem

- We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) *d*-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit
- Data: *n* unit hyperdisks in \mathbb{R}^{d+1} given by normal vector
- ► Task: pack the hyperdisks using translations into a *d* + 1-dim container of min volume

The problem

- We are in \mathbb{R}^{d+1}
- A (unit) hyperdisk is a (unit) *d*-dim ball in \mathbb{R}^{d+1}
- Today, all hyperdisks are unit
- Data: *n* unit hyperdisks in \mathbb{R}^{d+1} given by normal vector
- ► Task: pack the hyperdisks using translations into a d + 1-dim container of min volume

Pack: pairwise disjoint relative interiors

Container:

- axis-parallel box
- arbitrarily oriented box
- convex body

Allowing rotations — not interesting.

The problems

• Algorithmic problem:

Given *n* unit hyperdisks in \mathbb{R}^{d+1} , find the min-volume

- axis-parallel box
- arbitrarily oriented box
- convex body

where they can be packed under translations.

Mathematical problem:

Find a tight bound f(n, d) such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into

- an axis-parallel box
- an arbitrarily oriented box
- a convex body

of volume f(n, d).

What do we show?

Algorithmic problem:

Given *n* unit hyperdisks in \mathbb{R}^{d+1} , find the min-volume container where they can be packed under translations.

- *d^{O(d)}*-approximation algorithms
- O(1)-approximation algorithms for each d

What do we show?

• Algorithmic problem:

Given *n* unit hyperdisks in \mathbb{R}^{d+1} , find the min-volume container where they can be packed under translations.

- *d*^{O(d)}-approximation algorithms
- O(1)-approximation algorithms for each d
- Mathematical problem:

Find a tight bound f(n, d) such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into a container of volume f(n, d).

•
$$f(n,d) = \Theta(n^{\frac{d-1}{d}})$$

- for d = 1, $f(n, 1) = \Theta(1)$, independent of n
- for d=2, $f(n,2)=\Theta(n^{1/2}),$ unbounded for $n \to \infty$

What do we show?

• Algorithmic problem:

Given *n* unit hyperdisks in \mathbb{R}^{d+1} , find the min-volume container where they can be packed under translations.

- *d^{O(d)}*-approximation algorithms
- O(1)-approximation algorithms for each d
- Mathematical problem:

Find a tight bound f(n, d) such that each set of n unit hyperdisks in \mathbb{R}^{d+1} can be packed with translations into a container of volume f(n, d).

•
$$f(n,d) = \Theta(n^{\frac{d-1}{d}})$$

- for d = 1, $f(n, 1) = \Theta(1)$, independent of n
- for d=2, $f(n,2)=\Theta(n^{1/2}),$ unbounded for $n \to \infty$
- Quite some geometry, simple algorithms

Such a result is not possible for 2-dim unit disks in \mathbb{R}^3 . For some *n* unit disks in \mathbb{R}^3 , any container needs volume $\Theta(n^{1/2})$.

Potato Sack Theorem

- $(K_i)_{i=1}^{\infty}$ a sequence of convex bodies in \mathbb{R}^d
- diam $(K_i) \leq a$ for all i
- $\sum_{i=1}^{\infty} \operatorname{vol} K_i \leq b$
- ► There exists a cube of volume c = f(a, b, d) where we can pack (K_i)[∞]_{i=1} using rigid motions
- Problem 10.1 by Auerbach, Banach, Mazur, and Ulam in the Scottish Book
- Solution published by Kosiński (1957)
- Survey by Fejes Tóth, 2023 Packing and covering properties of sequences of convex bodies

The ideas

- Stabbing problem
- Connection between packing and stabbing for similar hyperdisks
- Clustering of hyperdisks with similar normals
- Quite some geometry, easy algorithms

Stabbing problem

- ℓ a line in \mathbb{R}^{d+1}
- *n* unit hyperdisks in \mathbb{R}^{d+1}
- \blacktriangleright Task: pack the hyperdisks using translations such that each center lies on ℓ
 - minimize the length of the projection on ℓ
 - minimize the furthest center-to-center distance

Stabbing problem

- ℓ a line in \mathbb{R}^{d+1}
- *n* unit hyperdisks in \mathbb{R}^{d+1}
- \blacktriangleright Task: pack the hyperdisks using translations such that each center lies on ℓ
 - minimize the length of the projection on ℓ
 - minimize the furthest center-to-center distance

- Discretization: The order of the hyperdisks decides the packing
- ► Key property: we only need to care about consecutive hyperdisks

Sergio Cabello

A metric on unit hyperdisks

- ℓ a line in \mathbb{R}^{d+1}
- D_1 and D_2 two unit hyperdisks in \mathbb{R}^{d+1}
- *d*_ℓ(*D*₁, *D*₂) = distance between the centers of *D*₁ and *D*₂ when they are touching and pierced by ℓ on their centers

Key property: this is a metric on unit hyperdisks

A metric on unit hyperdisks – proof overview

- challenging part: triangular inequality
- assume $d_{\ell}(D_1, D_2) + d_{\ell}(D_2, D_3) < d_{\ell}(D_1, D_3)$
- place D_1 and D_3 touching at a point p
- plane π containing ℓ and the touching point p
- $e_i = D_i \cap \pi$ a segment of unit length (i = 1, 2, 3)
- between e_1 and e_3 there is not enough space for e_2

Stabbing problem - O(1)-approximation

- Hamiltonian path with weights $d_{\ell}(\cdot, \cdot)$.
- $\frac{3}{2}$ -approximation for minimizing the center-to-center length

Stabbing problem - O(1)-approximation

- Hamiltonian path with weights $d_{\ell}(\cdot, \cdot)$.
- $\frac{3}{2}$ -approximation for minimizing the center-to-center length
- $\frac{5}{2}$ -approximation for minimizing the length of projection

- ℓ a line in \mathbb{R}^{d+1}
- D_1 and D_2 two unit hyperdisks in \mathbb{R}^{d+1} with normals n_1 and n_2
- $\xi = \measuredangle(n_1, n_2)$
- ϕ such that $\measuredangle(n_1, \ell) \leq \phi$ and $\measuredangle(n_2, \ell) \leq \phi$

- ℓ a line in \mathbb{R}^{d+1}
- D_1 and D_2 two unit hyperdisks in \mathbb{R}^{d+1} with normals n_1 and n_2
- $\xi = \measuredangle(n_1, n_2)$
- ϕ such that $\measuredangle(n_1, \ell) \leq \phi$ and $\measuredangle(n_2, \ell) \leq \phi$
- Then

$$\sin \xi \leq d_{\ell}(D_1, D_2) \leq \frac{\sin \xi}{\cos \phi}$$

sin ξ is a O(1)-approximation to d_ℓ(D₁, D₂), when φ not very large.

- ▶ consider D_1, D_2 defining $d_{\ell}(D_1, D_2)$, p touching point
- *h_i* hyperplane containing *D_i*

▶
$$g = h_1 \cap h_2$$
 a $(n-2)$ -dim flat, $p \in g$

- ▶ consider D_1, D_2 defining $d_{\ell}(D_1, D_2)$, *p* touching point
- *h_i* hyperplane containing *D_i*
- ▶ $g = h_1 \cap h_2$ a (n-2)-dim flat, $p \in g$
 - one $D_i \cap g$ contains only p OR
 - D_1 and D_2 both contain a piece of g in the interior

- ▶ consider D_1, D_2 defining $d_{\ell}(D_1, D_2)$, *p* touching point
- *h_i* hyperplane containing *D_i*
- ▶ $g = h_1 \cap h_2$ a (n-2)-dim flat, $p \in g$
 - one $D_i \cap g$ contains only p OR
 - D_1 and D_2 both contain a piece of g in the interior

- ▶ consider D_1, D_2 defining $d_{\ell}(D_1, D_2)$, *p* touching point
- *h_i* hyperplane containing *D_i*
- ▶ $g = h_1 \cap h_2$ a (n-2)-dim flat, $p \in g$
 - one $D_i \cap g$ contains only p OR
 - D_1 and D_2 both contain a piece of g in the interior

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- ▶ assume each hyperdisk D_i has normal n_i with $\measuredangle(n_i, x_{d+1}) \le \phi_0$
- opt = volume optimal AA box

•
$$\phi_0 = \arccos(1/\sqrt{d+1})$$

- ▶ assume each hyperdisk D_i has normal n_i with $\measuredangle(n_i, x_{d+1}) \le \phi_0$
- opt = volume optimal AA box
- there exists a stabbing by x_{d+1} -axis with length O(opt)
- the volume of that stabbing is $O(1) \cdot O(\text{length}) = O(\text{opt})$

 $O(M_1 imes M_2 imes \cdots imes M_d)$ segments of length M_{d+1}

Each hyperdisk pierced at distance $\leq \frac{1}{2}$ from its center

•
$$\phi_0 = \arccos(1/\sqrt{d+1})$$

▶ assume each hyperdisk D_i has normal n_i with $\measuredangle(n_i, x_{d+1}) \le \phi_0$

 $O(M_1 \times M_2 \times \cdots \times M_d)$ segments

Each hyperdisk pierced at distance $\leq \frac{1}{2}$

A collection of hyperdisks of radius $\frac{1}{2}$ pierced through the centers

of length M_{d+1}

from its center

- opt = volume optimal AA box
- there exists a stabbing by x_{d+1} -axis with length O(opt)
- the volume of that stabbing is $O(1) \cdot O(\text{length}) = O(\text{opt})$

•
$$\phi_0 = \arccos(1/\sqrt{d+1})$$

- ▶ assume each hyperdisk D_i has normal n_i with $\measuredangle(n_i, x_{d+1}) \le \phi_0$
- opt = volume optimal AA box
- there exists a stabbing by x_{d+1} -axis with length O(opt)
- the volume of that stabbing is $O(1) \cdot O(\text{length}) = O(\text{opt})$

•
$$\phi_0 = \arccos(1/\sqrt{d+1})$$

- ▶ assume each hyperdisk D_i has normal n_i with $\measuredangle(n_i, x_{d+1}) \le \phi_0$
- opt = volume optimal AA box
- there exists a stabbing by x_{d+1} -axis with length O(opt)
- the volume of that stabbing is $O(1) \cdot O(\text{length}) = O(\text{opt})$

 M_d

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- ▶ solve each D_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- solve each \mathcal{D}_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- solve each \mathcal{D}_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- ▶ solve each D_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- ▶ solve each D_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- ▶ solve each D_j by stabbing, cut into pieces, and merge

- $\phi_0 = \arccos(1/\sqrt{d+1})$
- the normal of D_i makes angle at most ϕ_0 with some x_j -axis
- $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_{d+1}$
- if a single \mathcal{D}_j non-empty, stabbing is ok
- if two \mathcal{D}_j non-empty, then $\mathsf{opt} = \Omega(1)$
- solve each \mathcal{D}_j by stabbing, cut into pieces, and merge

Packing unit hyperdisks in arbitrary box

- choose arbitrary D and make its normal the x_{d+1} -axis
- if all hyperdisks have similar normals, stabbing is good
- ► stabbing with l or l', if l and l' similar, is O(1)-approximation because

$$d_{\ell}(D_1, D_2) = \Theta(d_{\ell'}(D_1, D_2))$$

 if two hyperdisks have very different normals, each side of opt box Ω(1), any opt axis-aligned box is O(1)-approximation

Packing unit hyperdisks in arbitrary box

- choose arbitrary D and make its normal the x_{d+1} -axis
- if all hyperdisks have similar normals, stabbing is good
- ► stabbing with l or l', if l and l' similar, is O(1)-approximation because

$$d_{\ell}(D_1, D_2) = \Theta(d_{\ell'}(D_1, D_2))$$

- if two hyperdisks have very different normals, each side of opt box Ω(1), any opt axis-aligned box is O(1)-approximation
- convex container
 - each convex body K in ℝ^d contained in a box of volume d^{3d/2} vol(K))
 - compute the smallest-volume box and return it

Worst case bounds

- \blacktriangleright a hyperdisk is represented by a point in \mathbb{S}^d
- geodesic distance inside $\mathbb{S}^d \sim d_\ell(\cdot, \cdot)$, for points near ℓ
- an *n*-point instance such that any MST/TSP has $\Omega(n^{\frac{d-1}{d}})$
- ▶ each *n* points on \mathbb{S}^d have a MST/TSP of length $O(n^{\frac{d-1}{d}})$

Conclusions

- Packing hyperdisks by translations, minimize volume
- ► *d^{O(d)}*-approximation for different containers

Conclusions

- Packing hyperdisks by translations, minimize volume
- d^{O(d)}-approximation for different containers
- Not known to be NP-hard, not known to be in NP
- Tight bound for d = 1 for boxes?
- Allow a subset of all rotations, perhaps a subgroup
- Packing d 1-dim balls in \mathbb{R}^{d+1}
- Packing k-dim balls in \mathbb{R}^d

Conclusions

- Packing hyperdisks by translations, minimize volume
- d^{O(d)}-approximation for different containers
- Not known to be NP-hard, not known to be in NP
- Tight bound for d = 1 for boxes?
- Allow a subset of all rotations, perhaps a subgroup
- Packing d-1-dim balls in \mathbb{R}^{d+1}
- Packing k-dim balls in \mathbb{R}^d

THANKS for your time!!