# Covering Many or Few Points with Unit Disks

#### Sergio Cabello University of Ljubljana and IMFM

Mark de Berg TU Eindhoven Sariel Har-Peled University of Illinois

#### Overview

- MAX: covering many points with unit disks
- MIN: covering few points with a unit disk
- the problems and their context
- new results
- algorithm for MAX

#### MAX: covering many points with unit disks

 $m \in \mathbb{N}$  a constant

P: n points in  $\mathbb{R}^2$ 



#### MAX: covering many points with unit disks

 $m \in \mathbb{N}$  a constant

P: n points in  $\mathbb{R}^2$ 

Place *m* unit disks, max number covered points



#### MAX: covering many points with unit disks

 $m \in \mathbb{N}$  a constant

P: n points in  $\mathbb{R}^2$ 

Place *m* unit disks, max number covered points



Weighted points  $\Rightarrow$  maximize sum of weights

Disks may overlap, no multiplicity when counting (Non-overlapping disks: collides with packing)

#### MIN: covering few points with a unit disk

X: constraint region for the centers P: n points in  $\mathbb{R}^2$ 



#### MIN: covering few points with a unit disk

X: constraint region for the centers P: n points in  $\mathbb{R}^2$ 

Place a unit disk, centered at X min number covered points



#### MIN: covering few points with a unit disk

X: constraint region for the centers P: n points in  $\mathbb{R}^2$ 

Place a unit disk, centered at X min number covered points



- Weighted points  $\Rightarrow$  minimize sum of weights  $\bullet$
- (X constant complexity)
- $X=\mathbb{R}^2$  or placing m>1 disks  $\Rightarrow$  problems in the definition

#### The problems and their context

- MAX(P, m): place m unit disks maximizing the weight of the covered points; m is a constant.
- MIN(P, X): place a unit disk with center in X and minimizing the weight of the covered points.

Motivation: Location of attractive or obnoxious facilities with fixed range of impact.

#### The problems and their context

Known results for MAX(P, m) and MIN(P, X):

- solvable in polynomial time.
  [folklore]
- O(n<sup>2</sup>) time for MAX(P,1) and MIN(P,X).
   [Drezner '81, Drezner & Wesolowsky '94, Chazelle & Lee '86]
- 3SUM-hard  $\Rightarrow$  no subquadratic algorithm known.
- randomized  $(1 + \varepsilon)$ -approximation for unweighted MAX(P, 1) and MIN(P, X) in  $O(n\varepsilon^{-2}\log n)$  time. [Aronov & Har-Peled '05]

#### The problems and their context

Variations on MAX(P, m) and MIN(P, X):

■ MIN(P, X) but placing a unit square:  $O(n \log n)$  time. [Katz & Kedem & Segal, '02]

 MAX(P,1) but placing convex object of constant complexity: randomized near-linear time.

[Agarwal et al. '02]

• MAX(P, 2) but with disjoint disks:  $O(n^{8/3} \log^2 n)$  time. [Cabello et al '06]

#### New results

 $(1\pm\varepsilon)$ -approximation algorithms for:

• MAX(P,m) in  $O(n(\log n + \varepsilon^{-O(m)}))$  time.

• MIN(P, X) in  $O(n(\log^3 n + \varepsilon^{-4}\log^2 n))$  expected time.

#### New results

 $(1\pm\varepsilon)$ -approximation algorithms for:

MAX(P, m) in O(n(log n + ε<sup>-O(m)</sup>)) time.
 First near-linear deterministic result for any m.

• MIN(P, X) in  $O(n(\log^3 n + \varepsilon^{-4}\log^2 n))$  expected time. "Adapt" [Aronov & Har-Peled '05] for

weighted point sets  $\Rightarrow$  Extra logs and  $\varepsilon$ 's.

#### Overview

- MAX: covering many points with unit disks
- MIN: covering few points with a unit disk
- the problems and their context
- new results
- algorithm for MAX

## Algorithm for $\mathsf{MAX}(P,m)$

Ingredients:

- bounded VC-dimension  $\Rightarrow (1/r)$ -approximations
- shifted grids
- dynamic programming

## Algorithm for $\ensuremath{\mathsf{MAX}}(P,1)$

Ingredients:

- bounded VC-dimension  $\Rightarrow (1/r)$ -approximations
- shifted grids
- dynamic programming

A biased course on discrepancy.

## Algorithm for $\ensuremath{\mathsf{MAX}}(P,1)$

P a weighted n-point set. r a parameter.

Point set A is a  $(1/r)\mbox{-approximation}$  for P if

$$|w(D \cap P) - w(D \cap A)| \le \frac{1}{r} \cdot w(P)$$

for any unit disk D.

## Algorithm for $\mathsf{MAX}(P,1)$

P a weighted n-point set. r a parameter.

Point set A is a  $(1/r)\mbox{-approximation}$  for P if

$$|w(D \cap P) - w(D \cap A)| \le \frac{1}{r} \cdot w(P)$$

for any unit disk D.

Thm: There is a (1/r)-approximation A for P with  $O(r^2 \log r)$  points. It takes  $O(nr^{O(1)})$  time to construct it.

Aim:  $(1 + \varepsilon)$ -approximation algorithm.

Aim:  $(1 + \varepsilon)$ -approximation algorithm.

Warning!

finding an  $\varepsilon$ -approximation A and an optimal solution for A is not good.

So, why did I explain it...?

## Algorithm for $\ensuremath{\mathsf{MAX}}(P,1)$

Aim:  $(1 + \varepsilon)$ -approximation algorithm.

Grid of spacing 3.







Aim:  $(1 + \varepsilon)$ -approximation algorithm.

Grid of spacing 3.

set  $r = 100/\varepsilon$ set  $A = \emptyset$ for each cell Cfind (1/r)-approximation  $A_C$  for  $P \cap \overline{C}$ add  $A_C$  to A



## Algorithm for $\mathsf{MAX}(P,1)$

Aim:  $(1 + \varepsilon)$ -approximation algorithm.

Grid of spacing 3.

set  $r = 100/\varepsilon$ set  $A = \emptyset$ for each cell Cfind (1/r)-approximation  $A_C$  for  $P \cap \overline{C}$ add  $A_C$  to A

Lem: Optimal solution for A is a  $(1 + \varepsilon)$ -approximation. Proof: ...



Aim:  $(1 + \varepsilon)$ -approximation algorithm.

**Lem**: Optimal solution for A is a  $(1 + \varepsilon)$ -approximation.

```
set r = 100/\varepsilon
set A = \emptyset
for each cell C
find (1/r)-approximation A_C for P \cap C
add A_C to A
```

Aim:  $(1 + \varepsilon)$ -approximation algorithm.

**Lem:** Optimal solution for A is a  $(1 + \varepsilon)$ -approximation.

```
set r = 100/\varepsilon
set A = \emptyset
for each cell C
find (1/r)-approximation A_C for P \cap C
add A_C to A
```

Did we gain anything?

Each grid cell has  $O(r^2 \log r) = O(\varepsilon^{-O(1)})$  points.



Each grid cell has  $O(\varepsilon^{-O(1)})$  points.



Each grid cell has  $O(\varepsilon^{-O(1)})$  points.

Take its  $3^2$  integer shifts. Each cell  $O(\varepsilon^{-O(1)})$  points.



Each grid cell has  $O(\varepsilon^{-O(1)})$  points.

Take its  $3^2$  integer shifts. Each cell  $O(\varepsilon^{-O(1)})$  points.



Each grid cell has  $O(\varepsilon^{-O(1)})$  points.

Take its  $3^2$  integer shifts. Each cell  $O(\varepsilon^{-O(1)})$  points.



Each grid cell has  $O(\varepsilon^{-O(1)})$  points.

Take its  $3^2$  integer shifts. Each cell  $O(\varepsilon^{-O(1)})$  points. Lem: One of them does not intersect the optimal solution.

replace P by Afor each of the 9 shifted grids G'for each cell C in G'find best disk inside Creport the best disk you found.





Thm: MAX(P, 1) can be  $(1 + \varepsilon)$ -approximated in  $O(n \log n + n\varepsilon^{-2} \log(1/\varepsilon))$  time.

replace P by Afor each of the  $O(m^2)$  shifted grids G'find best m disks avoiding G'report the best group you found. replace P by Afor each of the 9 shifted grids G'for each cell C in G'find best disk inside Creport the best disk you found.

replace P by A
for each of the O(m<sup>2</sup>) shifted grids G'
▶ find best m disks avoiding G'
report the best group you found.

Dynamic programming accross cells of G'

replace P by Afor each of the 9 shifted grids G'for each cell C in G'find best disk inside Creport the best disk you found.

Grid of size 3m.

replace P by A
for each of the O(m<sup>2</sup>) shifted grids G'
▶ find best m disks avoiding G'
report the best group you found.

Dynamic programming accross cells of G'

replace P by Afor each of the 9 shifted grids G'for each cell C in G'find best disk inside Creport the best disk you found.

Grid of size 3m.

Thm: For m > 1, MAX(P, m) can be  $(1 + \varepsilon)$ -approximated in  $O(n \log n + n\varepsilon^{-4m+4} \log^{2m-1}(1/\varepsilon))$  time.

#### Summary

 $(1+\varepsilon)\mbox{-approximation}$  algorithm for

- MAX(P,m) in  $O(n \log n + n \varepsilon^{-O(m)})$ ; deterministic.
- MIN(P, X) in  $O(n \log^3 n + n \varepsilon^{-4} \log^2 n)$  time; randomized MC and LV.

What remains?

- subcubic exact for MAX(P, 2) with disks or squares?
- is it true that nobody studied MAX(P, m) before?

#### Summary

deterministic.

 $(1+\varepsilon)$ -approximation algorithm for

- MAX(P,m) in  $O(n \log n + n\varepsilon^{-O(m)})$
- MIN(P, X) in  $O(n \log^3 n + n\varepsilon^{-4} \log^2 n)$  time; randomized MC and LV.

What remain

subcubic exact for MAX(P,2) with disks or squares? is it true that nobody studied MAX(P,m) before?