Expected case for projecting points

Sergio CabelloIMFM, Ljubljana, SloveniaMatt deVosFMF, Ljubljana, Slovenia

S.C. partially supported by an EC/FP6 Marie Curie Fellowship.

Sweep-line among unit-size disjoint disks

Often, running time depends on **# active disks**

Sweep-line among unit-size disjoint disks

Often, running time depends on **# active disks**

Problem: choose a good sweeping direction

 $P \subset \mathbb{R}^2$ 1-apart L a line Project P onto LMaximum \ddagger points in a unit-length interval?

 $P \subset \mathbb{R}^2$ 1-apart L a line $\wedge \rightarrow$ Project P onto L

Maximum # points in a unit-length interval?

 $P \subset \mathbb{R}^2$ 1-apart L a line $\wedge \rightarrow$ Project P onto L

Maximum # points in a unit-length interval?

 $P \subset \mathbb{R}^2$ 1-apart L a line $\wedge \rightarrow$ Project P onto L

 $C(L) = \max \ \sharp \ \text{points in a unit-length interval}$

 $P \subset \mathbb{R}^2$ 1-apart L a line Project P onto L $C(L) = \max \ \sharp \ \text{points in a unit-length interval}$ Problem:

Choose a good L/ sweeping-line

 $P \subset \mathbb{R}^2$ 1-apart L a line Project P onto L $C(L) = \max \ \ \text{points in a unit-length interval}$ Problem:

Choose a good L/ sweeping-line

C(L) only depends on the slope α of L $\Rightarrow C(\alpha) := C(L(\alpha))$

Previous Results

 $P \subset \mathbb{R}^2$ 1-apart, |P| = n

- [Kučera, Mehlhorn, Preis, Schwarzenecker STACS'93]
 - * Always a line L with $C(L) = O(\sqrt{n \log n})$
 - * P with $C(L) = \Omega(\sqrt{n \log n})$ for all L (Besicovitch's sets)
 - * Best L in polynomial time
- [Díaz, Hurtado, López, Sellarès, ISAAC'03]
 - * Computing a 2-approx line in $O(n\Delta \log n\Delta)$ time $(\Delta \equiv \text{diameter } P, \text{ arbitrary } P)$

Our Results

 $P \subset \mathbb{R}^2$ 1-apart, |P| = n

Choose a random line $L(\alpha)$, $\alpha \sim U[0, \pi]$ How good or bad is $C(\alpha)$?

What is the expected value of $C(\alpha)$?

Our Results

 $P \subset \mathbb{R}^2$ 1-apart, |P| = nChoose a random line $L(\alpha)$, $\alpha \sim U[0, \pi]$ How good or bad is $C(\alpha)$? What is the expected value of $C(\alpha)$?

Theorem: $\mathbb{E}[C(\alpha)] = O(n^{2/3})$

Our Results

 $P \subset \mathbb{R}^2$ 1-apart, |P| = nChoose a random line $L(\alpha)$, $\alpha \sim U[0, \pi]$ How good or bad is $C(\alpha)$? What is the expected value of $C(\alpha)$?

Theorem: $\mathbb{E}[C(\alpha)] = O(n^{2/3})$

Problem: We only know $\mathbb{E}[C(\alpha)] = \Omega(\sqrt{n \log n})$ Obs: If each point has $\leq k$ points at distance ≤ 1 $\Rightarrow \quad \mathbb{E}[C(\alpha)] = O(kn^{2/3})$

Alg. Obs: We can take or discard $L(\alpha)$ in $O(n \log n)$ time.

Our Approach

$P = \{p_1, \dots, p_n\}$ $X_i(\alpha) := \sharp \text{ points at distance } \leq 1 \text{ from } p_i$ $X_{max}(\alpha) := \max\{X_1(\alpha), \dots, X_n(\alpha)\}$

$$\Rightarrow C(\alpha) \le X_{max}(\alpha) \le 2C(\alpha)$$

Our Approach

 $P = \{p_1, \dots, p_n\}$ $X_i(\alpha) := \sharp \text{ points at distance } \leq 1 \text{ from } p_i$ $X_{max}(\alpha) := \max\{X_1(\alpha), \dots, X_n(\alpha)\}$

$$\Rightarrow C(\alpha) \le X_{max}(\alpha) \le 2C(\alpha)$$

Our Approach

 $P = \{p_1, \dots, p_n\}$ $X_i(\alpha) := \# \text{ points at distance } \leq 1 \text{ from } p_i$ $X_{max}(\alpha) := \max\{X_1(\alpha), \dots, X_n(\alpha)\}$

$$\Rightarrow C(\alpha) \le X_{max}(\alpha) \le 2C(\alpha)$$

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$

- Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$
- Lemma: $\mathbb{E}[X_i^2(\alpha)] = O(n)$

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ Lemma: $\mathbb{E}[X_i^2(\alpha)] = O(n)$

Proof: Assume without loss of generality that $d_{i,j} \ge d_{i,k}$ whenever j > k; that is, the points are indexed according to their distance from p_i . Like above, we assume that the line $L(\alpha)$ passes through p_i . We have

$$\mathbb{E}[X_i^2] = \mathbb{E}\left[\sum_{j,k\in[n]} X_{i,j}X_{i,k}\right] \le \mathbb{E}\left[2\sum_{j}\sum_{k\leq j} X_{i,j}X_{i,k}\right] = 2\sum_{j}\mathbb{E}\left[X_{i,j}\sum_{k\leq j} X_{i,k}\right]$$

We claim that $\mathbb{E}\left[X_{i,j} \sum_{k < j} X_{i,k}\right] = O(1)$, and so the result follows. To prove the claim, observe that if $X_{i,j}(\alpha) = 1$, then all the points p_k that have $X_{i,k}(\alpha) = 1$ need to be in the strip (or slab) of width two having $L(\alpha + \pi/2)$ as axis. Because of a packing argument, in this strip there are $O(d_{i,j})$ points p_k that satisfy $d_{i,j} \ge d_{i,k}$. Therefore, by the way we indexed the points, we conclude that, if $X_{i,j}(\alpha) = 1$, then $\left(\sum_{k < j} X_{i,k}\right)(\alpha) = O(d_{i,j})$. In any case, we always have $\left(X_{i,j} \sum_{k < j} X_{i,k}\right)(\alpha) = O(d_{i,j})$. Therefore

$$\mathbb{E}\left[X_{i,j}\sum_{k\leq j}X_{i,k}\right] = \sum_{t=1}^{n}t\cdot\Pr\left[X_{i,j}\sum_{k\leq j}X_{i,k}=t\right] \leq \sum_{t=1}^{n}O(d_{i,j})\cdot\Pr\left[X_{i,j}\sum_{k\leq j}X_{i,k}=t\right]$$
$$= O(d_{i,j})\sum_{t=1}^{n}\Pr\left[X_{i,j}\sum_{k\leq j}X_{i,k}=t\right] \leq O(d_{i,j})\cdot\Pr\left[X_{i,j}=1\right] = O(d_{i,j})\frac{2\arcsin 1/d_{i,j}}{\pi} = O(1).$$

 π

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ Lemma: $\mathbb{E}[X_{i}^{2}(\alpha)] = O(n)$ Corollary: $\mathbb{E}[T(\alpha)] = O(n^{2})$ Main idea: If $X_{max}(\alpha) \ge t$, then $T(\alpha) \ge t^{3}/8$

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ Lemma: $\mathbb{E}[X_{i}^{2}(\alpha)] = O(n)$ Corollary: $\mathbb{E}[T(\alpha)] = O(n^{2})$ Main idea: If $X_{max}(\alpha) \ge t$, then $T(\alpha) \ge t^{3}/8$

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ **Lemma:** $\mathbb{E}[X_i^2(\alpha)] = O(n)$ **Corollary:** $\mathbb{E}[T(\alpha)] = O(n^2)$ Main idea: If $X_{max}(\alpha) \ge t$, then $T(\alpha) \ge t^3/8$ $X_j(\alpha) \ge t/2 \implies X_j^2(\alpha) \ge t^2/4$ > t/2 — $L(\alpha)$ $- X_{max}(\alpha) = t$ p_{max}

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ Lemma: $\mathbb{E}[X_{i}^{2}(\alpha)] = O(n)$ Corollary: $\mathbb{E}[T(\alpha)] = O(n^{2})$ Main idea: If $X_{max}(\alpha) \ge t$, then $T(\alpha) \ge t^{3}/8$

Task: Bound $\mathbb{E}[X_{max}(\alpha)]$ $T(\alpha) := \sum_{i} X_{i}^{2}(\alpha).$ Lemma: $\mathbb{E}[X_{i}^{2}(\alpha)] = O(n)$ Corollary: $\mathbb{E}[T(\alpha)] = O(n^{2})$ Main idea: If $X_{max}(\alpha) \ge t$, then $T(\alpha) \ge t^{3}/8$

 $\mathbb{E}[X_{max}] = \sum_{t=1}^{n} \Pr[X_{max} \ge t] = \sum_{t=1}^{n^{2/3}} \Pr[X_{max} \ge t] + \sum_{t=n^{2/3}+1}^{n} \Pr[X_{max} \ge t]$ $\leq \sum_{t=1}^{n^{2/3}} 1 + \sum_{t=n^{2/3}+1}^{n} \Pr[T \ge t^3/8] \le n^{2/3} + \sum_{t=n^{2/3}+1}^{n} \frac{O(n^2)}{t^3}$ $\leq n^{2/3} + O(n^2) \int_{n^{2/3}}^{n} \frac{1}{t^3} dt \le n^{2/3} + O(n^2) \left(\frac{2}{(n^{2/3})^2} - \frac{2}{n^2}\right) = O(n^{2/3}).$

Summary

- Projection of non-dense point sets onto lines.
- Relation to sweep-line algorithms.
- Expensive: choose a best sweeping-line.
- Cheap: choose a random line?
- How good a random line is? $O(n^{2/3})$.

Sergio Cabello, IMFM, cabello@imfm.uni-lj.si

Summary

- Projection of non-dense point sets onto lines.
- Relation to sweep-line algorithms.
- Expensive: choose a best sweeping-line.
- Cheap: choose a random line?
- How good a random line is? $O(n^{2/3})$.

Close the gap!!

Sergio Cabello, IMFM, cabello@imfm.uni-lj.si

Sergio Cabello, IMFM, cabello@imfm.uni-lj.si