Finding Shortest Non-Contractible and Non-Separating Cycles for Topologically Embedded Graphs

Sergio CabelloBojan MoharIMFMFMF & IMFM

Ljubljana, Slovenia

Overview

- surfaces and graphs
- old and new results
- other similar work
- key points for the non-separating case
- key point for the non-contractible case

Surface: compact set, locally like the plane

Genus g of Σ : nb of holes = nb of merged torus

Contractibe, non-contracible, and non-separating loops.

Contractibe, non-contracible, and non-separating loops.

Contractibe \Rightarrow separating Non-separating \Rightarrow non-contractible

Contractibe \Leftrightarrow Zero in the homotopy group Separating \Leftrightarrow Zero in the \mathbb{Z}_2 -homology group

(Weighted) graph G on Σ :

Cycles/loops in G are curves in Σ .

(Weighted) graph G on Σ :

Cycles/loops in G are curves in Σ .

Problem: Find shortest non-contractible cycle. Problem: Find shortest non-separating cycle.

 ${\cal G}$ a graph with V vertices in a surface of genus g

 ${\cal G}$ a graph with V vertices in a surface of genus g

	Older results	New result
Shortest non-contractible cycle	$O^*(V(V+g)^2)$ [Thomassen]	$O(g^{O(g)}V^{3/2})$
Shortest non-separating cycle	$O^*(V(V+g))$ [Erickson, Har-Peled]	$O^*(g^{3/2}V^{3/2}+g^{5/2}V^{1/2})$

 ${\cal G}$ a graph with V vertices in a surface of genus g

	Older results	New result	
Shortest non-contractible cycle	$O^*(V(V+g)^2)$ [Thomassen]	$O(g^{O(g)}V^{3/2})$	Better if $q = O(1)$
Shortest non-separating cycle	$O^*(V(V+g))$ [Erickson, Har-Peled]	$O^*(g^{3/2}V^{3/2}+g^{5/2}V^{1/2})$	ottor if
		шарана Балана Балана Д	$= o(V^{1/3})$

 ${\cal G}$ a graph with V vertices in a surface of genus g

	Older results	New result
Shortest non-contractible cycle	$O^*(V(V+g)^2)$ [Thomassen]	$O(g^{O(g)}V^{3/2}) \\ O(g^{O(g)}V^{4/3})$
Shortest non-separating cycle	$O^*(V(V+g))$ [Erickson, Har-Peled]	$O^*(g^{3/2}V^{3/2}+g^{5/2}V^{1/2})$

SODA'06

Are there polynomial time algorithms for shortest separating? More difficult for shortest contractible.

Other similar work

- Erickson and Har-Peled (2004,2005) find minimum-length cut subgraph C s.t. $\Sigma \setminus C$ planar.
- Colin de Verdière and Lazarus (2002, 2004) find shortest loop/cycle in a homotopy class.
- Eppstein (2003) tree-cotree decomposition.
- Erickson and Whittlesey (2005) find shortest system of loops with given basepoint.
- Colin de Verdière and Erickson (SODA'06) find shortest loop/cycle/path in a homotopy class.

Overview

- surfaces and graphs
- old and new results
- other similar work
- key points for the non-separating case
- key point for the non-contractible case

Crossings

crossing

intersection without crossing

 $C = \{C_1, \ldots, C_{\Theta(g)}\}$ system of fundamental loops.

 $C_1, \ldots, C_{\Theta(g)}$ through a common vertex. Surface cut along $C_1, \ldots, C_{\Theta(g)}$ is a disk.

Key points for the non-separating cycle $C = \{C_1, \ldots, C_{\Theta(q)}\}$ system of fundamental loops. $C_1, \ldots, C_{\Theta(g)}$ through a common vertex. Surface cut along $C_1, \ldots, C_{\Theta(q)}$ is a disk. Fix $x \in V(G)$ and construct from-x-shortest-path tree T_x . \mathcal{X} For edge $e \notin T_x$, $loop(T_x, e)$ is ... T_x Theorem: There is always a system/ of fundamental loops of the form $loop(T_x, e_1), \ldots, loop(T_x, e_{\Theta(g)}).$ Easy to compute it (tree-cotree decomposition)

Key points for the non-separating cycle $loop(T_x, e_1), \ldots, loop(T_x, e_{\Theta(g)})$ system of fund. loops. Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. Lem: each non-sep cycle crosses some $loop(T_x, e_i)$ odd times.

 $\exists \text{ shortest non-sep cycle } C^* \text{ and } loop(T_x, e_i) \\ \text{ holding } cr(C^*, loop(T_x, e_i)) = 1$

Key points for the non-separating cycle $loop(T_x, e_1), \ldots, loop(T_x, e_{\Theta(g)})$ system of fund. loops. Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. Lem: each non-sep cycle crosses some $loop(T_x, e_i)$ odd times.

 $\exists \text{ shortest non-sep cycle } C^* \text{ and } loop(T_x, e_i) \\ \text{ holding } cr(C^*, loop(T_x, e_i)) = 1$

Algorithm:

 \Rightarrow

for each cycle $C_i = loop(T_x, e_i)$ in the system find a shortest cycle crossing C_i exactly once; report the shortest one

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Algorithm: for each cycle $C_i \in C$ find a shortest cycle crossing C_i exactly once; report the shortest one

Problem: compute $|C_i| \leq V$ distances in *G*-cut-by- C_i

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Algorithm: for each cycle $C_i \in C$ find a shortest cycle crossing C_i exactly once; report the shortest one

Problem: compute $|C_i| \leq V$ distances in *G*-cut-by- C_i

Solvable in $O^*((V+g)\sqrt{gV})$ time via separators

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Algorithm: for each cycle $C_i \in C$ find a shortest cycle crossing C_i exactly once; report the shortest one

Problem: compute $|C_i| \leq V$ distances in G-cut-by- C_i Solvable in $O^*((V+g)\sqrt{gV})$ time via separators

The algorithm takes $O^*(g^{3/2}V^{3/2} + g^{5/2}V^{1/2})$ time.

Overview

- surfaces and graphs
- old and new results
- other similar work
- key points for the non-separating case
- key point for the non-contractible case

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. non-contractible

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. non-contractible

Thm: Let $\tilde{V} = O(g^{O(g)}V)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to: computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. non-contractible

Thm: Let $\tilde{V} = O(g^{O(g)}V)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to: computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

Solvable in $O(\tilde{V}^{3/2})$ via separators.

 $C = \{loop(T_x, e_1) \dots loop(T_x, e_{\Theta(g)})\}$ system of fund. loops.

Lem: \exists shortest non-separ cycle crossing ≤ 2 each $loop(T_x, e_i)$. non-contractible

Thm: Let $\tilde{V} = O(g^{O(g)}V)$. Finding a shortest non-contractible cycle can be reduced in $O(\tilde{V})$ time to: computing $O(\tilde{V})$ distances in a planar graph with $O(\tilde{V})$ vertices.

Solvable in $O(\tilde{V}^{3/2})$ via separators.

Solvable in $O^*(\tilde{V}^{4/3})$ [SODA'06].

Summary

G a graph with V vertices in a surface of genus g.

- shortest non-separating cycle: $O^*(g^{3/2}V^{3/2}+g^{5/2}V^{1/2})$;
- shortest non-contractible cycle: $O^*(g^{O(g)}V^{3/2})$. 4/3

Main techniques:

- system of fundamental loops made of 2 geodesics;
- reduce the problem to computing V distances in graphs.

Skipped:

- better results for face-width in \mathbb{P}^2 and \mathbb{T}

Summary

G a graph with V vertices in a surface of genus g

- shortest non-separating cycle
- shortest non-contractible cycle.

Main techniques:

- system of fundamental loops made of 2 geodesics;
- reduce the problem to computing V distances in graphs.

4/3

ped:

better results for face-width in \mathbb{P}^2 and \mathbb{T}