Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension

> Sergio Cabello University of Ljubljana Slovenia

Panos Giannopoulos Tel Aviv University Christian Knauer FU Berlin Dániel Marx Budapest University T& E Günter Rote FU Berlin

## **Motivation**

Computational geometry parameterized by the dimension



#### *k*-center problem

- k-center optimization problem
  Input: a set of n points S in ℝ<sup>d</sup>
  Task: find the smallest k congruent balls that cover S
- k-center decision problem
  Input: a set of n points S in ℝ<sup>d</sup>
  Question: can S be covered with k unit balls?

#### *k*-center problem

- k-center optimization problem
  Input: a set of n points S in ℝ<sup>d</sup>
  Task: find the smallest k congruent balls that cover S
- ► k-center decision problem Input: a set of n points S in ℝ<sup>d</sup> Question: can S be covered with k unit balls?
- most discussion about decision problem
- we will consider  $L_2$  and  $L_\infty$  metrics
- d is not a constant

## k-center problem in $L_2$

- ▶ *k* = 1
  - linear programming in d + 1 dimensions
  - solvable in  $O(f(d)n) = O(3^{d^2}n)$  time
- ▶ *k* = 2
  - easily solvable in  $O(n^{2d+2})$  time using arrangements
  - NP-hard [Megiddo 90]

## k-center problem in $L_2$

- ▶ *k* = 1
  - linear programming in d + 1 dimensions
  - solvable in  $O(f(d)n) = O(3^{d^2}n)$  time
- ▶ *k* = 2
  - easily solvable in  $O(n^{2d+2})$  time using arrangements
  - NP-hard [Megiddo 90]
  - W[1]-hard

## New results: 2-center problem in $L_2$

#### Theorem

2-center problem parameterized by the dimension is W[1]-hard.

- if there is an algorithm solving 2-center in  $O(f(d)n^c)$  time
  - we can find k-cliques in graphs in  $O(g(k)n^{c'})$  time
  - we can solve 3-SAT in  $O(2^{o(n)})$  time
  - some hierarchy collapses

## New results: 2-center problem in $L_2$

#### Theorem

2-center problem parameterized by the dimension is W[1]-hard.

- if there is an algorithm solving 2-center in  $O(f(d)n^c)$  time
  - we can find k-cliques in graphs in  $O(g(k)n^{c'})$  time
  - we can solve 3-SAT in  $O(2^{o(n)})$  time
  - some hierarchy collapses
- an algorithm solving 2-center in  $O(f(d)n^{100})$  time is unlikely
- an algorithm solving 2-center in  $O(f(d)n^{o(d)})$  time is unlikely

# *k*-center problem in $L_\infty$

- ▶ *k* = 1
  - trivial O(dn) time
- ▶ *k* = 2
  - solvable in  $O(dn^2)$  time

[Megiddo 90]

- ▶ *k* = 3
  - solvable in  $O(n^{\lfloor d/3 \rfloor} \log n)$  time
  - NP-hard

[Assa, Katz 99] [Megiddo 90]

# *k*-center problem in $L_\infty$

▶ *k* = 1

• trivial O(dn) time

▶ *k* = 2

• solvable in  $O(dn^2)$  time

[Megiddo 90]

► *k* = 3

- solvable in  $O(n^{\lfloor d/3 \rfloor} \log n)$  time
- NP-hard
- $O(6^d \cdot dn \log(dn))$  time

[Assa, Katz 99] [Megiddo 90]

# k-center problem in $L_\infty$

▶ *k* = 1

trivial O(dn) time

► *k* = 2

• solvable in  $O(dn^2)$  time

[Megiddo 90]

▶ *k* = 3

- solvable in  $O(n^{\lfloor d/3 \rfloor} \log n)$  time
- NP-hard
- $O(6^d \cdot dn \log(dn))$  time

[Assa, Katz 99] [Megiddo 90]

- ▶ *k* = 4
  - W[1]-hard
  - an algorithm solving 4-center in  $O(f(d)n^{100})$  is unlikely

## What is new?

Finer classification of k-center for unbounded dimension

► L<sub>2</sub>

- easy for k = 1
- W[1]-hard for *k* = 2
- $L_{\infty}$ 
  - easy for *k* = 1, 2
  - NP-hard, but fixed-parameter tractable for k = 3
  - W[1]-hard for *k* = 4

## What is new?

Finer classification of k-center for unbounded dimension

► L<sub>2</sub>

- easy for k = 1
- W[1]-hard for *k* = 2
- $\blacktriangleright L_{\infty}$ 
  - easy for *k* = 1, 2
  - NP-hard, but fixed-parameter tractable for k = 3
  - W[1]-hard for *k* = 4

Other related work:

• *k*-center problem parameterized by *k* is W[1]-hard for  $d \ge 2$ 

[Marx 05]

# Outline

- Introduction
- What is new?
- Ideas
  - Solving 3-center in  $L_{\infty} \leftarrow$
  - W[1]-hardness of 2-center in  $L_2$
- Conclusions

## Solving 3-center in $L_{\infty}$ – Frame

- ► consider decision problem Input: a set of n points S in ℝ<sup>d</sup> Question: can S be covered with 3 unit cubes?
- the points are denoted 1, 2, ..., n
  - *u* a generic point
- ▶ the cubes are denoted A, B, C
  - X a generic cube

## Solving 3-center in $L_{\infty}$ – Frame

- ► consider decision problem Input: a set of n points S in ℝ<sup>d</sup> Question: can S be covered with 3 unit cubes?
- the points are denoted 1, 2, ..., n
  - *u* a generic point
- ▶ the cubes are denoted A, B, C
  - X a generic cube
- decision  $\rightarrow$  optimization
  - easy using [Frederickson, Johnson '84]

## Solving 3-center in $L_{\infty}$ – General Idea

cube X covers point u iff

 $\pi_j(u) \in \pi_j(X)$  for each coordinate projection  $\pi_j$ 



- classify possible solutions according to certain patterns
- for each pattern
  - reduce the problem to 2-SAT

#### **Solving** 3-center in $L_{\infty}$ – Patterns

• the pattern of 3 cubes A, B, C is

$$(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d),$$

where

- $(L_j, M_j, R_j)$  a permutation of (A, B, C)
- $\pi_j(L_j)$  left of  $\pi_j(M_j)$  left of  $\pi_j(R_j)$
- example with pattern (A, B, C), (B, C, A) in d = 2



#### **Solving** 3-center in $L_{\infty}$ – Patterns

• the pattern of 3 cubes A, B, C is

$$(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d),$$

where

- $(L_j, M_j, R_j)$  a permutation of (A, B, C)
- $\pi_j(L_j)$  left of  $\pi_j(M_j)$  left of  $\pi_j(R_j)$
- there are  $6^d$  possible patterns
- each pattern explored independently
- each pattern, one 2-SAT problem

## **Solving** 3-center in $L_{\infty}$ – A pattern

- consider a pattern  $(L_1, M_1, R_1), (L_2, M_2, R_2), \dots, (L_d, M_d, R_d)$
- we can fix the position of  $\pi_j(L_j)$  using  $l_j$



- idem for  $\pi_j(R_j)$  using  $r_j$
- the position of  $\pi_j(M_j)$  is unclear
- Boolean variable  $y_{Xu} \equiv$  point *u* covered by cube *X*

## **Solving** 3-center in $L_{\infty}$ – A pattern

- consider a pattern  $(L_1, M_1, R_1), (L_2, M_2, R_2), \dots, (L_d, M_d, R_d)$
- we can fix the position of  $\pi_j(L_j)$  using  $l_j$



- idem for  $\pi_j(R_j)$  using  $r_j$
- the position of  $\pi_j(M_j)$  is unclear
- Boolean variable  $y_{Xu} \equiv$  point *u* covered by cube *X*

#### Solving 3-center in $L_{\infty}$ – SAT

each point u is covered

 $y_{Au} \lor y_{Bu} \lor y_{Cu}$  for each point u

incompatible pairs; for each dimension

 $\begin{array}{l} \neg y_{L_{j}u} \quad \text{for each point } u \text{ with } \pi_{j}(u) > l_{j}+1 \\ \\ \neg y_{R_{j}u} \quad \text{for each point } u \text{ with } \pi_{j}(u) < r_{j}-1 \\ \\ \neg y_{M_{j}u} \lor \neg y_{M_{j}v} \quad \text{for each points } u, v \text{ with } |\pi_{j}(u) - \pi_{j}(v)| > 1 \end{array}$ 



## Solving 3-center in $L_{\infty}$ – SAT

each point u is covered

 $y_{Au} \lor y_{Bu} \lor y_{Cu}$  for each point u

incompatible pairs; for each dimension

 $\begin{array}{l} \neg y_{L_{j}u} \quad \text{for each point } u \text{ with } \pi_{j}(u) > l_{j} + 1 \\ \\ \neg y_{R_{j}u} \quad \text{for each point } u \text{ with } \pi_{j}(u) < r_{j} - 1 \\ \\ \neg y_{M_{i}u} \lor \neg y_{M_{i}v} \quad \text{for each points } u, v \text{ with } |\pi_{i}(u) - \pi_{i}(v)| > 1 \end{array}$ 

- there are 3 cubes covering with the given pattern iff all clauses satisfiable simultaneously
- 3-SAT instance with  $O(dn^2)$  clauses

#### Solving 3-center in $L_{\infty}$ – 2-SAT

 $\begin{array}{ll} y_{Au} \lor y_{Bu} \lor y_{Cu} & \forall \text{ points } u \\ \neg y_{L_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) > l_j + 1 \\ \neg y_{R_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) < r_j - 1 \\ \neg y_{M_ju} \lor \neg y_{M_jv} & \forall j, \forall \text{ points } u, v \text{ with } |\pi_j(u) - \pi_j(v)| > 1 \end{array}$ 

#### Solving 3-center in $L_{\infty}$ – 2-SAT

$$\begin{array}{ll} y_{Au} \lor y_{Bu} \lor y_{Cu} & \forall \text{ points } u \\ \neg y_{L_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) > l_j + 1 \\ \neg y_{R_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) < r_j - 1 \\ \neg y_{M_ju} \lor \neg y_{M_jv} & \forall j, \forall \text{ points } u, v \text{ with } |\pi_j(u) - \pi_j(v)| > 1 \end{array}$$

For each point u either

- y<sub>Au</sub> ∨ y<sub>Bu</sub> ∨ y<sub>Cu</sub> reducible to 2-SAT clause, or
- point u always covered



#### Solving 3-center in $L_{\infty}$ – SAT

$$\begin{array}{ll} y_{Au} \lor y_{Bu} \lor y_{Cu} & \forall \text{ points } u \\ \neg y_{L_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) > l_j + 1 \\ \neg y_{R_ju} & \forall j, \forall \text{ points } u \text{ with } \pi_j(u) < r_j - 1 \\ \neg y_{M_ju} \lor \neg y_{M_jv} & \forall j, \forall \text{ points } u, v \text{ with } |\pi_j(u) - \pi_j(v)| > 1 \end{array}$$

- deciding for a pattern  $\rightarrow$  2-SAT with  $O(dn^2)$  clauses
- deciding for a pattern takes  $O(dn^2)$  time
- can be reduced to O(dn) time per pattern



•  $O(dn \log n + 6^d dn)$  time for decision 3-center

# Outline

- Introduction
- What is new?
- Ideas
  - Solving 3-center in  $L_\infty$
  - W[1]-hardness of 2-center in  $L_2 \leftarrow$
- Conclusions

## Hardness 2-center in $L_2$ – Idea

- consider the decision 2-center
- assumption: we cannot find k-cliques in  $O(f(k)n^c)$
- polynomial-time reduction from clique to 2-center



where G has k-clique iff S can be 2-covered

if 2-center solvable in O(f(d)n<sup>c</sup>) time
 ⇒ (G, k) solvable in O(f(g(k))n<sup>c'</sup>) time

## Hardness 2-center in L<sub>2</sub> – Point set

- k orthogonal planes  $E_1, \ldots E_k$  and one Z axis
- point set in  $\mathbb{R}^{2k+1}$
- in Z 2 points with z = 2 and z = -2



- in each E<sub>i</sub> a point set like
- choose appropriate radius
- bijection k-tuples of V(G) and 2-coverings of S
- add extra points killing k-tuples with non-adjacent vertices

# Conclusions

Finer classification of k-center problem for unbounded dimension

► L<sub>2</sub>

- easy for k = 1
- W[1]-hard for *k* = 2
  - \* reduction from parameterized-clique
  - ★ lots of symmetry

#### ► L<sub>∞</sub>

- easy for *k* = 1, 2
- fixed parameter tractable for k = 3
  - ★ reduction to 2-SAT
  - ★ simple
- W[1]-hard for *k* = 4