Expected case for projecting points

Sergio Cabello Matt deVos IMFM, Ljubljana, Slovenia

Bojan Mohar
FMF, Ljubljana, Slovenia
S.C. partially supported by an EC/FP6 Marie Curie Fellowship.

Motivation

Sweep-line among unit-size disjoint disks

Motivation
Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation
Sweep-line among unit-size disjoint disks

Motivation
Sweep-line among unit-size disjoint disks

Motivation
Sweep-line among unit-size disjoint disks

Motivation
Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Motivation

Sweep-line among unit-size disjoint disks

Often, running time depends on
\sharp active disks

Motivation

Sweep-line among unit-size disjoint disks

Often, running time depends on

\sharp active disks

Problem: choose a good sweeping direction

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart L a line

Project P onto L

Maximum \sharp points in a unit-length interval?

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart L a line
 Project P onto L

Maximum \sharp points in a unit-length interval?

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart L a line
 Project P onto L

Maximum \sharp points in a unit-length interval?

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart L a line

Maximum \sharp points in a unit-length interval?

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart
L a line
\checkmark Project P onto L
$C(L)=\max \sharp$ points in a unit-length interval

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart
L a line
\checkmark Project P onto L
$C(L)=\max \sharp$ points in a unit-length interval
Problem:
Choose a good $L /$ sweeping-line

Problem Definition

$P \subset \mathbb{R}^{2}$ 1-apart
L a line
\checkmark Project P onto L
$C(L)=\max \sharp$ points in a unit-length interval Problem:

Choose a good $L /$ sweeping-line
$C(L)$ only depends on the slope α of L

$$
\Rightarrow C(\alpha):=C(L(\alpha))
$$

Previous Results

$P \subset \mathbb{R}^{2}$ 1-apart, $|P|=n$

- [Kučera, Mehlhorn, Preis, Schwarzenecker STACS'93]
* Always a line L with $C(L)=O(\sqrt{n \log n})$
* P with $C(L)=\Omega(\sqrt{n \log n})$ for all L (Besicovitch's sets)
* Best L in polynomial time
- [Díaz, Hurtado, López, Sellarès, ISAAC'03]
* Computing a 2-approx line in $O(n \Delta \log n \Delta)$ time ($\Delta \equiv$ diameter P, arbitrary P)

Our Results

$P \subset \mathbb{R}^{2}$ 1-apart, $|P|=n$
Choose a random line $L(\alpha), \alpha \sim U[0, \pi]$ How good or bad is $C(\alpha)$?
What is the expected value of $C(\alpha)$?

Our Results

$P \subset \mathbb{R}^{2}$ 1-apart, $|P|=n$
Choose a random line $L(\alpha), \alpha \sim U[0, \pi]$ How good or bad is $C(\alpha)$?
What is the expected value of $C(\alpha)$?
Theorem: $\mathbb{E}[C(\alpha)]=O\left(n^{2 / 3}\right)$

Our Results

$P \subset \mathbb{R}^{2}$ 1-apart, $|P|=n$
Choose a random line $L(\alpha), \alpha \sim U[0, \pi]$
How good or bad is $C(\alpha)$?
What is the expected value of $C(\alpha)$?
Theorem: $\mathbb{E}[C(\alpha)]=O\left(n^{2 / 3}\right)$
Problem: We only know $\mathbb{E}[C(\alpha)]=\Omega(\sqrt{n \log n})$
Obs: If each point has $\leq k$ points at distance ≤ 1

$$
\Rightarrow \quad \mathbb{E}[C(\alpha)]=O\left(k n^{2 / 3}\right)
$$

Alg. Obs: We can take or discard $L(\alpha)$ in $O(n \log n)$ time.

Our Approach

$$
\begin{aligned}
& P=\left\{p_{1}, \ldots, p_{n}\right\} \\
& X_{i}(\alpha):=\sharp \text { points at distance } \leq 1 \text { from } p_{i} \\
& X_{\max }(\alpha):=\max \left\{X_{1}(\alpha), \ldots, X_{n}(\alpha)\right\} \\
& \quad \Rightarrow C(\alpha) \leq X_{\max }(\alpha) \leq 2 C(\alpha)
\end{aligned}
$$

Our Approach

$$
\begin{aligned}
& P=\left\{p_{1}, \ldots, p_{n}\right\} \\
& X_{i}(\alpha):=\sharp \text { points at distance } \leq 1 \text { from } p_{i} \\
& X_{\max }(\alpha):=\max \left\{X_{1}(\alpha), \ldots, X_{n}(\alpha)\right\} \\
& \quad \Rightarrow C(\alpha) \leq X_{\max }(\alpha) \leq 2 C(\alpha)
\end{aligned}
$$

$$
L(\alpha) \quad \leq C(\alpha)-\leq C(\alpha)
$$

Our Approach

$$
\begin{aligned}
& P=\left\{p_{1}, \ldots, p_{n}\right\} \\
& X_{i}(\alpha):=\sharp \text { points at distance } \leq 1 \text { from } p_{i} \\
& X_{\max }(\alpha):=\max \left\{X_{1}(\alpha), \ldots, X_{n}(\alpha)\right\} \\
& \quad \Rightarrow C(\alpha) \leq X_{\max }(\alpha) \leq 2 C(\alpha)
\end{aligned}
$$

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n)$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$

$$
T(\alpha):=\sum_{i} X_{i}^{2}(\alpha) .
$$

Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n)$

Proof:

 from p_{i}. Like above, we assume that the line $L(\alpha)$ passes through p_{i}. We have$$
\mathbb{E}\left[X_{i}^{2}\right]=\mathbb{E}\left[\sum_{j, k \in[n]} X_{i, j} X_{i, k}\right] \leq \mathbb{E}\left[2 \sum_{j} \sum_{k \leq j} X_{i, j} X_{i, k}\right]=2 \sum_{j} \mathbb{E}\left[X_{i, j} \sum_{k \leq j} X_{i, k}\right]
$$

We claim that $\mathbb{E}\left[X_{i, j} \sum_{k \leq j} X_{i, k}\right]=O(1)$, and so the result follows. To prove the claim, observe that if $X_{i, j}(\alpha)=1$, then all the points p_{k} that have $X_{i, k}(\alpha)=1$ need to be in the strip (or slab) of width two having $L(\alpha+\pi / 2)$ as axis. Because of a packing argument, in this strip there are $O\left(d_{i, j}\right)$ points p_{k} that satisfy $d_{i, j} \geq d_{i, k}$. Therefore, by the way we indexed the points, we conclude that, if $X_{i, j}(\alpha)=1$, then $\left(\sum_{k \leq j} X_{i, k}\right)(\alpha)=O\left(d_{i, j}\right)$. In any case, we always have $\left(X_{i, j} \sum_{k \leq j} X_{i, k}\right)(\alpha)=O\left(d_{i, j}\right)$. Therefore

$$
\begin{aligned}
& \mathbb{E}\left[X_{i, j} \sum_{k \leq j} X_{i, k}\right]=\sum_{t=1}^{n} t \cdot \operatorname{Pr}\left[X_{i, j} \sum_{k \leq j} X_{i, k}=t\right] \leq \sum_{t=1}^{n} O\left(d_{i, j}\right) \cdot \operatorname{Pr}\left[X_{i, j} \sum_{k \leq j} X_{i, k}=t\right] \\
= & O\left(d_{i, j}\right) \sum_{t=1}^{n} \operatorname{Pr}\left[X_{i, j} \sum_{k \leq j} X_{i, k}=t\right] \leq O\left(d_{i, j}\right) \cdot \operatorname{Pr}\left[X_{i, j}=1\right]=O\left(d_{i, j}\right) \frac{2 \arcsin 1 / d_{i, j}}{\pi}=O(1)
\end{aligned}
$$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n) \quad$ Corollary: $\mathbb{E}[T(\alpha)]=O\left(n^{2}\right)$
Main idea: If $X_{\max }(\alpha) \geq t$, then $T(\alpha) \geq t^{3} / 8$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n) \quad$ Corollary: $\mathbb{E}[T(\alpha)]=O\left(n^{2}\right)$
Main idea: If $X_{\max }(\alpha) \geq t$, then $T(\alpha) \geq t^{3} / 8$

$$
\geq t / 2
$$

$L(\alpha)$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n) \quad$ Corollary: $\mathbb{E}[T(\alpha)]=O\left(n^{2}\right)$
Main idea: If $X_{\max }(\alpha) \geq t$, then $T(\alpha) \geq t^{3} / 8$

$$
\begin{aligned}
X_{j}(\alpha) \geq t / 2 & \Rightarrow \quad X_{j}^{2}(\alpha) \geq t^{2} / 4 \\
& \geq t / 2
\end{aligned}
$$

$L(\alpha)$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n) \quad$ Corollary: $\mathbb{E}[T(\alpha)]=O\left(n^{2}\right)$
Main idea: If $X_{\max }(\alpha) \geq t$, then $T(\alpha) \geq t^{3} / 8$

A couple of ideas

Task: Bound $\mathbb{E}\left[X_{\max }(\alpha)\right]$
$T(\alpha):=\sum_{i} X_{i}^{2}(\alpha)$.
Lemma: $\mathbb{E}\left[X_{i}^{2}(\alpha)\right]=O(n) \quad$ Corollary: $\mathbb{E}[T(\alpha)$
Main idea: If $X_{\max }(\alpha) \geq t$, then $T(\alpha) \geq t^{3} / 8$

$$
\begin{aligned}
& \mathbb{E}\left[X_{\text {max }}\right]=\sum_{t=1}^{n} \operatorname{Pr}\left[X_{\text {max }} \geq t\right]=\sum_{t=1}^{n^{2 / 3}} \operatorname{Pr}\left[X_{\text {max }} \geq t\right]+\sum_{t=n^{2 / 3}+1}^{n} \operatorname{Pr}\left[X_{\text {max }} \geq t\right] \\
& \leq \sum_{t=1}^{n^{2 / 3}} 1+\sum_{t=n^{2 / 3}+1}^{n} \operatorname{Pr}\left[T \geq t^{3} / 8\right] \leq n^{2 / 3}+\sum_{t=n^{2 / 3}+1}^{n} \frac{O\left(n^{2}\right)}{t^{3}} \\
& \leq n^{2 / 3}+O\left(n^{2}\right) \int_{n^{2 / 3}}^{n} \frac{1}{t^{3}} d t \leq n^{2 / 3}+O\left(n^{2}\right)\left(\frac{2}{\left(n^{2 / 3}\right)^{2}}-\frac{2}{n^{2}}\right)=O\left(n^{2 / 3}\right) .
\end{aligned}
$$

Summary

- Projection of non-dense point sets onto lines.
- Relation to sweep-line algorithms.
- Expensive: choose a best sweeping-line.
- Cheap: choose a random line?
- How good a random line is? $O\left(n^{2 / 3}\right)$.

Summary

- Projection of non-dense point sets onto lines.
- Relation to sweep-line algorithms.
- Expensive: choose a best sweeping-line.
- Cheap: choose a random line?
- How good a random line is? $O\left(n^{2 / 3}\right)$.

Close the gap!!
Sergio Cabello, IMFM, cabello@imfm.uni-lj.si

Summary

- Projection of non-densa po + +entolines.
- Relation to sweer are ritirns.
- Expensive: se a est sweeping-line.
- Cheap. hoo a random line? Ho sood random line is? $O\left(n^{2 / 3}\right)$.

Close the gap!!

