Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension

Sergio Cabello University of Ljubljana
Slovenia

Panos Giannopoulos Christian Knauer Dániel Marx Budapest University T\& E Günter Rote FU Berlin FU Berlin

Motivation

Computational geometry parameterized by the dimension

k-center problem

- k-center optimization problem

Input: a set of n points S in \mathbb{R}^{d}
Task: find the smallest k congruent balls that cover S

- k-center decision problem

Input: a set of n points S in \mathbb{R}^{d}
Question: can S be covered with k unit balls?

k-center problem

- k-center optimization problem

Input: a set of n points S in \mathbb{R}^{d}
Task: find the smallest k congruent balls that cover S

- k-center decision problem

Input: a set of n points S in \mathbb{R}^{d}
Question: can S be covered with k unit balls?

- most discussion about decision problem
- we will consider L_{2} and L_{∞} metrics
- d is not a constant

k-center problem in L_{2}

- $k=1$
- linear programming in $d+1$ dimensions
- solvable in $O(f(d) n)=O\left(3^{d^{2}} n\right)$ time
- $k=2$
- easily solvable in $O\left(n^{2 d+2}\right)$ time using arrangements
- NP-hard
[Megiddo 90]

k-center problem in L_{2}

- $k=1$
- linear programming in $d+1$ dimensions
- solvable in $O(f(d) n)=O\left(3^{d^{2}} n\right)$ time
- $k=2$
- easily solvable in $O\left(n^{2 d+2}\right)$ time using arrangements
- NP-hard
[Megiddo 90]
- W[1]-hard

New results: 2-center problem in L_{2}

Theorem
2-center problem parameterized by the dimension is W[1]-hard.

- if there is an algorithm solving 2-center in $O\left(f(d) n^{c}\right)$ time
- we can find k-cliques in graphs in $O\left(g(k) n^{c^{\prime}}\right)$ time
- we can solve 3-SAT in $O\left(2^{o(n)}\right)$ time
- some hierarchy collapses

New results: 2-center problem in L_{2}

Theorem
2-center problem parameterized by the dimension is W[1]-hard.

- if there is an algorithm solving 2-center in $O\left(f(d) n^{c}\right)$ time
- we can find k-cliques in graphs in $O\left(g(k) n^{c^{\prime}}\right)$ time
- we can solve 3-SAT in $O\left(2^{o(n)}\right)$ time
- some hierarchy collapses
- an algorithm solving 2-center in $O\left(f(d) n^{100}\right)$ time is unlikely
- an algorithm solving 2-center in $O\left(f(d) n^{o(d)}\right)$ time is unlikely

k-center problem in L_{∞}

- $k=1$
- trivial $O(d n)$ time
- $k=2$
- solvable in $O\left(d n^{2}\right)$ time
[Megiddo 90]
- $k=3$
- solvable in $O\left(n^{\lfloor d / 3\rfloor} \log n\right)$ time
- NP-hard
[Assa, Katz 99]
[Megiddo 90]

k-center problem in L_{∞}

- $k=1$
- trivial $O(d n)$ time
- $k=2$
- solvable in $O\left(d n^{2}\right)$ time
[Megiddo 90]
- $k=3$
- solvable in $O\left(n^{\lfloor d / 3\rfloor} \log n\right)$ time
- NP-hard
[Assa, Katz 99]
[Megiddo 90]
- $O\left(6^{d} \cdot d n \log (d n)\right)$ time

k-center problem in L_{∞}

- $k=1$
- trivial $O(d n)$ time
- $k=2$
- solvable in $O\left(d n^{2}\right)$ time
- $k=3$
- solvable in $O\left(n^{\lfloor d / 3\rfloor} \log n\right)$ time
- NP-hard
[Assa, Katz 99]
[Megiddo 90]
- $O\left(6^{d} \cdot d n \log (d n)\right)$ time
- $k=4$
- W[1]-hard
- an algorithm solving 4-center in $O\left(f(d) n^{100}\right)$ is unlikely

What is new?

Finer classification of k-center for unbounded dimension

- L_{2}
- easy for $k=1$
- W[1]-hard for $k=2$
- L_{∞}
- easy for $k=1,2$
- NP-hard, but fixed-parameter tractable for $k=3$
- W[1]-hard for $k=4$

What is new?

Finer classification of k-center for unbounded dimension

- L_{2}
- easy for $k=1$
- W[1]-hard for $k=2$
- L_{∞}
- easy for $k=1,2$
- NP-hard, but fixed-parameter tractable for $k=3$
- W[1]-hard for $k=4$

Other related work:

- k-center problem parameterized by k is W[1]-hard for $d \geq 2$
[Marx 05]

Outline

- Introduction
- What is new?
- Ideas
- Solving 3-center in $L_{\infty} \leftarrow$
- W[1]-hardness of 2-center in L_{2}
- Conclusions

Solving 3-center in L_{∞} - Frame

- consider decision problem

Input: a set of n points S in \mathbb{R}^{d}
Question: can S be covered with 3 unit cubes?

- the points are denoted $1,2, \ldots$, n
- u a generic point
- the cubes are denoted A, B, C
- X a generic cube

Solving 3-center in L_{∞} - Frame

- consider decision problem

Input: a set of n points S in \mathbb{R}^{d}
Question: can S be covered with 3 unit cubes?

- the points are denoted $1,2, \ldots$, n
- u a generic point
- the cubes are denoted A, B, C
- X a generic cube
- decision \rightarrow optimization
- easy using [Frederickson, Johnson '84]

Solving 3-center in L_{∞} - General Idea

- cube X covers point u iff $\pi_{j}(u) \in \pi_{j}(X)$ for each coordinate projection π_{j}

- classify possible solutions according to certain patterns
- for each pattern
- reduce the problem to 2-SAT

Solving 3-center in L_{∞} - Patterns

- the pattern of 3 cubes A, B, C is

$$
\left(L_{1}, M_{1}, R_{1}\right),\left(L_{2}, M_{2}, R_{2}\right), \ldots,\left(L_{d}, M_{d}, R_{d}\right)
$$

where

- $\left(L_{j}, M_{j}, R_{j}\right)$ a permutation of (A, B, C)
- $\pi_{j}\left(L_{j}\right)$ left of $\pi_{j}\left(M_{j}\right)$ left of $\pi_{j}\left(R_{j}\right)$
- example with pattern $(A, B, C),(B, C, A)$ in $d=2$

Solving 3-center in L_{∞} - Patterns

- the pattern of 3 cubes A, B, C is

$$
\left(L_{1}, M_{1}, R_{1}\right),\left(L_{2}, M_{2}, R_{2}\right), \ldots,\left(L_{d}, M_{d}, R_{d}\right)
$$

where

- $\left(L_{j}, M_{j}, R_{j}\right)$ a permutation of (A, B, C)
- $\pi_{j}\left(L_{j}\right)$ left of $\pi_{j}\left(M_{j}\right)$ left of $\pi_{j}\left(R_{j}\right)$
- there are 6^{d} possible patterns
- each pattern explored independently
- each pattern, one 2-SAT problem

Solving 3-center in $L_{\infty}-\mathbf{A}$ pattern

- consider a pattern $\left(L_{1}, M_{1}, R_{1}\right),\left(L_{2}, M_{2}, R_{2}\right), \ldots,\left(L_{d}, M_{d}, R_{d}\right)$
- we can fix the position of $\pi_{j}\left(L_{j}\right)$ using l_{j}

- idem for $\pi_{j}\left(R_{j}\right)$ using r_{j}
- the position of $\pi_{j}\left(M_{j}\right)$ is unclear
- Boolean variable $y_{X u} \equiv$ point u covered by cube X

Solving 3-center in $L_{\infty}-\mathbf{A}$ pattern

- consider a pattern $\left(L_{1}, M_{1}, R_{1}\right),\left(L_{2}, M_{2}, R_{2}\right), \ldots,\left(L_{d}, M_{d}, R_{d}\right)$
- we can fix the position of $\pi_{j}\left(L_{j}\right)$ using l_{j}

- idem for $\pi_{j}\left(R_{j}\right)$ using r_{j}
- the position of $\pi_{j}\left(M_{j}\right)$ is unclear
- Boolean variable $y_{X u} \equiv$ point u covered by cube X

Solving 3-center in L_{∞} - SAT

- each point u is covered

$$
y_{A u} \vee y_{B u} \vee y_{C u} \quad \text { for each point } u
$$

- incompatible pairs; for each dimension
$\neg{L_{L_{j}} u}$ for each point u with $\pi_{j}(u)>l_{j}+1$
$\neg y_{R_{j} u}$ for each point u with $\pi_{j}(u)<r_{j}-1$
$\neg y_{M_{j} u} \vee \neg y_{M_{j} v} \quad$ for each points u, v with $\left|\pi_{j}(u)-\pi_{j}(v)\right|>1$

Solving 3-center in L_{∞} - SAT

- each point u is covered

$$
y_{A u} \vee y_{B u} \vee y_{C u} \quad \text { for each point } u
$$

- incompatible pairs; for each dimension
$\neg{L_{j} u}$ for each point u with $\pi_{j}(u)>l_{j}+1$
$\neg y_{R_{j} u}$ for each point u with $\pi_{j}(u)<r_{j}-1$
$\neg y_{M_{j} u} \vee \neg y_{M_{j} v} \quad$ for each points u, v with $\left|\pi_{j}(u)-\pi_{j}(v)\right|>1$
- there are 3 cubes covering with the given pattern iff all clauses satisfiable simultaneously
- 3-SAT instance with $O\left(d n^{2}\right)$ clauses

Solving 3-center in L_{∞} - 2-SAT

$y_{A u} \vee y_{B u} \vee y_{C u} \quad \forall$ points u
$\neg y_{L_{j} u} \quad \forall j, \forall$ points u with $\pi_{j}(u)>l_{j}+1$
$\neg y_{R_{j} u} \quad \forall j, \forall$ points u with $\pi_{j}(u)<r_{j}-1$
$\neg y_{M_{j} u} \vee \neg y_{M_{j} v} \quad \forall j, \forall$ points u, v with $\left|\pi_{j}(u)-\pi_{j}(v)\right|>1$

Solving 3-center in L_{∞} - 2-SAT

$$
\begin{aligned}
& y_{A u} \vee y_{B u} \vee y_{C u} \quad \forall \text { points } u \\
& \neg y_{L_{j} u} \quad \forall j, \forall \text { points } u \text { with } \pi_{j}(u)>l_{j}+1 \\
& \neg Y_{R_{j} u} \quad \forall j, \forall \text { points } u \text { with } \pi_{j}(u)<r_{j}-1 \\
& \neg y_{M_{j} u} \vee \neg y_{M_{j} v} \quad \forall j, \forall \text { points } u, v \text { with }\left|\pi_{j}(u)-\pi_{j}(v)\right|>1
\end{aligned}
$$

For each point u either

- $y_{A u} \vee y_{B u} \vee y_{C u}$ reducible to 2-SAT clause, or
- point u always covered

Solving 3-center in L_{∞} - SAT

$$
\begin{aligned}
y_{A u} \vee y_{B u} \vee y_{C u} & \forall \text { points } u \\
& \neg y_{L_{j} u}
\end{aligned} \quad \forall j, \forall \text { points } u \text { with } \pi_{j}(u)>l_{j}+1, ~(u)<r_{j}-1
$$

- deciding for a pattern \rightarrow 2-SAT with $O\left(d n^{2}\right)$ clauses
- deciding for a pattern takes $O\left(d n^{2}\right)$ time
- can be reduced to $O(d n)$ time per pattern

- $O\left(d n \log n+6^{d} d n\right)$ time for decision 3-center

Outline

- Introduction
- What is new?
- Ideas
- Solving 3-center in L_{∞}
- W[1]-hardness of 2-center in $L_{2} \leftarrow$
- Conclusions

Hardness 2-center in L_{2} - Idea

- consider the decision 2-center
- assumption: we cannot find k-cliques in $O\left(f(k) n^{c}\right)$
- polynomial-time reduction from clique to 2-center

where G has k-clique iff S can be 2 -covered
- if 2-center solvable in $O\left(f(d) n^{c}\right)$ time
$\Rightarrow(G, k)$ solvable in $O\left(f(g(k)) n^{c^{\prime}}\right)$ time

Hardness 2-center in L_{2} - Point set

- k orthogonal planes $E_{1}, \ldots E_{k}$ and one Z axis
- point set in $\mathbb{R}^{2 k+1}$
- in $Z 2$ points with $z=2$ and $z=-2$

- in each E_{i} a point set like
- choose appropriate radius
- bijection k-tuples of $V(G)$ and 2-coverings of S
- add extra points killing k-tuples with non-adjacent vertices

Conclusions

Finer classification of k-center problem for unbounded dimension

- L_{2}
- easy for $k=1$
- W[1]-hard for $k=2$
* reduction from parameterized-clique
* lots of symmetry
- L_{∞}
- easy for $k=1,2$
- fixed parameter tractable for $k=3$
* reduction to 2-SAT
* simple
- W[1]-hard for $k=4$

