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MAX: covering many points with unit disks

m ∈ N a constant

P : n points in R
2

Place m unit disks,
max number covered points

Weighted points ⇒maximize sum of weights

Disks may overlap, no multiplicity when counting

(Non-overlapping disks: collides with packing)
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MIN: covering few points with a unit disk

P : n points in R2

Place a unit disk, centered at X
min number covered points

Weighted points ⇒minimize sum of weights

(X constant complexity)

X: constraint region for the centers

X = R
2 or placing m > 1 disks⇒ problems in the definition



The problems and their context

• MAX(P,m): place m unit disks maximizing the weight

of the covered points; m is a constant.

• MIN(P,X): place a unit disk with center in X and

minimizing the weight of the covered points.

Motivation: Location of attractive or obnoxious facilities with

fixed range of impact.



The problems and their context

Known results for MAX(P,m) and MIN(P,X):

randomized (1 + ε)-approximation for unweighted
MAX(P, 1) and MIN(P,X) in O(nε−2 log n) time.

[Aronov & Har-Peled ’05]

3SUM-hard ⇒ no subquadratic algorithm known.

O(n2) time for MAX(P, 1) and MIN(P,X).
[Drezner ’81, Drezner & Wesolowsky ’94,

Chazelle & Lee ’86]

solvable in polynomial time. [folklore]



The problems and their context

Variations on MAX(P,m) and MIN(P,X):

MAX(P,1) but placing convex object of constant com-
plexity: randomized near-linear time.

[Agarwal et al. ’02]

MAX(P, 2) but with disjoint disks: O(n8/3 log2 n) time.
[Cabello et al ’06]

MIN(P,X) but placing a unit square: O(n log n) time.
[Katz & Kedem & Segal, ’02]



New results

(1± ε)-approximation algorithms for:

• MAX(P,m) in O(n(log n+ ε−O(m))) time.

• MIN(P,X) in O(n (log3 n+ε−4 log2 n)) expected time.



New results

(1± ε)-approximation algorithms for:

• MAX(P,m) in O(n(log n+ ε−O(m))) time.

• MIN(P,X) in O(n (log3 n+ε−4 log2 n)) expected time.

First near-linear deterministic result for any m.

”Adapt” [Aronov & Har-Peled ’05] for
weighted point sets ⇒Extra logs and ε’s.
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• bounded VC-dimension ⇒ (1/r)-approximations

• shifted grids

• dynamic programming
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• shifted grids

• dynamic programming



A biased course on discrepancy.

Algorithm for MAX(P, 1)
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Algorithm for MAX(P, 1)

P a weighted n-point set.
r a parameter.

Point set A is a (1/r)-approximation for P if

|w(D ∩ P )− w(D ∩ A)| ≤
1

r
· w(P )

for any unit disk D.

Thm: There is a (1/r)-approximation A for P with

O(r2 log r) points. It takes O(nrO(1)) time to construct it.
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Algorithm for MAX(P, 1)

Aim: (1 + ε)-approximation algorithm.

finding an ε-approximation A and

an optimal solution for A is not good.

Warning!

So, why did I explain it...?
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Aim: (1 + ε)-approximation algorithm.

Grid of spacing 3.

set r = 100/ε
set A = ∅
for each cell C

find (1/r)-approximation AC for P ∩ C
add AC to A

Lem: Optimal solution for A
is a (1 + ε)-approximation.

Proof: ...
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Algorithm for MAX(P, 1)

Aim: (1 + ε)-approximation algorithm.

Lem: Optimal solution for A is a (1 + ε)-approximation.

set r = 100/ε
set A = ∅

for each cell C
find (1/r)-approximation AC for P ∩C
add AC to A

Did we gain anything?

Each grid cell has O(r2 log r) = O(ε−O(1)) points.



Algorithm for MAX(P, 1)

3

Each grid cell has O(ε−O(1)) points.
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Algorithm for MAX(P, 1)

Each grid cell has O(ε−O(1)) points.

Take its 32 integer shifts. Each cell O(ε−O(1)) points.

Lem: One of them does not intersect the optimal solution.
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replace P by A
for each of the 9 shifted grids G′

for each cell C in G′

find best disk inside C
report the best disk you found.
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Algorithm for MAX(P, 1)

replace P by A
for each of the 9 shifted grids G′

for each cell C in G′

find best disk inside C
report the best disk you found.

C has O(ε−O(1) points

takes O(ε−O(1) time

Thm: MAX(P, 1) can be (1 + ε)-approximated in

O(n log n + nε−2 log(1/ε)) time.
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Algorithm for MAX(P, m)

replace P by A
for each of the O(m2) shifted grids G′

find best m disks avoiding G′

report the best group you found.

Thm: For m > 1, MAX(P, m) can be (1 + ε)-approximated

in O(n log n + nε−4m+4 log2m−1(1/ε)) time.

replace P by A
for each of the 9 shifted grids G′

for each cell C in G′

find best disk inside C
report the best disk you found.

Grid of size 3m.Dynamic programming

accross cells of G′



Summary

• MAX(P, m) in O(n log n + nε−O(m)); deterministic.

• MIN(P, X) in O(n log3 n + nε−4 log2 n) time;

randomized MC and LV.

What remains?

• subcubic exact for MAX(P, 2) with disks or squares?

• is it true that nobody studied MAX(P, m) before?

(1 + ε)-approximation algorithm for
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