Covering Many or Few Points with Unit Disks

Sergio Cabello University of Ljubljana and IMFM

Mark de Berg TU Eindhoven

Sariel Har-Peled
University of Illinois

Overview

- MAX: covering many points with unit disks
- MIN: covering few points with a unit disk
- the problems and their context
- new results
- algorithm for MAX

MAX: covering many points with unit disks
$m \in \mathbb{N}$ a constant
$P: n$ points in \mathbb{R}^{2}

MAX: covering many points with unit disks $m \in \mathbb{N}$ a constant
$P: n$ points in \mathbb{R}^{2}

Place m unit disks, max number covered points

MAX: covering many points with unit disks

 $m \in \mathbb{N}$ a constant$P: n$ points in \mathbb{R}^{2}

Place m unit disks, max number covered points

Weighted points \Rightarrow maximize sum of weights

Disks may overlap, no multiplicity when counting (Non-overlapping disks: collides with packing)

MIN: covering few points with a unit disk

X : constraint region for the centers $P: n$ points in \mathbb{R}^{2}

MIN: covering few points with a unit disk

X : constraint region for the centers $P: n$ points in \mathbb{R}^{2}

Place a unit disk, centered at X min number covered points

MIN: covering few points with a unit disk

X : constraint region for the centers
$P: n$ points in \mathbb{R}^{2}

Place a unit disk, centered at X min number covered points

Weighted points \Rightarrow minimize sum of weights
(X constant complexity)
$X=\mathbb{R}^{2}$ or placing $m>1$ disks \Rightarrow problems in the definition

The problems and their context

- $\operatorname{MAX}(P, m)$: place m unit disks maximizing the weight of the covered points; m is a constant.
- $\operatorname{MIN}(P, X)$: place a unit disk with center in X and minimizing the weight of the covered points.

Motivation: Location of attractive or obnoxious facilities with fixed range of impact.

The problems and their context

Known results for $\operatorname{MAX}(P, m)$ and $\operatorname{MIN}(P, X)$:

- solvable in polynomial time.
[folklore]
- $O\left(n^{2}\right)$ time for $\operatorname{MAX}(P, 1)$ and $\operatorname{MIN}(P, X)$.
[Drezner '81, Drezner \& Wesolowsky '94, Chazelle \& Lee '86]

■ 3 SUM-hard \Rightarrow no subquadratic algorithm known.
■ randomized $(1+\varepsilon)$-approximation for unweighted $\operatorname{MAX}(P, 1)$ and $\operatorname{MIN}(P, X)$ in $O\left(n \varepsilon^{-2} \log n\right)$ time.
[Aronov \& Har-Peled '05]

The problems and their context

Variations on $\operatorname{MAX}(P, m)$ and $\operatorname{MIN}(P, X)$:

- $\operatorname{MIN}(P, X)$ but placing a unit square: $O(n \log n)$ time. [Katz \& Kedem \& Segal, '02]

■ MAX $(P, 1)$ but placing convex object of constant complexity: randomized near-linear time.
[Agarwal et al. '02]

- MAX $(P, 2)$ but with disjoint disks: $O\left(n^{8 / 3} \log ^{2} n\right)$ time.
[Cabello et al '06]

New results

(1 $\pm \varepsilon$)-approximation algorithms for:

- $\operatorname{MAX}(P, m)$ in $O\left(n\left(\log n+\varepsilon^{-O(m)}\right)\right)$ time.
- $\operatorname{MIN}(P, X)$ in $O\left(n\left(\log ^{3} n+\varepsilon^{-4} \log ^{2} n\right)\right)$ expected time.

New results

(1 $\pm \varepsilon$)-approximation algorithms for:

- $\operatorname{MAX}(P, m)$ in $O\left(n\left(\log n+\varepsilon^{-O(m)}\right)\right)$ time.

First near-linear deterministic result for any m.

- $\operatorname{MIN}(P, X)$ in $O\left(n\left(\log ^{3} n+\varepsilon^{-4} \log ^{2} n\right)\right)$ expected time.
"Adapt" [Aronov \& Har-Peled '05] for weighted point sets \Rightarrow Extra logs and ε 's.

Overview

- MAX: covering manty points with unit disks
- MIN: covering few points with a unit disk
- the problems and their context
- new results
- algorithm for MAX

Algorithm for $\operatorname{MAX}(P, m)$

Ingredients:

- bounded VC-dimension $\Rightarrow(1 / r)$-approximations
- shifted grids
- dynamic programming

Algorithm for $\operatorname{MAX}(P, 1)$

Ingredients:

- bounded VC-dimension $\Rightarrow(1 / r)$-approximations
- shifted grids
- dynami programming

Algorithm for $\operatorname{MAX}(P, 1)$

A biased course on discrepancy.

Algorithm for $\operatorname{MAX}(P, 1)$

P a weighted n-point set.
r a parameter.
Point set A is a $(1 / r)$-approximation for P if

$$
|w(D \cap P)-w(D \cap A)| \leq \frac{1}{r} \cdot w(P)
$$

for any unit disk D.

Algorithm for $\operatorname{MAX}(P, 1)$

P a weighted n-point set.
r a parameter.
Point set A is a $(1 / r)$-approximation for P if

$$
|w(D \cap P)-w(D \cap A)| \leq \frac{1}{r} \cdot w(P)
$$

for any unit disk D.

Thm: There is a $(1 / r)$-approximation A for P with $O\left(r^{2} \log r\right)$ points. It takes $O\left(n r^{O(1)}\right)$ time to construct it.

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.
Warning!
finding an ε-approximation A and an optimal solution for A is not good.

So, why did I explain it...?

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm. Grid of spacing 3.

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.
Grid of spacing 3.
set $r=100 / \varepsilon$
set $A=\emptyset$
for each cell C
find $(1 / r)$-approximation A_{C} for $P \cap C$ add A_{C} to A

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.
Grid of spacing 3.
set $r=100 / \varepsilon$
set $A=\emptyset$
for each cell C
find $(1 / r)$-approximation A_{C} for $P \cap C$ add A_{C} to A

Lem: Optimal solution for A is a $(1+\varepsilon)$-approximation.
Proof: ...

Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.
Lem: Optimal solution for A is a $(1+\varepsilon)$-approximation.

```
set r=100/\varepsilon
set }A=
for each cell }
    find}(1/r)\mathrm{ -approximation }\mp@subsup{A}{C}{}\mathrm{ for }P\cap
    add}\mp@subsup{A}{C}{}\mathrm{ to }
```


Algorithm for $\operatorname{MAX}(P, 1)$

Aim: $(1+\varepsilon)$-approximation algorithm.
Lem: Optimal solution for A is a $(1+\varepsilon)$-approximation.

```
set r=100/\varepsilon
set }A=
for each cell C
    find (1/r)-approximation }\mp@subsup{A}{C}{}\mathrm{ for }P\cap
    add }\mp@subsup{A}{C}{}\mathrm{ to }
```

Did we gain anything?
Each grid cell has $O\left(r^{2} \log r\right)=O\left(\varepsilon^{-O(1)}\right)$ points.

Algorithm for $\operatorname{MAX}(P, 1)$

Each grid cell has $O\left(\varepsilon^{-O(1)}\right)$ points.

Algorithm for $\operatorname{MAX}(P, 1)$

Each grid cell has $O\left(\varepsilon^{-O(1)}\right)$ points.
Take its 3^{2} integer shifts. Each cell $O\left(\varepsilon^{-O(1)}\right)$ points.

Algorithm for $\operatorname{MAX}(P, 1)$

Each grid cell has $O\left(\varepsilon^{-O(1)}\right)$ points.
Take its 3^{2} integer shifts. Each cell $O\left(\varepsilon^{-O(1)}\right)$ points.

Algorithm for $\operatorname{MAX}(P, 1)$

Each grid cell has $O\left(\varepsilon^{-O(1)}\right)$ points.
Take its 3^{2} integer shifts. Each cell $O\left(\varepsilon^{-O(1)}\right)$ points.

Each grid cell has $O\left(\varepsilon^{-O(1)}\right)$ points.
Take its 3^{2} integer shifts. Each cell $O\left(\varepsilon^{-O(1)}\right)$ points.
Lem: One of them does not intersect the optimal solution.

Algorithm for $\operatorname{MAX}(P, 1)$

replace P by A
for each of the 9 shifted grids G^{\prime}
for each cell C in G^{\prime}
find best disk inside C
report the best disk you found.

Algorithm for $\operatorname{MAX}(P, 1)$

replace P by A
for each of the 9 shifted grids G^{\prime}
for each cell C in $G^{\prime} \longleftarrow C$ has $O\left(\varepsilon^{-O(1)}\right.$ points
find best disk inside $C \longrightarrow$ takes $O\left(\varepsilon^{-O(1)}\right.$ time report the best disk you found.

Algorithm for $\operatorname{MAX}(P, 1)$

replace P by A
for each of the 9 shifted grids G^{\prime} for each cell C in $G^{\prime} \longleftarrow C$ has $O\left(\varepsilon^{-O(1)}\right)$ points find best disk inside $C \longleftarrow$ takes $O\left(\varepsilon^{-O(1)}\right.$ time report the best disk you found.

Thm: $\operatorname{MAX}(P, 1)$ can be $(1+\varepsilon)$-approximated in $O\left(n \log n+n \varepsilon^{-2} \log (1 / \varepsilon)\right)$ time.

Algorithm for $\operatorname{MAX}(P, m)$

replace P by A
for each of the $O\left(m^{2}\right)$ shifted grids G^{\prime} find best m disks avoiding G^{\prime} report the best group you found.
replace P by A
for each of the 9 shifted grids G^{\prime} for each cell C in G^{\prime}
find best disk inside C
report the best disk you found.

Algorithm for $\operatorname{MAX}(P, m)$

replace P by A
for each of the $O\left(m^{2}\right)$ shifted grids G^{\prime}
replace P by A
for each of the 9 shifted grids G^{\prime} for each cell C in G^{\prime}
find best disk inside C
\longrightarrow find best m disks avoiding G^{\prime} report the best group you found.

Dynamic programming accross cells of G^{\prime}

Algorithm for $\operatorname{MAX}(P, m)$

replace P by A

for each of the $O\left(m^{2}\right)$ shifted grids G^{\prime}
replace P by A
for each of the 9 shifted grids G^{\prime} for each cell C in G^{\prime}
find best disk inside C
\longrightarrow find best m disks avoiding G^{\prime}
report the best group you found.
Dynamic programming accross cells of G^{\prime}

Grid of size $3 m$.

Thm: For $m>1, \operatorname{MAX}(P, m)$ can be $(1+\varepsilon)$-approximated in $O\left(n \log n+n \varepsilon^{-4 m+4} \log ^{2 m-1}(1 / \varepsilon)\right)$ time.

Summary

$(1+\varepsilon)$-approximation algorithm for

- $\operatorname{MAX}(P, m)$ in $O\left(n \log n+n \varepsilon^{-O(m)}\right)$; deterministic.
- $\operatorname{MIN}(P, X)$ in $O\left(n \log ^{3} n+n \varepsilon^{-4} \log ^{2} n\right)$ time; randomized MC and LV.

What remains?

- subcubic exact for $\operatorname{MAX}(P, 2)$ with disks or squares?
- is it true that nobody studied $\operatorname{MAX}(P, m)$ before?

Summary

$(1+\varepsilon)$-approximation algorithm for

- $\operatorname{MAX}(P, m)$ in $O\left(n \log n+n \varepsilon-{ }^{-}(m)\right.$, deterministic.
- $\operatorname{MIN}(P, X)$ in $O\left(n \log ^{2} n+n=5^{4} \log ^{2} n\right)$ time; randomized MC and LV

What remain

- subcubic exact for $\operatorname{MAX}(P, 2)$ with disks or squares? is it true that nobody studied $\operatorname{MAX}(P, m)$ before?

