Shortest Paths in Intersection Graphs of Unit Disks

Sergio Cabello
sergio.cabello@fmf.uni-lj.si
University of Ljubljana
Slovenija

Material based on joint work with
Miha Jejčič and Panos Giannopoulos

Setting

$P: n$ points in the plane
$G(P)$: connect two points when distance ≤ 1 intersection graph congruent disks

Setting

$P: n$ points in the plane
$G(P)$: connect two points when distance ≤ 1 intersection graph congruent disks

Objective: fast computation of sssp in $G(P)$

Motivation

Bounded communication range:

- minimize hops/links \rightarrow unweighted $G(P)$
- minimize energy \rightarrow weighted $G(P)$

Motivation

Bounded communication range:

- minimize hops/links \rightarrow unweighted $G(P)$
- minimize energy \rightarrow weighted $G(P)$

Separation in the plane:

- set D of unit disks
- s and t in $\mathbb{R}^{2} \backslash \bigcup D$
- $\min \left|D^{\prime}\right|$ s.t. $D^{\prime} \subseteq D$, D^{\prime} separates s and t

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted:
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted:
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Related work

exact SSSP

- Roditty and Segal, 2011
- unweighted: $O\left(n \log ^{6} n\right)$ expected time via Chan's dynamic NN DS
- weighted: $O\left(n^{4 / 3+\varepsilon}\right)$ time
- C. and Jejčič, 2014
- unweighted: $O(n \log n)$ time; implementable
- weighted: $O\left(n^{1+\varepsilon}\right)$ time

More related work

- Roditty and Segal, 2011
- $(1+\varepsilon)$-approximate distance oracles, improving Bose, Maheshwari, Narasimhan, Smid, and Zeh, 2004.
- Gao and Zhang, 2005
- WSPD of size $O(n \log n)$ for unit-disk metric
- $(1+\varepsilon)$-approximate sssp distance in $O(n \log n)$ time
- Chan and Efrat, 2001 (Fuel consumption)
- distances $\ell: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{>0}$
- $O(n \log n)$ time when $\ell(p, q)=f(|p q|) \cdot|p q|^{2}, f$ increasing.
- $O\left(n^{4 / 3+\varepsilon}\right)$ time when ℓ has constant size description.

More related work

- Roditty and Segal, 2011
- $(1+\varepsilon)$-approximate distance oracles, improving Bose, Maheshwari, Narasimhan, Smid, and Zeh, 2004.
- Gao and Zhang, 2005
- WSPD of size $O(n \log n)$ for unit-disk metric
- $(1+\varepsilon)$-approximate sssp distance in $O(n \log n)$ time
- Chan and Efrat, 2001 (Fuel consumption)
- distances $\ell: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{>0}$
- $O(n \log n)$ time when $\ell(p, q)=f(|p q|) \cdot|p q|^{2}, f$ increasing.
- $O\left(n^{4 / 3+\varepsilon}\right)$ time when ℓ has constant size description.
- Faster algorihtms for geometric intersection graphs

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted:
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Unweighted

- BFS in $G(P)$ without building $G(P)$
- $W_{i}=\left\{p \in P \mid d_{G(P)}(s, p)=i\right\}$
- Build $W_{0}=\{s\}$
- Iteratively build W_{i} from W_{i-1}
- Edge connecting p to $N N\left(p, W_{i-1}\right)$ for all $p \in W_{i}$
- Until W_{i} empty

Unweighted - Growing W_{i}

Unweighted

- BFS in $G(P)$ without building $G(P)$
- $W_{i}=\left\{p \in P \mid d_{G(P)}(s, p)=i\right\}$
- Build $W_{0}=\{s\}$
- Iteratively build W_{i} from W_{i-1}
- edge connecting p to $N N\left(p, W_{i-1}\right)$ for all $p \in W_{i}$
- Until W_{i} empty
- Use $D T(P)$ to guide the search of candidate points for W_{i}
- Candidate points for W_{i} :
- points adjacent to W_{i-1} in $D T(P)$
- points adjacent to W_{i} in $D T(P)$
- Is this good enough?

Unweighted - Growing W_{i}

Unweighted - Growing W_{i}

Unweighted - Growing W_{i}

Unweighted - Growing W_{i}

Lemma
Let $p \in W_{i}$.
There exists a path $q_{1}, \ldots, q_{k}=p$ in $G(P) \cap D T(P)$ with $q_{1} \in W_{i-1}$ and $q_{2}, \ldots, q_{k} \in W_{i}$.

Unweighted - Growing W_{i}

Lemma
Let $p \in W_{i}$.
There exists a path $q_{1}, \ldots, q_{k}=p$ in $G(P) \cap D T(P)$ with $q_{1} \in W_{i-1}$ and $q_{2}, \ldots, q_{k} \in W_{i}$.

Unweighted - Growing W_{i}

Lemma
Let $p \in W_{i}$.
There exists a path $q_{1}, \ldots, q_{k}=p$ in $G(P) \cap D T(P)$ with $q_{1} \in W_{i-1}$ and $q_{2}, \ldots, q_{k} \in W_{i}$.

- Data structure to decide whether candidate q is $\in W_{i}$
- DS for $N N\left(q, W_{i-1}\right)$
- check if distance ≤ 1
- each edge of $D T(P)$ explored twice
- building W_{i} takes time

$$
O\left(\left(\left|W_{i-1}\right|+\left|W_{i}\right|+\sum_{p \in W_{i-1} \cup W_{i}} \operatorname{deg}_{D T(P)}(p)\right) \log n\right)
$$

1. for $p \in P$ do
2. $\operatorname{dist}[p] \leftarrow \infty$;
3. $\operatorname{dist}[s] \leftarrow 0$
4. build the Delaunay triangulation $D T(P)$
5. $W_{0} \leftarrow\{s\}$
6. $\quad i \leftarrow 1$
7. while $W_{i-1} \neq \emptyset$ do
8. build data structure for nearest neighbour queries in W_{i-1}
9. $\quad Q \leftarrow W_{i-1} \quad\left(*\right.$ generator of candidate points $\left.{ }^{*}\right)$
10. $\quad W_{i} \leftarrow \emptyset$
11. while $Q \neq \emptyset$ do
12. $\quad q$ an arbitrary point of Q
13. remove q from Q
14. for $q p$ edge in $D T(P)$ do
15. $\quad w \leftarrow N N\left(W_{i-1}, q\right)$
16. \quad if $\operatorname{dist}[p]=\infty$ and $|p w| \leq 1$ then
17.
18.
19. $\quad i \leftarrow i+1$
20. return dist[•]

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted \longleftarrow Done
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted:
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted:
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Weighted - Ingredient - BCP

Bichromatic closest pair (BCP)

- weighted Euclidean
- red points R
- blue points B
- weights w_{b} for each $b \in B$
- $\delta: B \times R \rightarrow \mathbb{R} \quad \delta(b, r)=w_{b}+|b r|$

- 2

Weighted - Ingredient - BCP

Bichromatic closest pair (BCP)

- weighted Euclidean
- red points R
- blue points B
- weights w_{b} for each $b \in B$
- $\delta: B \times R \rightarrow \mathbb{R} \quad \delta(b, r)=w_{b}+|b r|$
- Eppstein 1995 + Agarwal, Efrat, Sharir 1999: dynamic BCP in $O\left(n^{\varepsilon}\right)$ amortized per operation
- insertion/deletion
- query for minima $\min _{r, b} \delta(r, b)$

Weighted - Idea

- Modification of Dijkstra's algorithm
- Standard Dijsktra's algorithm
- keep an array dist[•]
- $\operatorname{dist}[v]$ is an (over)estimate of $d_{G(P)}(s, v)$
- keep partition P into S and $P \backslash S$
- S contains vertices with $\operatorname{dist}[s]=d_{G(P)}(s, v)$

Weighted - Idea

- Modification of Dijkstra's algorithm
- Standard Dijsktra's algorithm
- keep an array dist[•]
- $\operatorname{dist}[v]$ is an (over)estimate of $d_{G(P)}(s, v)$
- keep partition P into S and $P \backslash S$
- S contains vertices with $\operatorname{dist}[s]=d_{G(P)}(s, v)$
- an iteration: find a vertex

$$
q^{*} \in \arg \min _{q \in P \backslash S} \min _{p \in S,,|p q| \leq 1} \operatorname{dist}[p]+|p q|
$$

- move q^{*} from $P \backslash S$ to S
- usually we keep $\operatorname{dist}[q]=\min _{p \in S} \operatorname{dist}[p]+|p q|$

Weighted - Idea

- Modification of Dijkstra's algorithm
- array dist[•], dist[$v]$ is an (over)estimate of $d_{G(P)}(s, v)$
- keep partition P into S and $R=P \backslash S$
- partition S into D and B
- D are "dead" points, irrelevant when $\min \operatorname{dist}[p]+|p q|$
- an iteration: find a pair

$$
\left(b^{*}, r^{*}\right) \in \arg \min _{(b, r) \in B \times R} \operatorname{dist}[b]+|b r|
$$

- if $\left|b^{*} r^{*}\right|>1$, move b^{*} from B to D
- else normal Dijsktra's step

Weighted - Idea

- Modification of Dijkstra's algorithm

1. for $p \in P$ do
2. $\quad \operatorname{dist}[p] \leftarrow \infty$
3. $\operatorname{dist}[s] \leftarrow 0$
4. $B \leftarrow\{s\}$
5. $D \leftarrow \emptyset$
6. $R \leftarrow P \backslash\{s\}$
7. store $R \cup B$ in a BCP dynamic DS wrt $\delta(b, r)=\operatorname{dist}[b]+|b r|$
8. while $R \neq \emptyset$ do
9. $\quad\left(b^{*}, r^{*}\right) \leftarrow \operatorname{BCP}(B, R)$
10.

if $\left|b^{*} r^{*}\right|>1$ then
11. $\quad \operatorname{delete}\left(B, b^{*}\right)$
12. $D \leftarrow D \cup\left\{b^{*}\right\}$
13. else

14
15. delete $\left(R, r^{*}\right)$
16. $\quad \operatorname{insert}\left(B, r^{*}\right)$
17. return dist[•]

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted \longleftarrow Done
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Overview

- Setting/Motivation
- Related work for sssp
- Unweighted
- $O(n \log n)$ time
- implementable: Delaunay, Voronoi, point location
- Weighted
- $O\left(n^{1+\varepsilon}\right)$ time
- unimplementable: dynamic bichromatic closest pair, shallow cuttings
- Separation with unit disks:
- $O\left(n^{2}\right.$ polylog $\left.n\right)$ time
- Implementable, but many ingredients

Setting

- set D of unit disks
- s, t points in $\mathbb{R}^{2} \backslash \bigcup D$
- P centers of the disks
- $G(P)$ as before, with distance 2
- C. and Giannopoulos
- $O\left(n^{2}+n \cdot|E(G(D))|\right)$
- general objects

Setting

- set D of unit disks
- s, t points in $\mathbb{R}^{2} \backslash \bigcup D$
- P centers of the disks
- $G(P)$ as before, with distance 2
- C. and Giannopoulos
- $O\left(n^{2}+n \cdot|E(G(D))|\right)$
- general objects
- today: $O\left(n^{2} \log ^{4} n\right)$ for unit disks
- also easier to explain \&
 understand

Algorithm of C. \& Giannopoulos

- for a closed walk $\pi=p_{1} \ldots p_{k} p_{1}$ in $G(P)$

$$
N(\pi)=\pi \cap \overline{s t} \quad(\bmod 2)
$$

Algorithm of C. \& Giannopoulos

- for a closed walk $\pi=p_{1} \ldots p_{k} p_{1}$ in $G(P)$

$$
N(\pi)=\pi \cap \overline{s t} \quad(\bmod 2)
$$

- if $N(\pi)=1$ then $\bigcup_{p \in V(\pi)} \operatorname{disk}(p, 1)$ separates s and t
- shortest closed walk π with $N(\pi)=1$ gives an optimal solution
- shortest closed walk π with $N(\pi)=1$ is actually a cycle
- enough to restrict the search to fundamental cycles: defined by a BFS-tree and an additional edge

$$
\begin{array}{ll}
\min & \left|V\left(\operatorname{cycle}\left(T_{r}, e\right)\right)\right| \\
\text { s.t. } & r \in P, T_{r} \text { BFS cycle from } r \\
& e \in E(G(P)) \backslash E\left(T_{r}\right) \\
& N\left(\operatorname{cycle}\left(T_{r}, e\right)\right)=1
\end{array}
$$

Algorithm of C. \& Giannopoulos

- for a closed walk $\pi=p_{1} \ldots p_{k} p_{1}$ in $G(P)$

$$
N(\pi)=\pi \cap \overline{s t} \quad(\bmod 2)
$$

Adaptation

for each r in P

- construct BFS tree T_{r} from r
- attach to each $p \in P$ the label $d[p]=d_{G(P)}(s, p)$
- solve

$$
\begin{array}{ll}
\min & d[p]+d[q] \\
\text { s.t. } & |p q| \leq 1 \\
& N\left(\operatorname{cycle}\left(T_{r}, p q\right)\right)=1
\end{array}
$$

- break P into groups depending on $N\left(T_{r}[r, p]\right)$
- use range searching \& vertical shooting to solve the resulting problems

Adaptation

for each r in P

Adaptation

for each r in P

Resulting problem - Example

- vertical segment st
- points A and B with weights $\left(w_{p}\right)_{p \in A \cup B}$
$\min w_{a}+w_{b}$
s.t. $a \in A, b \in B$

$$
\begin{aligned}
& |a b| \leq 1 \\
& a b \cap s t \neq \emptyset
\end{aligned}
$$

Solvable in $O\left(n \log ^{4} n\right)$

Conclusions

- shortest paths in unit disk graphs
- $O(n \log n)$ for unweighted
- $O\left(n^{1+\varepsilon}\right)$ for weighted
- Improvement for separation with unit disks

Conclusions

- shortest paths in unit disk graphs
- $O(n \log n)$ for unweighted
- $O\left(n^{1+\varepsilon}\right)$ for weighted
- Improvement for separation with unit disks
- Open problems:
- Can we compute efficiently a compact representation of the distances in all the graphs $G_{\leq \lambda}(P)$?
- Given $s, t \in P$ and $k \in \mathbb{N}$, find minimum λ such that $d_{G_{\leq \lambda}(P)}(s, t) \leq k$.
Easy in $\tilde{O}\left(n^{4 / 3}\right)$.
- Dual to separation problem - barrier resilience: find (s, t)-curve that touches as few disks as possible. Polynomial? Hard?

Conclusions

- shortest paths in unit disk graphs
- $O(n \log n)$ for unweighted
- $O\left(n^{1+\varepsilon}\right)$ for weighted
- Improvement for separation with unit disks
- Open problems:
- Can we compute efficiently a compact representation of the distances in all the graphs $G_{\leq \lambda}(P)$?
- Given $s, t \in P$ and $k \in \mathbb{N}$, find minimum λ such that $d_{G_{\leq \lambda}(P)}(s, t) \leq k$.
Easy in $\tilde{O}\left(n^{4 / 3}\right)$.
- Dual to separation problem - barrier resilience: find (s, t)-curve that touches as few disks as possible. Polynomial? Hard? Or both?

