Finding Shortest Non-Contractible and Non-Separating Cycles for Topologically Embedded Graphs

Sergio Cabello
IMFM

Bojan Mohar
FMF \& IMFM

Ljubljana, Slovenia

Overview

- surfaces and graphs
- old and new results
- other similar work
- key points for the non-separating case
- key point for the non-contractible case

Surfaces and graphs

Surface: compact set, locally like the plane

Genus g of Σ : nb of holes $=\mathrm{nb}$ of merged torus

Surfaces and graphs

Contractibe, non-contracible, and non-separating loops.

Surfaces and graphs

Contractibe, non-contracible, and non-separating loops.

Contractibe \Rightarrow separating Non-separating \Rightarrow non-contractible

Contractibe \Leftrightarrow Zero in the homotopy group Separating \Leftrightarrow Zero in the \mathbb{Z}_{2}-homology group

Surfaces and graphs

(Weighted) graph G on Σ :

Cycles/loops in G are curves in Σ.

Surfaces and graphs

(Weighted) graph G on Σ :

Cycles/loops in G are curves in Σ.
Problem: Find shortest non-contractible cycle.
Problem: Find shortest non-separating cycle.

Old and new results

G a graph with V vertices in a surface of genus g

Old and new results

G a graph with V vertices in a surface of genus g

	Older results	New result
Shortest non-contractible cycle	$O^{*}\left(V(V+g)^{2}\right)$ $[$ Thomassen]	$O\left(g^{O(g)} V^{3 / 2}\right)$
Shortest non-separating cycle	$O^{*}(V(V+g))$ [Erickson, Har-Peled] $]$	$O^{*}\left(g^{3 / 2} V^{3 / 2}+\right.$ $\left.g^{5 / 2} V^{1 / 2}\right)$

Old and new results

G a graph with V vertices in a surface of genus g

Old and new results

G a graph with V vertices in a surface of genus g

Why non-contractible/non-separating?

3 -path property

$P_{1}+P_{2}$ non-separating
\Downarrow
$P_{1}+P_{3}$ or $P_{2}+P_{3}$ non-separating

Are there polynomial time algorithms for shortest separating? More difficult for shortest contractible.

Other similar work

- Erickson and Har-Peled $(2004,2005)$ find minimum-length cut subgraph C s.t. $\Sigma \backslash C$ planar.
- Colin de Verdière and Lazarus $(2002,2004)$ find shortest loop/cycle in a homotopy class.
- Eppstein (2003) tree-cotree decomposition.
- Erickson and Whittlesey (2005) find shortest system of loops with given basepoint.
- Colin de Verdière and Erickson (SODA'06) find shortest loop/cycle/path in a homotopy class.

Overview

- surfaces and graphs
- Old and new results=
- Othersimilar werk
- key points for the non-separating case
- key point for the non-contractible case

Key points for the non-separating cycle

Crossings

Key points for the non-separating cycle

$\mathcal{C}=\left\{C_{1}, \ldots, C_{\Theta(g)}\right\}$ system of fundamental loops.
$C_{1}, \ldots, C_{\Theta(g)}$ through a common vertex. Surface cut along $C_{1}, \ldots, C_{\Theta(g)}$ is a disk.

Key points for the non-separating cycle

$\mathcal{C}=\left\{C_{1}, \ldots, C_{\Theta(g)}\right\}$ system of fundamental loops.
$C_{1}, \ldots, C_{\Theta(g)}$ through a common vertex. Surface cut along $C_{1}, \ldots, C_{\Theta(g)}$ is a disk.
Fix $x \in V(G)$ and construct from- x-shortest-path tree T_{x}. For edge $e \notin T_{x}, \operatorname{loop}\left(T_{x}, e\right)$ is ...

Theorem: There is always a system of fundamental loops of the form $\operatorname{loop}\left(T_{x}, e_{1}\right), \ldots, \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)$.

Easy to compute it (tree-cotree decompos\{tion)

Key points for the non-separating cycle

 $\operatorname{loop}\left(T_{x}, e_{1}\right), \ldots, \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)$ system of fund. loops.Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$.
Lem: each non-sep cycle crosses some $\operatorname{loop}\left(T_{x}, e_{i}\right)$ odd times.

Key points for the non-separating cycle

$\operatorname{loop}\left(T_{x}, e_{1}\right), \ldots, \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)$ system of fund. loops.
Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$.
Lem: each non-sep cycle crosses some $\operatorname{loop}\left(T_{x}, e_{i}\right)$ odd times.
\exists shortest non-sep cycle C^{*} and $\operatorname{loop}\left(T_{x}, e_{i}\right)$ holding $\operatorname{cr}\left(C^{*}, \operatorname{loop}\left(T_{x}, e_{i}\right)\right)=1$

Algorithm:
for each cycle $C_{i}=\operatorname{loop}\left(T_{x}, e_{i}\right)$ in the system
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Problem: compute $\left|C_{i}\right| \leq V$ distances in G-cut-by- C_{i}

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Problem: compute $\left|C_{i}\right| \leq V$ distances in G-cut-by- C_{i}
Solvable in $O^{*}((V+g) \sqrt{g V})$ time via separators

Key points for the non-separating cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Algorithm: for each cycle $C_{i} \in \mathcal{C}$
find a shortest cycle crossing C_{i} exactly once; report the shortest one

Problem: compute $\left|C_{i}\right| \leq V$ distances in G-cut-by- C_{i}
Solvable in $O^{*}((V+g) \sqrt{g V})$ time via separators

The algorithm takes $O^{*}\left(g^{3 / 2} V^{3 / 2}+g^{5 / 2} V^{1 / 2}\right)$ time.

Overview

- surfaces and graphs
- Old and new results=
- Othersimilar wo
- Key points for the non-separating case-
- key point for the non-contractible case

Key points for the non-contractible cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$. non-contractible

Key points for the non-contractible cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$. non-contractible

Thm: Let $\tilde{V}=O\left(g^{O(g)} V\right)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to: computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

Key points for the non-contractible cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$. non-contractible

Thm: Let $\tilde{V}=O\left(g^{O(g)} V\right)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

$$
\text { Solvable in } O\left(\tilde{V}^{3 / 2}\right) \text { via separators. }
$$

Key points for the non-contractible cycle

$\mathcal{C}=\left\{\operatorname{loop}\left(T_{x}, e_{1}\right) \ldots \operatorname{loop}\left(T_{x}, e_{\Theta(g)}\right)\right\}$ system of fund. loops.
Lem: \exists shortest non-separ cycle crossing ≤ 2 each $\operatorname{loop}\left(T_{x}, e_{i}\right)$. non-contractible

Thm: Let $\tilde{V}=O\left(g^{O(g)} V\right)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

Solvable in $O\left(\tilde{N}^{3+2}\right)$ via separators.

 Solvable in $O^{*}\left(\tilde{V}^{4 / 3}\right)$ [SODA'06].
Summary

G a graph with V vertices in a surface of genus g.

- shortest non-separating cycle: $O^{*}\left(g^{3 / 2} V^{3 / 2}+g^{5 / 2} V^{1 / 2}\right)$;
- shortest non-contractible cycle: $O^{*}\left(g^{O(g)} \sqrt{3 / 2}\right)$.

Main techniques:

- system of fundamental loops made of 2 geodesics;
- reduce the problem to computing V distances in graphs.

Skipped:

- better results for face-width in \mathbb{P}^{2} and \mathbb{T}

Summary

G a graph with V vertices in a surface of genus

- shortest non-separating cyclen $O^{*}\left(g^{3} 2^{2 / 2}+g^{g / 2} V^{1 / 2}\right)$;
- shortest non-contractiblecycle. $\mathrm{O}^{*}\left(g^{\mathrm{O}^{(g)}} \sqrt{(3 / 2}\right)$.

Main techniques:

- system of fundamental loops made of 2 geodesics;
- reduce the problemto computing V distances in graphs. ped:
- better results for face-width in \mathbb{P}^{2} and \mathbb{T}

