
Geometric Problems

in Cartographic Networks

Geometrische Problemen in Kartografische Netwerken
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad
van doctor aan de Universiteit Utrecht

op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen
op maandag 29 maart 2004 des middags te 16:15 uur

door

Sergio Cabello Justo

geboren op 1 december 1977,
te Lleida

Promotor: Prof. Dr. Mark H. Overmars
Copromotor: Dr. Marc J. van Kreveld

Faculteit Wiskunde en Informatica
Universiteit Utrecht

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 99.
This work has been supported mainly by the Cornelis Lely Stichting, and par-
tially by a Marie Curie Fellowship of the European Community programme
“Combinatorics, Geometry, and Computation” under contract number HPMT-
CT-2001-00282, and a NWO travel grant.

Dankwoord /
Agradecimientos

It is my wish to start giving my deepest thanks to my supervisor Marc van
Kreveld and my promotor Mark Overmars. I am also very grateful to Mark de
Berg, who also participated in my supervision in the beginning. Without trying
it, you made me think that I was in the best place to do my thesis.

I would also like to thank Pankaj Agarwal, Mark de Berg, Jan van Leeuwen,
Günter Rote, and Dorothea Wagner for taking part in the reading committee
and giving comments. I would also like to thank the co-authors who directly par-
ticipate in this thesis: Mark de Berg, Erik Demaine, Steven van Dijk, Yuanxin
(Leo) Liu, Andrea Mantler, Günter Rote, Jack Snoeyink, Tycho Strijk, and, of
course, Marc van Kreveld.

I would also like to thank all the colleagues at the Institute that shared some
time with me, and also those in Berlin. Han-Wen deserves special gratitude
because he hardly complained after hearing the same song for the twentieth
time. He also made that my PhD time would be more enjoyable and helped
finishing this thesis with the samenvatting.

Mirando hacia atrás, hay varias personas que se merecen mi más sincero
agradecimiento. En Joan Gimbert em va contagiar la primera il.lusió per les
matemàtiques. Pepe Bordeta y Enrique fueron buenos profesores, mucho más de
lo que en su momento pude ver. Carles Padró em va fer la primera approximació
a la recerca. I en Ferran Hurtado, qui ja va fer que m’enamorés de la geometria
computacional poc abans d’entrar a l’universitat.

También me gustaŕıa dar gracias a mis amigos por eso, por ser mis amigos.
Y como lo más dulce siempre se deja para el final, me gustaŕıa acabar dando

gracias a mi familia por estar siempre ah́ı. Hvala tudi moji mravlji.

Ljubljana, febrero de 2004.

3

4

Contents

1 Introduction 7

1.1 Automated cartography . 7
1.2 Computational geometry . 9
1.3 Related work . 10
1.4 Thesis overview . 12

1.4.1 Displacing nodes . 12
1.4.2 Deforming connections . 13
1.4.3 Doing everything at the same time 15

2 Aligning points 17

2.1 Preliminaries . 19
2.1.1 Formulation of the problem 19
2.1.2 Decomposing the original graph 20

2.2 Hardness of the problem . 21
2.2.1 One-dimensional problem 21
2.2.2 Two-dimensional problem 24

2.3 The basic approach for trees . 25
2.4 Specific results for planar graphs 34

2.4.1 Any region, one orientation 34
2.4.2 Axis-parallel rectangles, axis orientations 35
2.4.3 Convex regions, more than two orientations 36

2.5 Axis-aligned regions and orientations 38
2.6 Concluding remarks . 40

3 Spreading points 43

3.1 Problem formulation and related work 44
3.2 A placement algorithm in L∞ . 45

3.2.1 The algorithm and its approximation ratio 45
3.2.2 Efficiency of the algorithm 49

3.3 Approximation algorithms for L∞ 52
3.4 Approximation algorithms in the L2 metric 57

3.4.1 Arbitrary disks . 57
3.4.2 Congruent disks . 63

3.5 Concluding remarks . 66

5

6 CONTENTS

4 Testing homotopy 69

4.1 Topological preliminaries . 70
4.1.1 Three variations on path homotopy 71
4.1.2 Canonical sequences . 72
4.1.3 Covering space . 73

4.2 Homotopy test for simple paths 74
4.2.1 Aboveness ordering . 74
4.2.2 Rectified pairs . 76
4.2.3 Orthogonal range queries 76
4.2.4 A rectified canonical path 76
4.2.5 A leftist path . 79
4.2.6 Comparing canonical paths 83

4.3 Homotopy test for non-simple paths 87
4.4 Lower bounds . 89

4.4.1 Simple paths . 89
4.4.2 Non-simple paths . 89

4.5 Concluding remarks . 90

5 Schematic maps 91

5.1 Equivalent maps: definition and basic properties 93
5.1.1 Equivalent paths and equivalent maps 93
5.1.2 Order among paths . 93
5.1.3 Above-below relations in monotone maps 94

5.2 Computing order in a map . 96
5.2.1 Rectified maps . 96
5.2.2 Computing order using a rectified map 98

5.3 Placing paths in the schematic map 99
5.4 Experimental results . 103
5.5 Concluding remarks . 106

6 Linear cartograms 109

6.1 Triangulated graphs . 110
6.2 NP-hardness . 113

Bibliography 120

Samenvatting 133

Chapter 1

Introduction

Visualization of data is a basic and important topic; it helps to analyze or
extract information from the data, as well as to communicate it. If we restrict
ourselves to spatial or geographical data, then we are talking about cartography,
and, in particular, about the generation of maps.

The design of a map is a very complex task. A cartographer cannot just
project the data onto a piece of paper, but he has to worry about its readability.
The way to improve the quality of the map is by using so-called white lies.
For example, in a road map of Europe, if the thickness of a road would be
proportional to its width in real world, the user would not notice it on the map.
Therefore, the cartographer needs to make it thicker on the map than it would
be otherwise according to the map scale.

Furthermore, the design of a map is not only a complex task, but it also
involves subjective decisions. For example, the cartographer has to decide what
information is not relevant and can be omitted from the map, how to improve
its readability in cluttered areas, where to put labels with relevant features,
what legend to use, and so on. “How to Lie with Maps”, by Monmonier [103],
is a classical, nice-to-read book on how these decisions affect the map.

1.1 Automated cartography

The appearance of computers in the 20th century has affected many fields,
and cartography has not been kept aside of this revolution, leading to the so-
called automated cartography research field. Initially the topics consisted of
automating certain tasks originally done by cartographers; later, the area mixed
with the research on geographic information systems.

Automated generalization is, probably, the most recurrent topic within au-
tomated cartography. According to Heywood et al. [87], generalization is “the
process by which information is selectively removed from a map in order to sim-
plify pattern without distortion of overall content”. Another relevant topic is
automated labelling of a map, that is, placing labels with the entities of a map,

7

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Detail of the underground map of London, a classical example of a
schematic map.

such as names of cities or rivers. These two processes are done so often during
the design of a map that automating them saves hours of work.

In recent years, the concept of interactive maps and maps on demand, that
is, maps that are tailored to the user’s wishes or necessities, are getting an
increased interest, mostly due to the widespread use of Internet. These maps
include route maps based on queries as a special case. Given that there is a lot
of demand for such maps, their construction has to be fully automated.

One of the types of maps that allow for automated construction is the
schematized map, which inspired most of the research presented in this the-
sis. In a schematic map, a set of nodes and their connections are displayed in a
highly simplified form, since the precise shape of the connections and position
of the nodes is not so important; see Figure 1.1. To preserve the recognizability
for map readers, the approximate layout must be maintained, however.

Cartograms are another interesting type of map that gives rise to challenging
computational problems; see Figure 1.2. A cartogram is a map in which the
size of each entity is proportional to some value associated with the entity [35,
Chapter 14][47, Chapter 10]. Area cartograms are the most common example, in
which the area of each region is proportional to some function of the region, like
for example, its population. In linear cartograms, we want to display a network
in such a way that the length of a connection is related to some characteristic
of the connection. In ordinary maps, this length is correlated (through a planar
projection of the sphere) to the length of the connection in the real world.
However, we may be interested in showing, for instance, the travel time for each
connection, or the amount of traffic on each connection. Part of this thesis is
concerned with linear cartograms.

We have analyzed some of the steps, or considerations, that cartographers
face when designing schematic maps and linear cartograms. We have abstracted
them, and converted them into mathematically formulated computational prob-

1.2. COMPUTATIONAL GEOMETRY 9

Figure 1.2: Cartogram of the United States based on the electoral votes in the
1992 presidential elections (from Edelsbrunner and Waupotitsch [61]).

lems. The abstraction process is fundamental to be able to deal with the prob-
lems in the context of computational geometry. Furthermore, this allows that
the considered problems find applications not only in cartography, but also in
robotics, visualization of data, and graph drawing, to name a few other research
areas.

We want to stress that our research is, by no means, trying to completely
solve the problem of automatically generating maps, but is aimed at providing
tools that will successfully perform specific tasks that cartographers may find
useful when designing a cartographic network. This is the main purpose of the
research contained in this thesis.

In the following sections, we describe the context in which the results of this
thesis are embedded: computational geometry. Then, we discuss the related
work that has been done. At the end of this chapter, we give a thesis overview,
explaining the computational problems that are analyzed in subsequent chap-
ters, and discussing their motivation within cartography.

1.2 Computational geometry

We have considered the problems from a computational geometry perspective.
Computational geometry is the branch of algorithmics that deals with problems
with a strong geometric flavour. Generally, the problems are considered in
constant-dimensional spaces. In fact, most of the research has been done in two

10 CHAPTER 1. INTRODUCTION

or three dimensions because of the numerous applications.
In computational geometry, effort is put into designing efficient algorithms,

where efficiency is measured both in the asymptotic running time and in the
required memory space.

The field started in the seventies, and the first books on the topic were
by Edelsbrunner [58], and by Preparata and Shamos [110]. The book by de
Berg et al. [45] contains (more than) the appropriate background you need to
understand this thesis. A more programming-oriented book of computational
geometry is by O’Rourke [108], and a more discrete and combinatorial slant can
be found in the book by Matoušek [100].

Some of the problems that we considered are instances of geometric opti-
mization problems, that is, optimization problems with an essential geometric
component. In this context, the concepts of approximation algorithms and ap-
proximation schemes play an important role. A good introduction to these
concepts with a geometric flavour is by Bern and Eppstein [20]. The surveys
about geometric optimization by Agarwal and Sharir [6], and by Arora [10] are
also relevant.

Besides cartography and geographical information systems, the field of com-
putational geometry also shares interests with other research areas: data struc-
tures, motion planning, virtual environments, computational biology, graph
drawing, discrete and combinatorial geometry, computer graphics, computer vi-
sion, shape matching and recognition, computational topology, and many more.

1.3 Related work

In this section, we give an overview of some of the research that has been
done in automated cartography. We start with general references, and then we
concentrate on more relevant work on schematic maps and linear cartograms.
In each chapter, we give relevant references for the specific problem that we
consider.

A good introduction to cartography is the book by Dent [47], and a more
informal one is the one by Monmonier [103]. Recent research results on au-
tomated cartography are presented at the International Cartographic Confer-
ence, Auto-Carto (Proceedings of the International Symposium on Computer-
Assisted Cartography), the International Symposium on Spatial Data Handling,
the Dagstuhl seminars on Computational Cartography (September 1999, May
2001, September 2003), and some other conferences.

Schematic maps have become a quite standard way to convey information,
and therefore the work on this area has increased over the past years. For exam-
ple, the PhD thesis by Avelar [11] and an ArcGIS Schematic package, produced
by ESRI [1], have appeared recently. However, the automated construction of
schematic maps has already been studied in earlier papers. Elroi [65, 66, 67]
describes an approach where the paths are first simplified, then they are placed
on a grid to assure restricted orientations, and then crowded areas are locally
enlarged to avoid regions with too high density. No technicalities of the algo-

1.3. RELATED WORK 11

rithm or running-time analysis are given in these papers. Avelar and Müller [13]
describe an iterative procedure that attempts to rotate all links of an input net-
work into one of the four main orientations. No upper bound on the running
time can be given. Also, the output may contain links in other orientations
than the desired ones. Barbowsky, Latecki and Richter [15] have used an iter-
ative discrete curve evolution, based on a local measure, to simplify the curves
while keeping the local spatial ordering. All these methods rely on iterative
approaches where the connections should converge to the major orientations,
while displacing the junctions. For this type of techniques, it is difficult or even
impossible to guarantee the convergence of the procedure.

The paper by Neyer [107] describes a line-simplification algorithm where the
final paths must have links in one of c given orientations only, and stay close
enough to the original path. The algorithm minimizes the number k of links in
the output in O(n2k log n) time, and when it is applied to disjoint paths, the
output may have intersections, which change the topology of the map. In a
paper by Raghavan et al. [112], a wiring is made by connecting pairs of points
by non-intersecting, 2-link orthogonal paths. This can be seen as a schematic
map where only two different schematic paths are possible for each pair of
points. The problem can be solved in O(n log n) time, as shown by Imai and
Asano [90], but the model is too restrictive and the relative positions in the
resulting network may be different than in the original network, making the
recognizability of the features harder. For depicting the schematic paths, the
work by Duncan et al. [55] is also worth mentioning, where paths are redrawn
in the same homotopic class and with maximal separation.

We are not aware of any research done for the construction of linear car-
tograms. However, there is much research done on the problem of drawing
graphs with specified edge lengths. For cartographic purposes we have the nat-
ural restriction that the drawing should be planar, and then the problem has
been considered by Di Battista and Vismara [52], Eades and Wormald [56], and
Whitesides [120].

If we drop the planarity condition, then the problem has been studied in
the fields of computational geometry [41, 69, 115, 122], rigidity theory [40, 83,
91], sensor networks [36, 114], and structural analysis of molecules [19, 42, 84].
It appears frequently when only distance information is known about a given
structure, such as the atoms in a protein [19, 42, 84] or the nodes in an ad-hoc
wireless network [36, 111, 114].

Other research related to schematic maps is map generalization for road
networks and line simplification. However, the objectives in such problems are
quite different. In general one does not consider achieving a given number of
links per path and/or having restricted orientations, but instead tries to keep
the main features of each path while reducing the number of coordinates to
describe it. One of the most popular algorithms for simplification of paths is by
Douglas and Peucker [54], but much more research has been done; see the notes
by Weibel [119] for a general reference.

Also related is the research on VLSI layout design [76, 97], where the number
of edges in the output is generally not considered critical, and research on graph

12 CHAPTER 1. INTRODUCTION

drawing [51, 118], where the positions of the endpoints are usually not fixed. A
recent, related topic that is relevant to schematization is the rendering of par-
ticular routes under queries [7, 12]. In this case, the paths are also simplified,
but there is more flexibility to distort the input map because only the objects in
the surroundings of the route are displayed. Another interesting research topic
within cartographic networks is using graphs for displaying the train intercon-
nection data in the railway network. This problem has been treated by Brandes
et al. [23, 24].

1.4 Thesis overview

Consider a drawing of a transportation network, such as road or railway map.
To design a schematic version of it, or to produce a linear cartogram, the car-
tographer performs actions that can be classified into three types: displace the
nodes (or junctions) of the network, modify the shape of the connections, or
both together. Let us analyze these actions independently.

1.4.1 Displacing nodes

Consider the actions that displace nodes, which from now on we will imagine to
be points. Independent of the reason to displace a point, its new position has to
be close to the original one. A natural way to abstract this is by restricting the
new position of a point to be inside a fixed region around the original position,
and then the problem becomes: given a collection S1, . . . , Sn of regions in R

2,
find a “good”placement p1, . . . , pn with pi ∈ Si. There are two issues we have
to handle: what is a “good” placement, and which regions are the appropriate
ones?

The cartographer displaces the points with respect to their original position
to improve the quality of the map under construction. So, let us assume that
we have a quality function Q : S1 × · · · × Sn → R that measures the quality of
a placement (p1, . . . , pn) ∈ S1 × · · · × Sn. We can then say that our objective
would be to provide a best placement, that is, points p∗

1, . . . , p
∗
n, with pi ∈ Si

such that

Q(p∗1, . . . , p
∗
n) = max

(p1,...,pn)∈S1×···×Sn

Q(p1, . . . , pn).

A quality function that evaluates all the aspects of the placement would be very
complex, and becomes infeasible from the computational point of view. Instead,
we have considered two particular quality functions that play a fundamental role
in the design of schematic maps for networks.

The first quality function captures the fact that, in a schematic map, the con-
nections between nodes are usually displayed by a small number of straight-line
segments, and usually horizontal, vertical, or also diagonal (45 or 135 degrees)
segments are preferable; see Figure 1.1. This leads to the problem of, given a
graph on the points p1, . . . , pn, find a placement that maximizes the number of

1.4. THESIS OVERVIEW 13

straight-line edges that have horizontal, vertical, and perhaps diagonal orienta-
tion. Because a picture is worth a thousand words, take a look at Figure 1.3.
We refer to this problem as the aligning-points problem. We show that finding a
best placement under this criterion is NP-hard, and provide several approxima-
tion schemes whose performance depend on various parameters. These results,
previously published in [34], are described in Chapter 2.

Figure 1.3: The aligning-points problem. In thin black, the original network is
shown. The disk around each point represents the region where it can be moved.
We want to maximize the number of edges with horizontal, vertical, or diagonal
orientation. In this case, a possible optimal solution is the thick network shown.

Regarding the second quality function that we will consider, a rule of thumb
tells that the readability of the map improves as the separation between its
features increases. This leads to the problem of maximizing the distance between
the placed points, and, in particular, the problem of maximizing the distance
between any pair of points as much as possible. Take a look at Figure 1.4
to see an example. We refer to this problem as the spreading-points problem.
The problem was shown to be NP-hard by Baur and Fekete [16], and Fiala,
Kratochv́ıl, and Proskurowski [71]. When the regions are disks, we provide
efficient approximation algorithms with constant-factor approximation. These
results were previously published in [28], and we report them in Chapter 3.

Let us remark that in these problems, we did not deal with the actual choice
of the regions, or which regions are preferable, but we assume that the regions
are already given. Under this assumption, both problems belong to the area of
geometric optimization.

1.4.2 Deforming connections

Let us consider one of the connections in the original map, and the corresponding
connection in the schematic map. If a road passes to the North of an important

14 CHAPTER 1. INTRODUCTION

Figure 1.4: The spreading-points problem. On the left, we have a collection
of points. We consider a disk around each of them (center left), and then we
allow each point to be displaced within its disk. The objective is to maximize
the distance of the closest pair, and for the depicted example, we would get the
situation shown on the right.

α β

Figure 1.5: Are the paths α and β homotopic, that is, can α be continuously
deformed into β without touching any of the points?

city, we do not want the schematized version to pass to the South of that city, but
to keep the relative positions. If we think of the construction of the schematic
path as a continuous deformation of the original path, we can formulate this
requirement as follows: the original path is transformed into the schematic one
in a continuous way, fixing its endpoints and without crossing any “important
point”, where “important point” refers to a city or any other point feature whose
relative position with respect to the path we want to maintain.

Homotopy of paths is a well-known concept in topology that captures this
idea. Therefore, to understand the problem and extract its features, we consider
the basic decision problem: given two paths and a set of “important points” P ,
can we deform one path into the other one without passing over any point in P ?
Or, using the topological terminology, are the two paths homotopic in the plane
minus P ? See Figure 1.5 for an example. If both the paths and the point set P
have complexity n, then we can decide it in O(n log n) time in case the paths are
simple, and in O(n3/2 log n) time in case the paths self-intersect. Lower bounds
for both cases (simple and self-intersecting paths) are also presented, and, in
particular, they show that the algorithm for the simple case is asymptotically
optimal. These results were previously published in [32], and we present them
in Chapter 4.

Next we return to the problem of constructing a schematic map. We assume
that the input is a planar embedding of a graph consisting of polygonal paths
between specified points called endpoints. We are interested in producing an-

1.4. THESIS OVERVIEW 15

other planar embedding where all endpoints have the same positions, and every
path is displayed as a two-link or three-link path where links are restricted to
certain orientations; see Figure 1.6. Furthermore, as discussed above, the out-
put map should be equivalent to the input map in the sense that a continuous
deformation exists such that no path passes over an endpoint during the trans-
formation. For maps whose paths do not intersect, this equivalence implies that
the cyclic order of paths around endpoints is maintained.

Chapter 5 contains our formalization of the problem, a computationally
optimal algorithm to deal with it, and discusses the quality of the schematic
maps given by our implementation. These results were previously published in
[30], improving our previous works [29, 33]. Figure 1.6 has been produced by
our implementation, and more examples are shown in the figures of Chapter 5,
where we also discuss extensions of the algorithm.

Figure 1.6: Northwest of the Iberic Peninsula. Left: the original map. Right:
the schematized version made by the implementation described in Chapter 5.

1.4.3 Doing everything at the same time

To construct a schematic map by displacing points and deforming paths, both
simultaneously, is too complex. Let us be more specific: so far, no algorithm
provides provable results in this context. Some authors [11, 12, 13, 15, 65, 66, 67]
give iterative processes that do everything at once, and that in general may
give nice, pleasant results. However, there is no provable guarantee that the
output will be optimal, or even good. For example, it may well happen that
the algorithm cannot modify anything in the original map. More specifically,
no combinatorial algorithms have been proposed that can handle connections
and nodes together.

If there are no such theoretical, provable results, where is then the difficulty?
The basic issue is that many simpler problems are already computationally in-
tractable. For example, consider the problem of generating a linear cartogram.

16 CHAPTER 1. INTRODUCTION

The construction of such a map can be modeled by defining the length of each
edge appropriately and trying to realize the graph with these edge lengths. So
we can abstract the generation of a linear cartogram to the following natural
problem: given a graph G, can we construct a planar straight-line embedding
of G where the edges have a prescribed length? Observe that in real-life appli-
cations, we would also like to keep some resemblance with the original network,
and so we may restrict where the vertices of the graph can be embedded. How-
ever, as we show in Chapter 6, the problem is already NP-hard without this
restriction; that is, there is little hope that efficient algorithms will exist for
this problem. This is true even for a very restricted class of graphs, such as
3-connected, bounded degree, and bounded face degree graphs. This problem
is discussed in Chapter 6, whose contents were previously published in [31].

Chapter 2

Aligning points

This chapter presents combinatorial methods to displace the important locations
or junctions of a schematic network in order to get connections that are single
line segments whose orientations are prescribed to be one of a finite set of
orientations.

As justified in Section 1.4.1, we consider the following abstract, geometric
optimization problem: Let P be a given set of n points in the plane, and for each
point pi ∈ P some region Si around it. Furthermore, a graph is given of which
the nodes correspond one-to-one with the points of P (and therefore with the
regions). Find for each point pi a position in its region such that the number of
alignments with other points of P is maximized. Here alignment is for a given,
constant number of orientations, and alignment only counts (is optimized) for
two points whose nodes are connected in the graph. A formal definition of the
problem is given in next section.

The rest of the chapter is organized as follows. In Section 2.1 we formalize the
problem and show that if we are able to approximate the optimal solution when
the graph is a tree, then we also obtain an approximation for planar graphs.
In Section 2.2 we show that two rather simple versions of the problem are NP-
hard. We also give an inapproximability result for general graphs provided
that P6=NP. In Sections 2.3, 2.4, and 2.5, we give approximation algorithms for
different cases of the problem. Both the approximation factors and the time
bounds depend on the properties of the regions and the set of orientations; the
results are summarized in Table 2.1. More specifically, in Section 2.3 we give
a polynomial time approximation scheme (PTAS) when the graph is a tree. In
Section 2.4 we use the same approach to get several approximation algorithms
for planar graphs. For the case of rectangular regions and horizontal and vertical
orientations only, we give a polynomial time approximation scheme as well. This
is based on the results from Baker [14] and is explained in Section 2.5. We finish
with the conclusions and some open problems related to aligning points.

17

1
8

C
H

A
P

T
E

R
2
.

A
L
IG

N
IN

G
P

O
IN

T
S

orientations graph, region approximation ratio time reference

1
tree, any region 1 O(n2) Theorem 2.13

planar graph, 1
3 O(n2) Corollary 2.14

any region k−1
k O(k(2n)3k+1) Theorem 2.21

tree, convex k
k+1 O(k9kn2) Theorem 2.11

planar graph, convex k
3(k+1) O(k9kn2) Corollary 2.12

tree, rectangles 1 O(n3) Theorem 2.16

2 planar graph, 1
3 O(n3) Corollary 2.17

rectangles k−1
k O(k(2n)6k+1) Theorem 2.24

planar graph, 1
3 O(n2) Corollary 2.15

disjoint rectangles k−1
k O(k(2n)3k+1) Corollary 2.23

h > 2

1
3h O(n2) Corollary 2.18

planar graph, 2k
3h(k+1) O(k9kn2) Corollary 2.19

convex k
3(k+1) nO(2k) Theorem 2.20

k
h(k+1) O(k(2n)3k+1) Corollary 2.22

T
a
b
le

2
.1

:
A

p
p
rox

im
a
tio

n
a
lg

o
rith

m
s

in
th

is
ch

a
p
ter.

k
sta

n
d
s

fo
r

a
n

a
rb

itra
ry

p
o
sitiv

e
in

teg
er

th
a
t

g
ov

ern
s

a
tra

d
e-o

ff
b
etw

een
a
p
p
rox

im
a
tio

n
ra

tio
s

a
n
d

ru
n
-

n
in

g
tim

es.

2.1. PRELIMINARIES 19

2.1 Preliminaries

2.1.1 Formulation of the problem

In this section we formalize the problem of alignment. Recall that a graph
G = (S, E) consists of a set of nodes S and a set of edges E ⊂

(S
2

)

. In particular,
we consider graphs where each node corresponds to a convex region in the
plane. Given a fixed set of orientations Z, we define a function χZ that assigns
to pairs of regions the value 1 if there is a line with orientation in Z that
intersects both regions, and 0 otherwise. In particular, for two points p, q, we
have χZ(p, q) := χZ({p}, {q}) = 1 if the line through p and q has its orientation
in Z, and 0 otherwise. For the application to cartography, the orientations will
typically be axis-parallel (|Z| = 2) or also including diagonal lines (with slope
1 or −1, so |Z| = 4).

The problem can be stated as follows: given a set of n convex regions, S =
{S0, . . . , Sn−1}, a graph G = (S, E) on those regions, and a set of orientations
Z, place n points p0, . . . , pn−1 with pi ∈ Si to maximize the function

∑

{Si,Sj}∈E

χZ(pi, pj).

We denote the maximum value by MZ(G), or simply M(G), as we consider the
given orientations Z to be fixed.

A 1
r -approximation of MZ(G), sometimes also called an r-approximation of

MZ(G), where r ≥ 1, is a collection of n points p0, . . . , pn−1 with pi ∈ Si such
that

∑

{Si,Sj}∈E

χZ(pi, pj) ≥
1

r
MZ(G)

A polynomial time approximation scheme (PTAS) is a family A of approxima-
tion algorithms such that, for any ε > 0, A contains a (1 − ε)-approximation
algorithm running in O(nf(ε)) time for some function f . That is, for any con-
stant value ε > 0, the family A contains a polynomial time algorithm giving a
(1 − ε)-approximation.

For our application to cartography, we usually assume G to be a planar
graph. Typical regions Si that we consider are scaled Voronoi cells, convex
polygons, rectangles, and circles. However, it turns out that we only need to
distinguish the case of axis-parallel rectangles and any other convex region.
Regions can overlap or not, which leads to slightly different results. When the
regions overlap, the placement of two points can coincide, and in this case we
also assume that they are aligned.

We remark that possibly, the computed placement does not give a planar
straight-line embedding. In fact we are not assuming that an embedding is given
initially. If this would be the case, the new embedding may be non-equivalent
to the original one.

For a region S, we define LZ(S) to be the set of lines tangent to S that have
their orientation in Z (see Figure 2.1). In the algorithm to be described, we will

20 CHAPTER 2. ALIGNING POINTS

S S

LZ(S) LZ(S)

Figure 2.1: Left: LZ(S) for a region S when the orientations in Z are axis-
parallel. Right: LZ(S) when the orientations in Z are axis-parallel and diagonal

subdivide region S into cells C1, . . . , Ct. We will also use the notation LZ(Cj)
for the lines with orientation in Z that are tangent to the cell Cj . For a set L
of lines, we will use A(L) for the arrangement in the plane induced by L (see
[45, 58] for the concept).

2.1.2 Decomposing the original graph

It appears to be difficult to develop a general technique that gives a good ap-
proximation algorithm for any graph G, any shape of region, and any set of
alignment orientations. But if G is a tree, we will present a general approach in
Section 2.3 that gives several different polynomial time approximation results,
depending on the shape of the regions and the number of alignment orienta-
tions. Furthermore, it is known that a planar graph G can be decomposed into
three trees (or forests), such that every edge of G appears in exactly one tree
(or forest) [80]. Such a partition can be found in O(n log n) time, which is the
main ingredient for the following result.

Lemma 2.1 Given r ≥ 1, if for any tree T we can compute a 1
r -approximation

of MZ(T) in O(T (n)) time, then we can compute a 1
3r -approximation of MZ(G)

for any planar graph G in O(T (n) + n log n) time.

Proof: Given a planar graph G, we decompose it into three edge disjoint
forests F1,F2,F3. Let Ai be a 1

r -approximation of MZ(Fi). The value A :=
max{A1, A2, A3} can be computed in O(n log n+3T (n)+1) = O(n log n+T (n))
time, and it is a 1

3r -approximation of MZ(G). Indeed, consider the placement
p0, . . . , pn−1 that achieves MZ(G). Then

MZ(G) =
∑

{Si,Sj}∈E

χZ(pi, pj) =

3
∑

k=1

(

∑

{Si,Sj}∈Fk

χZ(pi, pj)
)

≤
3

∑

k=1

MZ(Fk),

2.2. HARDNESS OF THE PROBLEM 21

and because Ai is a 1
r -approximation of MZ(Fi) we get

MZ(G) ≤
3

∑

k=1

MZ(Fk) ≤
3

∑

k=1

rAi ≤ 3rA.

2

So, basically, when we approximate the original problem for the special case
of trees we also obtain an approximation for a planar graph. The same approach
also works for general graphs. For a given natural number k and a graph
G, Gabow [73] shows how to get in O(kn

3
2

√
n + k log n) time an edge-disjoint

partition of G into k forests, or report that no such partition exist. However,
since the minimum k that makes possible the edge-disjoint partition into forests
can be Ω(n), the approximation ratio for a general graph would be O(1

n) times
the one for trees, which is not really interesting.

2.2 Hardness of the problem

We show the computational hardness of two rather simple versions of the align-
ing problem:

• The regions are horizontal segments and we want to maximize the number
of vertical alignments (so |Z| = 1). We call this the one-dimensional
problem.

• The regions are convex, the underlying graph is a path, and we want to
maximize the number of vertical and horizontal alignments. The proof is
by Woeginger [121], and we call this the two-dimensional problem.

In the following we give both proofs.

2.2.1 One-dimensional problem

We reduce E3-SAT (Exact3-SATisfiability) to the one-dimensional problem to
prove the hardness. The reduction implies an inapproximability result for non-
planar graphs. An E3-SAT instance is a formula of t Boolean variables x1, . . . , xt

given by m conjunctive clauses C1, . . . , Cm, where each clause contains exactly 3
literals (a variable or its negation). MAX-E3-SAT is the associated optimization
problem: given an E3-SAT instance, find an assignment to the variables that
maximizes the number of satisfied clauses.

Theorem 2.2 Let Z be the vertical orientation, let S = {S0, . . . Sn−1} be a set
of horizontal segments, and let G = (S, E) be a graph. For any ε > 0, it is
NP-hard to compute a (15

16 + ε)-approximation of MZ(G)

Proof: Given an E3-SAT instance φ with t variables x1, . . . , xt and m clauses
C1, . . . , Cm, we construct an aligning problem Pφ as follows (see Figure 2.2):

22 CHAPTER 2. ALIGNING POINTS

1. take S := ∅, E := ∅;
2. for each Boolean variable xi, add the horizontal interval Ii := [i− 1

3 , i+ 1
3]

to S;

3. for each clause Cj , add the horizontal interval Jj := [23 , t + 1
3] to S;

4. for each occurrence of xi in Cj , add the horizontal interval Ii,j := [i −
1
3 , i − 1

3] = {i − 1
3} to S, and the edges {Jj , Ii} and {Jj , Ii,j} to E;

5. for each occurrence of the negation of xi in Cj , add the horizontal interval
Ii,j := [i + 1

3 , i + 1
3] = {i + 1

3} to S and the edges {Jj , Ii} and {Jj , Ii,j} to
E.

When considering a placement in this aligning problem Pφ, we can assume
that all points have the x-coordinate in the set C = {1− 1

3 , 1+ 1
3 , . . . , t− 1

3 , t+ 1
3}.

If a point has a different x-coordinate, we displace it to the largest x-coordinate
value in C that is smaller than the actual value. By doing this, we cannot
decrease the number of alignments: two points that were vertically aligned keep
being vertically aligned because either they were not displaced or they both
have been displaced to the same x-coordinate. With this assumption, we have
a bijection between the Boolean assignments of the variables x1, . . . , xt and the
placements of the points p1, . . . , pt with pi ∈ Ii: xi is true if and only if pi ∈ Ii

is placed at i − 1
3 , and false if and only if pi ∈ Ii is placed at i + 1

3 .
Consider an assignment of the Boolean variables x1, . . . , xt and the corre-

sponding placement of points in the regions I1, . . . , It. The key observation is
that a clause Cj is satisfied in the assignment if and only if we can place a point
in the region Jj that results in two alignments. When Cj is not satisfied, the
placement of a point in the region Jj gives exactly one alignment. Therefore,
we can satisfy s clauses in φ if and only if we can align m + s pairs of points
in the corresponding problem Pφ. In particular, for a satisfiable instance φ, the
optimum number of alignments is 2m.

If we have a polynomial time (15
16 +ε)-approximation algorithm for the align-

ing problem, and we use it for Pφ, where φ is a satisfiable E3-SAT instance, we
would get at least

(
15

16
+ ε)2m =

30m

16
+ 2εm = m + (

7

8
+ 2ε)m

alignments. But then we would have a polynomial time (7
8 +2ε)-approximation

algorithm for MAX-E3-SAT on satisfiable instances, which is NP-hard by The-
orem 6.5 of [81]. 2

To show that the problem is NP-hard when G is planar, we will reduce planar
3-SAT to the one-dimensional alignment problem. A planar 3-SAT instance is
a formula with t Boolean variables x1, . . . , xt given in m conjunctive clauses
C1, . . . , Cm, where each clause contains at most 3 literals (a variable or its
negation) and such that the bipartite graph

G = ({x1, . . . , xt, C1, . . . , Cm}, {{xi, Cj}|xi or ¬xi is in Cj})

2.2. HARDNESS OF THE PROBLEM 23

ii − 1
3 i + 1

3

.
I1 . . .

Ii Ik It

12
3

4
3

t

Jj ≡ x1 ∨ xi ∨ ¬xk

k + 1
3k

I1,j Ii,j
Ik,j

Jj′ ≡ xt ∨ ¬xi ∨ xk

It,j′Ik,j′Ii,j′

t + 1
3

Figure 2.2: Reduction from E3-SAT to an alignment problem. The variables
x1, . . . , xt are represented by the segments I1, . . . , It, and each clause Cj is
represented by the segment Jj plus three segments Ii,j that depend on its literals.

is planar (see [95]).

Corollary 2.3 It is NP-hard to compute MZ(G) for planar graphs G.

Proof: Consider a planar 3-SAT instance φ and apply the reduction used in
the proof of the previous theorem to get an alignment problem Pφ. We claim
that the graph Gφ of the problem Pφ is planar. Observe that the nodes of the
type Ii,j have degree one, and therefore we can remove them without affecting
the planarity or non-planarity of the graph. The remaining graph is

({I1, . . . , It, J1, . . . , Jm}, {{Ii, Jj}|xi appears in Cj}),

and is isomorphic to

({x1, . . . , xt, C1, . . . , Cm}, {{xi, Cj}|xi appears in Cj}),

which has to be planar by definition of planar 3-SAT instances.
As discussed in the previous proof, MZ(Gφ) = 2m if and only if φ is satisfi-

able. Therefore, if for any planar graph we can compute M(G), we can decide
the satisfiability of planar 3-SAT instances, which is NP-hard [95]. 2

It is natural to wonder if we can construct alignment problems where it is
NP-complete to decide if all edges can be aligned or not. We can show that the
answer is negative if we restrict ourselves to only one orientation, but hard if
we there are two orientations (see Theorem 2.5).

24 CHAPTER 2. ALIGNING POINTS

Theorem 2.4 Let Z be the vertical orientation, let S = {S0, . . . Sn−1} be a set
convex regions and let G = (S, E) be a connected graph. Then MZ(G) = |E| if
and only if there is a vertical line that intersects all regions.

Proof: We can assume that the regions are horizontal segments, otherwise, we
project each region onto a horizontal line and we get an equivalent problem.

If all the intervals in G are intersected by a vertical line l, then we can place
the point pi ∈ Si at l ∩ Si. It is clear that we get MZ(G) = |E| because all
points are vertically aligned.

For the other implication, consider a placement p0, . . . , pn−1, with pi ∈ Si,
that achieves MZ(G) = |E| alignments. We claim that the vertical line through
p0 also goes through all other pi. To see this, fix any Si, and assume without
loss of generality that S0, S1, . . . , Si is a path in G from S0 to Si (it always exists
because G is connected). Then, point p0 has to be vertically aligned with point
p1, and p1 has to be vertically aligned with p2, and so on until pi. Because being
vertically aligned is a transitive relation, p0 has to be vertically aligned with pi,
and both are on the same vertical line. 2

2.2.2 Two-dimensional problem

The following hardness proof for the two-dimensional case has been given by
Woeginger [121]. The reduction is from subset-sum: given natural numbers
a1, . . . , an and b, does a subset I ⊂ {1, . . . , n} exists such that

∑

j∈I aj = b?
This problem is NP-complete in the weak sense [75].

Theorem 2.5 Let Z consist of the vertical and horizontal orientations, let S =
{S0, . . . , Sn−1} be a set of convex regions and let G = (S, E) be a path. It is
NP-complete to decide if MZ(G) = |E| = n − 1.

Proof: Given an instance of subset-sum, we construct the following n+2 regions
in the Euclidean plane:

• Region S0: The origin (0, 0).

• Region Sj , for j = 1, . . . , n: The closed line segment with endpoints (0, sj)

and (sj , 0), where sj =
∑j

k=1 ak.

• Region Sn+1: The point (−1, b).

See Figure 2.3. The graph G is a path on the regions S0, . . . , Sn+1 with an edge
between Si and Si+1 for i = 0, . . . , n. The feasible directions are horizontal and
vertical.

This instance has a solution (with all n+1 edges in horizontal/vertical direc-
tion) if and only if the subset-sum instance has answer YES. The equivalence is
immediate: If we use number ai in the additive representation of b, then the line
segment pi−1 to pi is vertical. If we do not use this number, then the segment
is horizontal. Hence, the y-coordinates of the path from Si up to Sj reflects the
sum of the selected subset from si up to sj . 2

2.3. THE BASIC APPROACH FOR TREES 25

S0

S1

S2 S3

Sn

s1 s2 s3 sn

Sn+1 = (−1, b)

s1

s2

s3

sn

sj =

j∑

k=1

ak

Figure 2.3: Reduction from the subset problem to the aligning problem.

2.3 The basic approach for trees

In this section we explain the algorithm for alignment for the specific case of
convex regions and two aligning orientations. In the next section we will analyze
what results are obtained when we apply the same technique to other versions
of the alignment problem, with different region shapes and different alignment
orientations.

Let S = {S0, . . . , Sn−1} be a set of n convex regions, and let T = (S, E) be
a tree. We choose any node, S0, to be the root of T . Let bi be the complexity of
the boundary of region Si. If for an arbitrary node Si 6= S0, we remove from T
the edge connecting Si with its parent node, we get two subtrees. We will use Ti

to denote the subtree containing the node Si. We assume that nodes S1, . . . , Sd

are the neighbors of node S0, so d is the degree of S0. In particular, when we
remove S0 from T , we get the subtrees T1, . . . , Td; see Figure 2.4. We use T (pi)
to denote the graph T after replacing the node Si by pi, that is, the point pi

is the placement chosen for the region Si; see Figure 2.5. Fixing a point p0

in the region S0 makes the subproblems that appear in the subtrees T1, . . . , Td

independent, and therefore we get the following recurrence:

M(T (p0)) =
d

∑

i=1

max
pi∈Si

{χZ(p0, pi) + M(Ti(pi))}.

The overall idea is to subdivide (that is, partition) region S0 into cells such
that any placement within a cell will give exactly the same solution. This will
be done in a recursive way: to construct the subdivision in S0 we will use sub-
divisions of S1, . . . , Sd with that same property, but only for the corresponding

26 CHAPTER 2. ALIGNING POINTS

Ti
Si

S2

S0

T2

T1

T3

S1

S3

Figure 2.4: Neighbors of S0 and the corresponding subtrees.

S1

S3

S2

p0

T (p0)

Figure 2.5: When we substitute S0 by {p0} we get T (p0).

subtree: each placement in a cell of Si gives the same number of alignments in
Ti.

Definition 2.6 A convex cell C ⊆ Si is T -stable if and only if

M(T (pi)) = M(T (p′i)) ∀pi, p
′
i ∈ C.

We use M(T (C)) to denote this invariant value.

It is clear that if Si is a leaf of T , then Si already is a Ti-stable cell. This
gives the basis for a recursive formulation on how to make the subdivision of
S0. Let C1

i , . . . , Cti

i be a subdivision of Si into Ti-stable cells. Let L0 be the

set of all lines with orientation in Z that are tangent to some cell Cj
i , where

i = 1 . . . d and j = 1 . . . ti (see the example in Figure 2.6). In other words, we
have

L0 =
d

⋃

i=1

ti
⋃

j=1

LZ(Cj
i).

2.3. THE BASIC APPROACH FOR TREES 27

We can subdivide S0 using all lines in L0 to make an arrangement A(L0) inside
S0.

Lemma 2.7 Any cell in A(L0) ∩ S0 is T -stable.

Proof: Consider any cell C in A(L0)∩S0, and two points p0, p
′
0 ∈ C. We want

to show that M(T (p0)) = M(T (p′0)). Let the points p1, . . . , pd with pi ∈ Si be
placed to attain the value M(T (p0)), that is,

M(T (p0)) =

d
∑

i=1

{χZ(p0, pi) + M(Ti(pi))}.

Let Cji

i ⊂ Si be the Ti-stable cell in which pi lies. We will show that there exist

points p′1, . . . , p
′
d with p′i ∈ Cji

i such that χZ(p0, pi) ≤ χZ(p′0, p
′
i). Then we have

M(T (p0)) =

d
∑

i=1

{χZ(p0, pi) + M(Ti(pi))} ≤
d

∑

i=1

{χZ(p′0, p
′
i) + M(Ti(pi))}

and because pi and p′i are in the same Ti-stable cell Cji

i

M(T (p0)) ≤
d

∑

i=1

{χZ(p′0, p
′
i) + M(Ti(pi))} =

=

d
∑

i=1

{χZ(p′0, p
′
i) + M(Ti(p

′
i))} ≤ M(T (p′0)).

However, by symmetry we also have M(T (p′
0)) ≤ M(T (p0)) and therefore

M(T (p0)) = M(T (p′0)).
The points p′1, . . . , p

′
d that we need can be found as follows. If χZ(p0, pi) = 0,

take p′i := pi, and the properties hold. If χZ(p0, pi) = 1, let z ∈ Z be the
orientation of the line p0pi, and let li be the line through p′0 with orientation z.
Because p0 and p′0 are in the same cell C of A(L0)∩ S0, the line li lies between
the two tangents to Cji

i with orientation z. Therefore, the intersection Cji

i ∩ li
is nonempty, and any p′i ∈ Cji

i ∩ li has the desired properties. 2

When we have subdivided S0 into T -stable cells C1
0 , . . . Ct0

0 , we can compute

the maximum value M(T) = maxj∈{1,...,t0}{M(T (Cj
0))}. Thus, we need to

be able to compute, for a T -stable cell C, the actual number of alignments
M(T (C)): we place an arbitrary point p0 ∈ C and then we have

M(T (C)) = M(T (p0)) =

d
∑

i=1

max
j∈{1...ti}

{χZ(p0, C
j
i) + M(Ti(C

j
i))}.

There are two important issues to address: how many cells does the sub-
division of S0 have if we recursively use Lemma 2.7, and how much time does
it take to compute the value M(T (C)) for each cell C of the subdivision. We
will bound the time spent at node S0 assuming we have already processed its
children S1, . . . , Sd.

28 CHAPTER 2. ALIGNING POINTS

S0S0

S2

S3

S1

C
j
3

C
j
2

Figure 2.6: In this example S1, S2, S3 are adjacent to S0 in T . The tangents to
the cells Cj

i induce a subdivision in S0.

Si

Figure 2.7: Analysis of the different tangents that can be produced. The vertex
represented by a square is internal to Si, and does not produce more tangent
lines than we had. The other vertices come from an intersection of a line in Li

with the boundary of Si, and it contributes to L0 with at most one new line.
Furthermore, the region has 2|Z| = 4 tangents that are new lines.

Lemma 2.8 If the tree T has height k, then we can subdivide S0 into O(9kn2)
T -stable cells in O(9kn2 + b0) time, where b0 is the complexity of S0.

Proof: We compute the set of lines L0 that has been used in the previous
lemma, and then we compute A(L0)∩S0. We start by bounding the number of
lines in L0. Let Li be the set of lines that are used in the recursive process to
subdivide the region Si into Ti-stable cells. Any line in L0 is tangent to some
vertex of a cell Cj

i , where i ∈ {1, . . . , d}. Three cases arise (see Figure 2.7):

• The vertex is interior to Si, that is, it was determined by the intersection
of two of the lines in Li. Because we only have two orientations, those

2.3. THE BASIC APPROACH FOR TREES 29

tangents are already present in Li.

• The vertex is on the intersection of the boundary of Si and a line in Li.
The region Si is convex, so any line in Li intersects the boundary at most
twice. Therefore each line can produce at most two new lines in L0.

• The vertex is on the boundary, but it does not lie on any line of Li. In
this case each region Si can produce at most 2|Z| = 4 new lines.

Therefore, we have the recursive relation |L0| ≤
∑d

i=1(3|Li| + 4), and we will
show that |L0| ≤ 3k+1(n − 1) = O(3kn) by induction on the height k of the
tree. Indeed, if the tree has height 0, then it consists of only one node and it
is trivially true because no tangent line has been used. For the general case,
observe that the set Li of lines has been constructed recursively from the tree
Ti, which is rooted at node Si and has height k − 1. Therefore, if |Ti| denotes
the number of nodes in Ti, we have

|L0| ≤
d

∑

i=1

(3|Li| + 4) ≤ 4d + 3
d

∑

i=1

3k(|Ti| − 1) = 4d + 3k+1
d

∑

i=1

(|Ti| − 1)

and because
∑d

i=1 |Ti| = n − 1 and k ≥ 1 we get

|L0| ≤ 4d + 3k+1(n − d − 1) = 3k+1(n − 1) + d(4 − 3k+1) ≤ 3k+1(n − 1).

This finishes the inductive proof that shows |L0| = O(3kn).
To construct L0, we need to find, for each child Si of S0, the intersections

of Li with the boundary of Si. But this has been done already when A(Li)∩Si

was computed, and therefore takes time linear in the number of lines generated.
Once we have L0, we compute A(L0) and walk through the boundary of S0 to
compute A(L0) ∩ S0, the portion of the arrangement A(L0) inside S0. We can
bound the time spent in this part by O(b0) (the complexity of the boundary of
S0) plus the complexity of the arrangement, which is O(b0+(3kn)2) = O(9kn2+
b0) in total. 2

Once we have computed all T -stable cells C1
0 , . . . , Ct0

0 , we can compute the

values M(T (Cj
0)). Assuming that each neighbor Si of S0 has been subdivided

into C1
i , . . . , Cti

i Ti-stable cells, and that the values M(Ti(C
1
i)), . . . , M(Ti(C

ti

i))
have been computed, we will show how to compute the values of the cells in the
subdivision of S0. Observe that if we would compute for each cell Cj

0 the value

M(T (Cj
0)) by examining the children, then we would spend Ω(d) time per cell,

and so it would take Ω(9kn2d) time. Because d can be Ω(n), this gives Ω(9kn3)
time in the worst case. We can do better than this using a divide and conquer
approach on the children of S0.

Lemma 2.9 We can compute M(T (C1
0)), . . . , M(T (Ct0

0)) in O(9kn2 + db0)
time.

Proof: Let T (n, d) be the time needed when T has n nodes and S0 has d
children in T . There are two cases depending on the value of d:

30 CHAPTER 2. ALIGNING POINTS

Maximum values
for vertical strips

Maximum values
for horizontal strips

Figure 2.8: The proof of Lemma 2.9, case d = 1. If S0 only has one child, we
store in each strip of S1 the maximum values.

• If d = 1, then S0 has only one child, S1. Let C1
1 , . . . Ct1

1 be the subdivision
on S1 into T1-stable cells. Then, for every strip of the subdivision of S1

with orientation in Z, we compute the maximum value M(T (Cj
1)) over

all cells Cj
1 in that strip and store it in one of two arrays, one for each

orientation (see Figure 2.8). We also store the maximum value over all
cells M1 := max{M(C1

1), . . . , M(Ct1
1)}. This can be done in O(9k−1n2)

time.

We already had A(L0) ∩ S0, and now, for each cell Cj
0 ∈ A(L0) ∩ S0, we

take a point p0 ∈ Cj
0 :

M(T (Cj
0)) = M(T (p0)) = max

j∈{1...t1}
{χZ(p0, C

j
1)) + M(T1(C

j
1))} =

= max
z∈Z

{

M1, 1 + max
Cj

1
, χ{z}(p0,Cj

1
)=1

{M(T1(C
j
1))}

}

.

But the value maxCj
1
, χ{z}(p0,Cj

1
)=1{M(T1(C

j
1))} corresponds to an entry in

the array corresponding to the orientation z, so it takes constant time to
compute M(T (Cj

0)). Because A(L0) ∩ S0 has O(9kn2) cells, we conclude
that T (n, 1) = O(9kn2).

• If d > 1, then S0 has more than one child. In this case, we split its children
into two sets Sl and Sr := {S1, . . . , Sd} \ Sl, and consider the subtrees Tl

and Tr, where Tl is the connected component of T \Sr that contains S0 and
Tr is the connected component of T \Sl that contains S0 (see Figure 2.9).
Let Ll ⊂ L0 be the set of lines that have been produced by nodes Si ∈ Sl in

2.3. THE BASIC APPROACH FOR TREES 31

S0

.

Tj′

Ti

Ti′
Tj

Tl Tr

Si Si′ Sj′Sj

Figure 2.9: The proof of Lemma 2.9, case d > 1. If S0 has more than one child
we use divide and conquer.

Lemma 2.8, and let Lr ⊂ L0 be the set of lines that have been produced by
nodes Sj ∈ Sr in Lemma 2.8, thus we have L0 = Ll ∪Lr. By Lemma 2.7,
any cell Cl ∈ A(Ll) ∩ S0 is Tl-stable and any cell Cr ∈ A(Lr) ∩ S0 is
Tr-stable. We can compute A(Ll) ∩ S0 and A(Lr) ∩ S0 in O(9kn2 + b0)
time, the values M(Tl(Cl)) for all Cl ∈ A(Ll)∩S0 in T (|Tl|, |Sl|) time, and
the values M(Tr(Cr)) for all Cr ∈ A(Lr) ∩ S0 in T (|Tr|, |Sr|) time. Then,
because any cell Cj

0 ∈ A(L0)∩S0 is of the form Cl∩Cr, with Cl ∈ A(Ll)∩S0

and Cr ∈ A(Lr)∩S0, we have M(T (Cj
0)) = M(Tl(Cl)) + M(Tr(Cr)), and

we can compute M(T (Cj
0)) in constant time per cell. We conclude that

it takes O(9kn2) time for all cells in A(L0) ∩ S0.

The two cases give the recurrence

T (n, d) = O(9kn2 + b0) + T (|Tl|, |Sl|) + T (|Tr|, |Sr|), T (n, 1) = O(9kn2),

where we still have freedom to choose the sets Sl and Sr. The choice is made
as follows. Assume without loss of generality that the subtree T1 is the biggest
among the subtrees T1, . . . , Td, that is, |T1| ≥ |Ti| for any 2 ≤ i ≤ d. We
distinguish two cases depending on the size of T1:

• If |T1| ≥ 3n
4 , then Sl := {S1} and Sr := {S2, . . . , Sd}.

• If |T1| < 3n
4 , we take Sl and Sr such that n

4 ≤ |Tl|, |Tr| ≤ 3n
4 .

Taking m = |Tl| and d′ = |Sl|, we can rewrite the recurrence as

T (n, d) ≤

C9kn2 if d = 1
C(9kn2 + b0) + T (m, 1) + T (n− m, d − 1) if d > 1 and m ≥ 3n

4
C(9kn2 + b0) + T (m, d′) + T (n− m, d − d′) if d > 1 and

n
4 < m, n − m < 3n

4

32 CHAPTER 2. ALIGNING POINTS

where C > 0 is some fixed constant. We will show by substitution that it solves
to T (n, d) ≤ 3C(9kn2 + (d − 1)b0) = O(9kn2 + db0). Indeed, for the first case
of the recurrence it is evident. For the second case we use T (m, 1) ≤ C9km2 to
get

T (n, d) ≤ C(9kn2 + b0) + T (m, 1) + T (n − m, d − 1) ≤
≤ C(9kn2 + b0) + C9km2 + 3C(9k(n − m)2 + (d − 2)b0) =

= C9k(n2 + m2 + 3(n − m)2) + Cb0(1 + 3(d − 2)).

Because m ≤ n and n − m ≤ n/4 we have

T (n, d) ≤ C9k
(

n2 + n2 + 3(n/4)2
)

+ 3C(d − 1)b0 ≤ C9k(3n2) + 3C(d − 1)b0.

For the third case we have

T (n, d) ≤ C(9kn2 + b0) + T (m, d′) + T (n − m, d − d′) ≤
≤ C

(

9kn2 + b0 + 3(9km2 + (d′ − 1)b0) + 3(9k(n − m)2 + (d − d′ − 1)b0)
)

≤ C9k
(

n2 + 3m2 + 3(n − m)2
)

+ Cb0

(

1 + 3(d′ − 1) + 3(d − d′ − 1)
)

.

Because m2 + (n − m)2 is concave, and n/4 < m, n − m < 3n/4, we have

T (n, d) ≤ C9k
(

n2+3(n/4)2+3(3n/4)2
)

+3C(d−1)b0 ≤ C9k(3n2)+3C(d−1)b0.

2

Putting together Lemma 2.8 and Lemma 2.9 we can show how to compute
M(T) for a tree T of bounded height.

Lemma 2.10 If each region Si has complexity O(n), and T = (S, E) has height
k, we can compute in O(9kn2) time a placement p0, . . . , pn−1 with pi ∈ Si that
achieves M(T) alignments.

Proof: Starting from the region S0, we recursively apply the subdivision done in
Lemma 2.7, and for the leaves, we take the whole region as a stable cell. For the
leaves Si we take M(Ti(Si)) := 0. Traversing the tree T in a bottom-to-top fash-
ion, for each region Si that has been subdivided into Ti-stable cells C1

i , . . . , Cti

i

we compute all the values M(Ti(C
1
i)), . . . , M(Ti(C

ti

i)) using Lemma 2.9. Finally,

we choose a cell Cj0
0 such that M(T (Cj0

0)) = max{M(T (C1
0)), . . . , M(T (Ct0

0))},
and a point p0 ∈ Cj0

0 . If we have kept information on how we computed

M(T (Cj0
0)) in Lemma 2.9, then it is easy to find points p1, . . . , pd such that

M(T (p0)) =

d
∑

i=1

(χZ(p0, pi)) + M(Ti(pi))

and recursing on M(Ti(pi)) we get the placement for all points top-to-bottom.
Let bi be the complexity of region Si and let di be the degree of node Si

in Ti. To bound the time needed, observe that for a node Si that is at depth
ki, we have spent O(9k−ki |Ti|2 + bi) time to compute its subdivision into Ti-
stable cells C1

i , . . . , Cti

i (Lemma 2.8), and O(9k−ki |Ti|2 + dibi) time to compute

2.3. THE BASIC APPROACH FOR TREES 33

M(Ti(C
1
i)), . . . , M(Ti(C

ti

i)) (Lemma 2.9). To bound the time of the whole pro-
cess, we sum over all nodes

∑

Si∈S
O(9k−ki |Ti|2 + dibi) =

=

k
∑

k′=0

(

∑

Si at depth k′

O(9k−k′ |Ti|2)
)

+

n−1
∑

i=0

dibi ≤

≤
k

∑

k′=0

O
(

9k−k′ ∑

Si at depth k′

|Ti|2
)

+ O(n)

n−1
∑

i=0

di ≤

≤
k

∑

k′=0

O(9k−k′

n2) + O(n2) ≤ O(9kn2).

2

We can combine this last result with the shifting technique of Hochbaum and
Maass [88]. This technique consists of decomposing the original problem into a
family of subproblems to be solved independently, while guaranteeing that the
solution to at least one of the subproblems is a good approximation to the solu-
tion for the original problem. This provides a polynomial time approximation
scheme (PTAS) to approximate M(T) for any tree T , which is the main result
of this section.

Theorem 2.11 Let Z be a set of two orientations, let S = {S0, . . . , Sn−1} be a
set of n convex regions, each of complexity O(n), and let T = (S, E) be a tree.
For any given integer k > 0, we can place points p0, . . . , pn−1 with pi ∈ Si that
yield a k

k+1 -approximation of MZ(T) in O(k9kn2) time.

Proof: Choose any node S0 of T to be the root. We apply the shifting technique
of Hochbaum and Maass [88] in order to decompose the problem into trees of
height k while controlling the loss in optimality. For u = 0, . . . , k, consider the
forest Fu that is obtained by removing from T the parent edge from any node
that has distance u + i · (k + 1) to the root node, where i is any integer. If
we root each tree in Fu at the node that was closest to S0 in T , then it has
height at most k, and because |Fu| ≤ n we can use Lemma 2.10 to determine the
optimum value MZ(Fu) in O(9kn2) time. It is then clear that it takes O(k9kn2)
time to compute M := max{MZ(F0), . . . , MZ(Fk)}.

We claim that M is a k
k+1 -approximation of MZ(T). To this end, con-

sider the placement p0, . . . , pn−1 with pi ∈ Si that achieves MZ(T) alignments.
Because for each forest Fu we have MZ(Fu) ≥ ∑

{Si,Sj}∈Fu
χZ(pi, pj), then

(k + 1)M ≥
k

∑

u=0

MZ(Fu) ≥
k

∑

u=0

∑

{Si,Sj}∈Fu

χZ(pi, pj).

34 CHAPTER 2. ALIGNING POINTS

But if an edge is not in Ft, then it is present in all Fu with u 6= t, and so each
edge of T appears exactly k times in the sum. This means that

k
∑

u=0

∑

{Si,Sj}∈Fu

χZ(pi, pj) ≥ k
∑

{Si,Sj}∈T
χZ(pi, pj) = kMZ(T),

and we conclude that M is a k
k+1 -approximation of MZ(T). 2

Corollary 2.12 Under the assumptions of the previous theorem, if G = (S, E)
is a planar graph and k a given positive integer, we can compute a k

3(k+1) -

approximation of MZ(G) in O(k9kn2) time.

Proof: Combine Theorem 2.11 with Lemma 2.1. 2

2.4 Specific results for planar graphs

For different settings (regions and orientations) we can apply the same idea of
dividing each region Si into cells that are stable. The same recursive idea as
explained before works out, but the analysis gives different results. Reconsider-
ing Lemmas 2.8, 2.9, and 2.10 for each setting separately will give us the new
bounds. We distinguish the following cases.

2.4.1 Any region, one orientation

Theorem 2.13 Let Z consist of one orientation, let S = {S0, . . . , Sn−1} be a
set of n regions, and let T = (S, E) be a tree. We can place points p0, . . . , pn−1

with pi ∈ Si that yield MZ(T) in O(n2) time.

Proof: We assume without loss of generality that the orientation for alignment
to be considered is vertical. Also, as has been noted in the proof of Theorem 2.4,
we can assume that the regions are horizontal segments, otherwise, we project
each region onto a horizontal line and we get an equivalent problem.

In Lemma 2.8 we can get a more tight bound for |L0|: in this setting each
region produces two tangents (the vertical lines through its endpoints), and
those are all the tangents that are created through the process, which means
|L0| ≤ 2n. The lines L0 induce a partition of the interval S0 into O(n) intervals,
regardless of the height of T . For Lemma 2.9, we can compute in a straightfor-
ward way the values M(T (C)) in O(d) time per cell C, where d is, as before,
the degree of S0. This means that we can accomplish Lemma 2.9 in O(nd) time.
For the time bound in Lemma 2.10, we have to sum over all nodes Si the time
spent at each node. If we denote by di the degree of Si at Ti then we use

n−1
∑

i=0

O(|Ti|di) ≤ O
(

n−1
∑

i=0

ndi

)

= O
(

n

n−1
∑

i=0

di

)

= O(n2)

2.4. SPECIFIC RESULTS FOR PLANAR GRAPHS 35

time to accomplish Lemma 2.10. As this is independent of the height of T , we
directly get the statement. 2

This, together with Lemma 2.1, leads to the following result.

Corollary 2.14 Under the assumptions of the previous theorem, if G = (S, E)
is a planar graph, we can get a 1

3 -approximation of MZ(G) in O(n2) time.

2.4.2 Axis-parallel rectangles, axis orientations

If the regions are disjoint rectangles and the orientations are axis-parallel, the
placement of a point inside the region can be done independently for each axis
orientation, and we can use the results from the previous subsection.

Corollary 2.15 Let Z be the orientations of the coordinate axes, let S =
{S0, . . . , Sn−1} be a set of n axis-parallel rectangles, and let G = (S, E) be
a planar graph. If the regions S are disjoint, we can get a 1

3 -approximation of
MZ(G) in O(n2) time.

Proof: Consider the vertical orientation zv ∈ Z, and use Corollary 2.14 to
compute a placement yielding a 1

3 -approximation of M{zv}(G). This placement
only fixes the x-coordinates of the points, and we can independently decide the
y-coordinate of each point because the regions are rectangles. The y-coordinate
is computed using Corollary 2.14 to get a 1

3 -approximation of M{zh}(G), where
zh ∈ Z is the horizontal orientation. Because the regions are disjoint, no
two points coincide and we have constructed a placement achieving at least
1
3 (M{zv}(G) + M{zh}(G)) ≥ 1

3MZ(G) alignments. 2

If the regions overlap, then this procedure only gives us a 1
6 -approximation

because if points placed for different regions coincide, then we are counting
them as two alignments. Without considering each orientation independently,
but both as a whole, we can approximate this problem at the cost of another
linear factor. Again, we have to consider first the case of a tree, and then
combine it with Lemma 2.1 to approximate the planar graph case.

Theorem 2.16 Let Z consist of the orientations of the coordinate axes, let
S = {S0, . . . , Sn−1} be a set of n axis-parallel rectangles, and let T = (S, E)
be a tree. We can place points p0, . . . , pn−1 with pi ∈ Si that yield MZ(T) in
O(n3) time.

Proof: We reconsider Lemmas 2.8, 2.9, and 2.10 for this particular setting. In
Lemma 2.8 we can get a more tight bound for |L0|: in this setting each region
produces four tangents (the axis-aligned lines containing the boundary of the
region), and those are all the tangents that are created in the process, which
means |L0| ≤ 4n. The lines L0 induce a partition of the rectangle S0 into O(n2)
rectangles, regardless of the height of T . For Lemma 2.9, we can compute in a
straightforward way the values M(T (C)) in O(d) time per cell C, where d is,
as before, the degree of S0. This means that we can accomplish Lemma 2.9 in

36 CHAPTER 2. ALIGNING POINTS

O(n2d) time. For the time bound in Lemma 2.10, we have to sum over all nodes
Si the time spent at each node. If we denote by di the degree of Si at Ti then
we use

n−1
∑

i=0

O(|Ti|2di) ≤ O
(

n−1
∑

i=0

n2di

)

= O
(

n2
n−1
∑

i=0

di

)

= O(n3)

time to accomplish Lemma 2.10. As this is independent of the height of T , we
directly get the statement. 2

Corollary 2.17 Under the assumptions of the previous theorem, if G = (S, E)
is a planar graph, we can get a 1

3 -approximation of MZ(G) in O(n3) time.

2.4.3 Convex regions, more than two orientations

We next assume that we are interested in alignment in |Z| > 2 orientations (|Z|
is a constant). For example, for schematic maps, alignment in the horizontal,
vertical, and two diagonal orientations is important (thus |Z| = 4). There are
different approaches that lead to different results.

Corollary 2.18 Let G = (S, E) be a planar graph with n nodes. We can find
a 1

3|Z| -approximation of MZ(G) in O(n2) time.

Proof: We consider |Z| different problems, each one with a different orienta-
tion but with the same graph G. For each orientation z ∈ Z, we use Corol-
lary 2.14 to compute a 1

3 -approximation of M{z}(G) in O(n2) time, and we
take the placement achieving the maximum A over all of them. Because in
the placement achieving MZ(G) alignments there is one orientation z̃ ∈ Z
with at least 1

|Z|MZ(G) alignments, then for the chosen placement we get

A ≥ 1
3M{z̃}(G) ≥ 1

3|Z|MZ(G) alignments. 2

Corollary 2.19 For any integer k > 0, we can find a 2k
3(k+1)|Z| -approximation

of MZ(G) in O(k9kn2) time.

Proof: We consider
(|Z|

2

)

different problems, each one with a different pair of
orientations but with the same graph G. For each pair of orientations {zi, zj} ⊂
Z, we use Corollary 2.12 to compute a k

3(k+1) -approximation of M{zi,zj}(G) in

O(k9kn2) time, and we take the placement achieving the maximum A over all
of them. Because in the placement achieving MZ(G) alignments there is a pair
of orientations {z̃i, z̃j} ⊂ Z with at least 2

|Z|MZ(G) alignments, then for the

chosen placement we get A ≥ k
3(k+1)M{z̃i,z̃j}(G) ≥ 2k

3(k+1)|Z|MZ(G) alignments.
2

Theorem 2.20 Let Z be a set with a constant number of orientations, let S =
{S0, . . . , Sn−1} be a set of n convex regions, each of complexity O(n), and let

2.4. SPECIFIC RESULTS FOR PLANAR GRAPHS 37

G = (S, E) be a planar graph. For any given integer k > 0, we can place points

p0, . . . , pn−1 with pi ∈ Si that yield a k
3(k+1) -approximation of MZ(G) in nO(2k)

time.

Proof: We will show that for a tree T = (S, E) of height k we can com-

pute a k
k+1 -approximation of MZ(T) in nO(2k) time. Then the proof of Theo-

rem 2.11 implies that we can get a k
3(k+1) -approximation of MZ(G) in knO(2k) ≤

nO(2k)+1 = nO(2k) time, as desired.
Let us assume that T = (S, E) is a tree of height k, and reconsider the

proofs of Lemma 2.8, Lemma 2.9, and Lemma 2.10 for this particular setting.
The bound for |L0| in Lemma 2.8 is no longer true because each internal vertex
produces h−2 additional tangent lines (when we had only two orientations this
did not happen). If for each child Si of S0, Li is the set of lines that is used
in the recursive process to subdivide the region Si into Ti-stable cells, then the
lines in L0 come from intersection points of two lines in Li, from intersection
points of a line in Li with the boundary of the region Si, and the 2|Z| tangents
to Si itself. Taking h = |Z|, the recursion that we get is

|L0| ≤
d

∑

i=1

(

(h − 2)

(|Li|
2

)

+ (2h − 1)|Li| + 2h
)

< 2h

d
∑

i=1

(|Li| + 1)2.

This solves to |L0| ≤ (2h)(2
k−1)n(2k) − 1 by induction on the height k of T : if

k = 0, then n = 1 and it holds. For k ≥ 1 we have

|L0| ≤ 2h

d
∑

i=1

(|Li| + 1)2 ≤ 2h

d
∑

i=1

(

(2h)(2
k−1−1)|Ti|(2

k−1)
)2

,

and because
∑d

i=1 |Ti| = n − 1 we get

|L0| ≤ (2h)(2
k−1)

d
∑

i=1

|Ti|(2
k) ≤ (2h)(2

k−1)(n − 1)(2
k).

Therefore, |L0| = O((2h)(2
k−1)n(2k)) = nO(2k) because we assume that h = |Z|

is constant, and we can subdivide S0 into nO(2k) T -stable cells in O
(

nO(2k) +

b0

)

= nO(2k) + O(b0) time.
Regarding Lemma 2.9, we can compute in a straightforward way the values

M(T (C)) in O(d) per cell C, where d is, as before, the degree of S0. This means

that we can accomplish Lemma 2.9 in O(d)nO(2k) = nO(2k) time because d ≤ n.
For the time bound in Lemma 2.10, we have to sum over all nodes Si the time
spent in each node. If we denote by di the degree of Si in Ti, and because
bi = O(n), we use

n−1
∑

i=0

(nO(2k) + bi) ≤ nO(2k)+1 = nO(2k)

time to accomplish Lemma 2.10. 2

38 CHAPTER 2. ALIGNING POINTS

set of tangents L

Figure 2.10: Left: Discretization used in the proof of Theorem 2.21. The boxes
represent the only points to take into account. Right: If the regions are inter-
vals and we consider two orientations to align points, we cannot discretize the
problem.

2.5 Axis-aligned regions and orientations

We can use Baker’s approach [14] to optimally solve k-outerplanar graphs. Com-
bining it with the shifting technique of Hochbaum and Maass [88], we get the
following polynomial time approximation scheme for planar graphs when we
care about only one orientation.

Theorem 2.21 Let Z consist of one orientation, let S = {S0, . . . , Sn−1} be a
set of n regions, and let G = (S, E) be a planar graph. For any given integer k >
1, we can place points p0, . . . , pn−1 with pi ∈ Si that yield a k−1

k -approximation
of MZ(G) in O(k(2n)3k+1) time.

Proof: As in Theorem 2.13, it is enough to consider vertical alignments and
regions that are horizontal segments. The proof goes in two steps. First, we
show that for any k-outerplanar graph G, we can find a placement of points
that attains the optimal solution MZ(G) in O((2n)3k+1) time. Second, we will
show how this leads to the theorem.

Let L be the set of vertical lines going through the endpoints of the segments.
Consider for each segment Si the set of points S̃i := Si ∩L. Because L contains
at most 2n vertical lines, S̃i consists of at most 2n points (see Figure 2.10, left).
Now, instead of considering to place the point pi anywhere in Si, we want to
place it at some point of S̃i. In other words, if G̃ is the graph G, where each node
Si is replaced by S̃i (the graphs are isomorphic, but the nodes represent different
sets), we have M(G) = M(G̃). Now that we have discretized the problem we
can use Baker’s approach.

Consider the slice boundaries and the slices as defined by Baker [14] (we
will follow her notation). In a level i slice boundary, we have at most (2n)i

different ways of placing the points in the corresponding segments. Thus, for
each level i slice, we can encode the maximum over all possible placements in
its boundary using a table with at most (2n)2i entries. The operations between
the tables are straightforward, and the most expensive one is merging two level

2.5. AXIS-ALIGNED REGIONS AND ORIENTATIONS 39

i slices that share some level i boundary: it takes O((2n)3i) time. If the graph
is k-outerplanar, we have i ≤ k, and we have to perform O(n) operations with
the tables. This concludes the first part of the proof.

For the given planar graph G and the integer k > 0, consider the graph Gu

that we get by removing the edges connecting any level u+ki vertex with a level
u+ki+1 vertex, for all integers i. This graph Gu is composed of k-outerplanar
graphs, so we can find the best placement of points as shown before. By the
pigeon hole principle, there is some u ∈ {0, . . . , k − 1} such that MZ(Gu) is at
least k−1

k MZ(G). Computing all MZ(Gu), for u = 0, . . . , k − 1, and taking the
maximum leads to the result. 2

Corollary 2.22 For any set of orientations Z, and for general regions, we can
get a k−1

|Z|k -approximation of MZ(G) in O(k(2n)3k+1) time.

Proof: Like in the proof of Corollary 2.18, we can solve each orientation inde-
pendently using the previous theorem and take the maximum over all of them.
The result follows. 2

As noticed in the proof of Corollary 2.15, if the regions are disjoint rectangles
the placement of a point inside the region can be done independently for each
axis orientation and we get the following result.

Corollary 2.23 Let Z be the orientations of the coordinate axes, let S =
{S0, . . . , Sn−1} be a set of n axis-parallel rectangles, and let G = (S, E) be
a planar graph. If the regions S are disjoint, for any integer k > 1 we can get
a k−1

k -approximation of MZ(G) in O(k(2n)3k+1) time.

When the rectangles overlap, we may be counting two alignments if two
points belonging to different regions are placed exactly at the same position.
We can avoid this by adapting the proof of Theorem 2.21 to rectangles.

Theorem 2.24 Let Z consist of the orientations of the coordinate axes, let
S = {S0, . . . , Sn−1} be a set of n axis-parallel rectangles, and let G = (S, E)
be a planar graph. For any integer k > 1 we can get a k−1

k -approximation of
MZ(G) in O(k(2n)6k+1) time.

Proof: The proof is identical to the one of Theorem 2.21, but now, for solving
a k-outerplanar graph we discretize the whole rectangles combining the vertical
and horizontal lines (or tangents). This discretization uses (2n)2 points per
rectangle, and thus we can do it, by the same arguments as in that proof, in
O(k(2n)6k+1) time. 2

For general regions or orientations, it does not seem easy to extend this
approach. The problem is that we cannot discretize the problem as we have
done before: each tangent can produce more candidate points, from which we
have to trace new tangents, and this process does not converge (see Figure 2.10,
right).

40 CHAPTER 2. ALIGNING POINTS

2.6 Concluding remarks

In this chapter we have described algorithms to align points, each of which can
be placed freely in their own specified region. We showed that the problem is
computationally hard, and gave several approximation algorithms and approx-
imation schemes which apply to different variations of the problem. Variations
included the alignment orientations of interest, the shape of the regions, whether
overlap is present in the input for any two regions, and perhaps most important,
a graph on the points that specifies which alignments count in the optimization.
Our results apply to trees and planar graphs, and remain valid if the edges of
the graph are weighted. When the underlying graph is a tree, we have seen that
the problem is NP-hard and we have provided a matching PTAS. The problems
and solutions gave rise to an interesting combination of geometry and graphs.

Figure 2.11: Voronoi diagram of points and scaled Voronoi cells.

Although we did not investigate the choice of the regions around each point,
which surely leads to appealing algorithmical problems, we would like to make
some natural considerations and remarks. A fixed, maximum allowed displace-
ment gives rise to a fixed radius disk around each point. However, because the
preservation of the approximate East-West positioning and North-South posi-
tioning is more important than for any other direction, we could instead choose
squares or rectangles. Since the relative positioning with respect to points in
the neighborhood is important, one could also choose to allow each point to
be placed anywhere in its Voronoi cell, or in a scaled-down copy of it; see Fig-
ure 2.11. This allows points further away from other points to be displaced
more than points in a cluster, a behavior that is desirable. The Delaunay trian-
gulation of a point set is often considered to capture relevant, intuitive features
of a point set. In this sense, the work by Abellanas et al. [3] is relevant. They
compute the maximum perturbation that a point set can permit while keeping
the same Delaunay triangulation. This maximum perturbation leads to regions
that are circles, and that guarantee that the original point set and the new one

2.6. CONCLUDING REMARKS 41

have the same Delaunay triangulation.
There is room to improve the results that we have presented. In particular,

more tight results for the case of planar graphs, general regions, and general
orientations would be a nice improvement. Another interesting case for further
research is the alignment problem with general graphs and only the vertical
orientation.

42 CHAPTER 2. ALIGNING POINTS

Chapter 3

Spreading points

This chapter presents combinatorial methods to increase the readability in clut-
tered areas of the map by displacing its points in order to increase the distance
between close points.

As justified in Section 1.4.1, we consider the following abstract, geometric
problem: place n points, each one inside its own, prespecified disk, with the
objective of maximizing the distance between the closest pair of them. The
disks can overlap and have different sizes. A formal definition of the problem
is given in Section 3.1, where we also discuss the related and previous work.
The problem is NP-hard and does not admit a polynomial time approximation
scheme (PTAS) [16, 71].

Besides the application in cartography that was discussed in the introduc-
tion, this geometric optimization problem is also relevant for graph drawing [51],
and more generally in data visualization, where the readability of the displayed
data is also a basic requirement. For example, when displaying a molecule in
the plane, the exact position of each atom is not known, but instead, we have
a region where each atom is located. In this case, we also have some freedom
where to draw each atom, and a rule of thumb tells that the drawing of the
molecule improves as the separation between the atoms increases.

Our results for this problem are summarized in Table 3.1. The main idea
of our approach is to consider an “approximate-decision” problem in the L∞
metric. This “approximate-decision” can be done in O(n

√
n log n) time using

the data structure by Mortensen [104] and the technique by Efrat et al. [62]
for computing a matching in geometric settings. Details are explained in Sec-
tion 3.2.

We then combine the “approximate-decision” algorithm with the geometric
features of our problem to get a 2-approximation in the L∞ metric. This can
be achieved by paying an extra logarithmic factor; see Section 3.3.

The same techniques can be used in the L2 metric, but the approximation
ratio becomes 8/3 and the running time increases to O(n2). However, when
we restrict ourselves to congruent disks, a trivial adaptation of the techniques
gives an approximation ratio of ∼ 2.2393. This is explained in Section 3.4. We

43

44 CHAPTER 3. SPREADING POINTS

metric regions approximation ratio running time

L∞ arbitrary disks 2 O(n
√

n log2 n)

L2

arbitrary disks 8
3 O(n2)

congruent disks ∼ 2.2393 O(n2)

Table 3.1: Approximation algorithms for spreading points in the plane.

conclude in Section 3.5 with possible directions to extend our results.

3.1 Problem formulation and related work

A precise formulation of the problem is as follows. Given a distance d in the
plane, consider the function D : (R2)n → R that gives the distance between a
closest pair of n points

D(p1, . . . , pn) = min
i6=j

d(pi, pj).

Let B = {B1, . . . , Bn} be a collection of (possibly intersecting) disks in R
2 under

the metric d. A feasible solution is a placement of points p1, . . . , pn with pi ∈ Bi.
We are interested in a feasible placement p∗

1, . . . , p
∗
n that maximizes D

D(p∗1, . . . , p
∗
n) = max

(p1,...,pn)∈B1×···×Bn

D(p1, . . . , pn).

We use D(B) to denote this optimal value.
A t-approximation, with t ≥ 1, is a feasible placement p1, . . . , pn, with t ·

D(p1, . . . , pn) ≥ D(B). We will use B(p, r) to denote the disk of radius r
centered at p. Recall that under the L∞ metric, B(p, r) is an axis-aligned
square centered at p and side length 2r. We assume that the disk Bi is centered
at ci and has radius ri, so Bi = B(ci, ri).

This problem is a particular instance of the problem of distant representa-
tives, recently introduced by Fiala et al. [71, 72]: given a collection of subsets
of a metric space and a value δ > 0, we want a representative of each subset
such any two representatives are at least δ apart. They introduced this problem
as a variation of the problem of systems of disjoint representatives in hyper-
graphs [8]. It generalizes the problem of systems of distinct representatives, and
it has applications in areas such as scheduling or radio frequency (or channel)
assignment to avoid interferences.

The decision version associated to our optimization problem is the original
distant representatives problem. Fiala et al. [71, 72] showed that this decision
problem is NP-hard in the Euclidean and Manhattan metrics. Furthermore,
their result can be modified to show that, unless NP = P , there is a certain
constant T > 1 such that no T -approximation is possible. They also notice that

3.2. A PLACEMENT ALGORITHM IN L∞ 45

the one-dimensional problem can be solved using the scheduling algorithm by
Simons [117].

Closely related are geometric dispersion problems: we are given a polygonal
region of the plane and we want to place n points in it such that the closest
pair has the largest possible distance. This problem has been considered by
Baur and Fekete [16] (see also [37, 70]), where both inapproximability results
and approximation algorithms are presented. Their NP-hardness proof and in-
approximability results can easily be adapted to show inapproximability results
for our problem, showing also that no polynomial time approximation scheme
is possible, unless P = NP .

3.2 A placement algorithm in L∞

Consider an instance B = {B1, . . . , Bn} of the problem in the L∞ metric, and
let δ∗ = D(B) be the maximum value that a feasible placement can attain.
We will consider the “approximate-placement” problem that follows: given a
value δ, we provide a feasible placement p1, . . . , pn such that, if δ ≤ 1

2δ∗ then
D(p1, . . . , pn) ≥ δ, and otherwise there is no guarantee on the placement. We
start by presenting an algorithm and discussing its approximation performance.
Then we discuss a more efficient version of it.

3.2.1 The algorithm and its approximation ratio

Let Λ = Z
2, that is, the lattice Λ = {(a, b) | a, b ∈ Z}. For any δ ∈ R and

any point p = (px, py) ∈ R
2, we define δp = (δpx, δpy) and δΛ = {δp | p ∈ Λ}.

Observe that δΛ is also a lattice. The reason to use this notation is that we can
use p ∈ Λ to refer to δp ∈ δΛ for different values of δ. An edge of the lattice δΛ
is a horizontal or vertical segment joining two points of δΛ at distance δ. The
edges of δΛ divide the plane into squares of side length δ, which we call the cells
of δΛ.

The idea is that whenever 2δ ≤ δ∗, the lattice points δΛ almost provide a
solution. However, we have to treat as a special case the disks with no lattice
point inside. More precisely, let Q ⊂ δΛ be the set of points that cannot be
considered as a possible placement because there is another already placed point
too near by. Initially, we have Q = ∅. If a disk Bi does not contain any point
from the lattice, there are two possibilities:

• Bi is contained in a cell C of δΛ; see Figure 3.1 left. In this case, place
pi := ci in the center of Bi, and remove the vertices of the cell C from the
set of possible placements for the other disks, that is, add them to Q.

• Bi intersects an edge E of δΛ; see Figure 3.1 right. In this case, choose pi

on E ∩Bi, and remove the vertices of the edge E from the set of possible
placements for the other disks, that is, add them to Q.

We are left with disks, say B1, . . . , Bk, that have some lattice points inside.
Consider for each such disk Bi the set of points Pi := Bi∩(δΛ\Q) as candidates

46 CHAPTER 3. SPREADING POINTS

Bi

p∗
i

Bi

δΛ

p∗
i

pi

pi Q

δΛ

Figure 3.1: Special cases where the disk Bi does not contain any lattice point.
Left: Bi is fully contained in a cell of δΛ. Right: Bi intersects an edge of δΛ.

for the placement corresponding to Bi. Observe that Pi may be empty if (Bi ∩
δΛ) ⊂ Q. We want to make sure that each disk Bi gets a point from Pi, and
that each point gets assigned to at most one disk Bi. We deal with this by
constructing a bipartite graph Gδ with B := {B1, . . . , Bk} as one class of nodes
and P := P1 ∪ · · · ∪ Pk as the other class, and with an edge between Bi ∈ B
and p ∈ P whenever p ∈ Pi.

It is clear that a perfect matching in Gδ provides a feasible placement. When
a matching is not possible, the algorithm reports a feasible placement by placing
each point in the center of its disk. We call this algorithm Placement, and its
pseudocode is given in Algorithm 1. See Figure 3.2 for an example.

Algorithm 1 Placement(δ)

Q := ∅ {Q ≡ Lattice points that cannot be used further}
for all Bi s.t. Bi ∩ δΛ = ∅ do

if Bi ∩ E 6= ∅ for some edge E of δΛ then

choose pi on Bi ∩ E;
add the vertices of E to Q

else {Bi is fully contained in a cell C of δΛ}
pi := ci;
add the vertices of C to Q;

P := ∅;
for all Bi s.t. Bi ∩ δΛ 6= ∅ do

Pi := Bi ∩ (δΛ \ Q);
P := P ∪ Pi;

construct Gδ := ({Bi |Bi ∩ δΛ 6= ∅} ∪ P, {(Bi, p)|p ∈ Pi});
if Gδ has a perfect matching then

for each disk Bi, let pi be the point that it is matched to;
else

for each disk Bi, let pi := ci;

In any case, Placement always gives a feasible placement p1, . . . , pn, and

3.2. A PLACEMENT ALGORITHM IN L∞ 47

B1

B2

B3

B4

B5

B6

B1

B4

B3

B2
B5

B6

p1

p2

p8

p1 p2

p3 p4 p5 p6

p7

p8

q1

q2

q1

q2

p5

p6

Q

Figure 3.2: Example showing the main features of the placement algorithm in
L∞.

we can then compute the value D(p1, . . . , pn) by finding a closest pair in the
placement. We will show that, if 2δ ≤ δ∗, a matching exists in Gδ and moreover
Placement(δ) gives a placement whose closest pair is at distance at least δ.
In particular, this implies that if Bi ∩ δΛ 6= ∅ but Pi = Bi ∩ (δΛ \ Q) = ∅, then
there is no matching in Gδ because the node Bi has no edges, and so we can
conclude that 2δ > δ∗. We first make the following definitions.

Definition 3.1 In the L∞ metric, we say that Placement(δ) succeeds if the
computed placement p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ. Otherwise, we say
that Placement(δ) fails.

Lemma 3.2 If 2δ ≤ δ∗, then Placement(δ) succeeds.

Proof: The proof is divided in two steps. Firstly, we will show that if 2δ ≤ δ∗

then the graph Gδ has a matching. Secondly, we will see that if p1, . . . , pn is a
placement computed by Placement(δ) when 2δ ≤ δ∗, then D(p1, . . . , pn) ≥ δ.

Consider an optimal placement p∗1, . . . , p
∗
n. The points that we added to

Q due to a disk Bi are in the interior of B(p∗i , δ
∗/2) because of the following

analysis:

• If Bi ∩ δΛ = ∅ and Bi is completely contained in a cell C of δΛ, then p∗
i

is in C, and C ⊂ B(p∗i , δ) ⊂ B(p∗i , δ
∗/2); see Figure 3.1 left.

• If Bi ∩ δΛ = ∅ and there is an edge E of δΛ such that Bi ∩ E 6= ∅, then
E ⊂ B(p∗i , δ) ⊂ B(p∗i , δ

∗/2); see Figure 3.1 right.

The interiors of the disks (in L∞) B(p∗i , δ
∗/2) are disjoint, and we can use

them to construct a matching in Gδ as follows. If Bi∩δΛ 6= ∅, then B(p∗i , δ
∗/2)∩

Bi contains some lattice point pi ∈ δΛ. Because the interiors of the disks
B(p∗i , δ

∗/2) are disjoint, we have pi 6∈ Q and pi ∈ Pi. We cannot directly

48 CHAPTER 3. SPREADING POINTS

add the edge (Bi, pi) to the matching that we are constructing because it may
happen that pi is on the boundary of B(p∗i , δ

∗/2)∩Bi, but also on the boundary
of B(p∗j , δ

∗/2) ∩ Bj . However, in this case, B(p∗i , δ
∗/2) ∩ Bi ∩ δΛ contains an

edge of δΛ inside. If we match each Bi to the lexicographically smallest point
in B(p∗i , δ

∗/2) ∩ Bi ∩ δΛ, then, because the interiors of disks B(p∗
i , δ

∗/2) are
disjoint, each point is claimed by at most one disk. This proves the existence of
a matching in Gδ provided that 2δ ≤ δ∗.

For the second part of the proof, let pi, pj be a pair of points computed by
Placement(δ). We want to show that pi, pj are at distance at least δ. If both
were computed by the matching in Gδ , they both are different points in δΛ, and
so they have distance at least δ. If pi was not placed on a point of δΛ (at ci or
on an edge of δΛ), then the lattice points closer than δ to pi were included in
Q, and so the distance to any pj placed during the matching of Gδ is at least δ.
If both pi, pj were not placed on a point of δΛ, then Bi, Bj do not contain any
point from δΛ, and therefore ri, rj < δ/2. Two cases arise:

• If both Bi, Bj do not intersect an edge of δΛ, by the triangle inequality
we have d(pi, pj) ≥ d(p∗i , p

∗
j) − d(pi, p

∗
i) − d(pj , p

∗
j) > δ∗ − δ/2 − δ/2 ≥ δ,

provided that 2δ ≤ δ∗.

• If one of the disks, say Bi, intersects an edge E of δΛ, then Bi is contained
in the two cells of δΛ that have E as an edge. Let C be the six cells of
δΛ that share a vertex with E. If Bj does not intersect any edge of δΛ,
then Bj ∩ C = ∅ because otherwise d(p∗i , p

∗
j) < 2δ, and so d(pi, pj) ≥ δ.

If Bj intersects an edge E ′ of δΛ, we have E ∩ E ′ = ∅ because otherwise
d(p∗i , p

∗
j) < 2δ. It follows that d(pi, pj) ≥ δ.

2

Notice that, in particular, if rmin is the radius of the smallest disk and we
set δ = (rmin/

√
n), then the nodes of type Bi in Gδ have degree n, and there is

always a matching. This implies that δ∗ = Ω(rmin/
√

n).
Observe also that whether Placement fails or succeeds is not a mono-

tone property. That is, there may be values δ1 < δ2 < δ3 such that both
Placement(δ1) and Placement(δ3) succeed, but Placement(δ2) fails. This
happens because for values δ ∈ (δ∗

2 , δ∗], we do not have any guarantee on what
Placement(δ) does.

The following observations will be used later.

Observation 3.3 If Placement(δ) succeeds for B, but Placement(δ) fails
for a translation of B, then δ ≤ δ∗ < 2δ and we have a 2-approximation.

Observation 3.4 If for δ > δ′, Placement(δ) succeeds, but Placement(δ′)
fails, then δ∗ < 2δ′ < 2δ and we have a 2-approximation.

The algorithm can be adapted to compute Placement(δ+ε) for an infinites-
imal ε > 0 because only the points of δΛ lying on the boundaries of B1, . . . , Bn

are affected. More precisely, if a point δp ∈ δΛ is in the interior of Bi, then, for

3.2. A PLACEMENT ALGORITHM IN L∞ 49

a sufficiently small ε > 0, the point (δ + ε)p ∈ (δ + ε)Λ is in Bi as well. On the
other hand, if a point δp ∈ δΛ is on the boundary of Bi, then, for a sufficiently
small ε > 0, the point (δ + ε)p ∈ (δ + ε)Λ is outside Bi if and only if δp is the
point of the segment lp∩Bi furthest from the origin, where lp is the line passing
through the origin and p. Similar arguments apply for deciding if a disk Bi is
contained in a cell of (δ+ε)Λ or it intersects some of its edges. Therefore, for an
infinitesimal ε > 0, we can decide if Placement(δ + ε) succeeds or fails. This
leads to the following observation.

Observation 3.5 If Placement(δ) succeeds, but Placement(δ + ε) fails for
an infinitesimal ε > 0, then δ∗ ≤ 2δ and we have a 2-approximation.

3.2.2 Efficiency of the algorithm

The algorithm Placement, as stated so far, is not strongly polynomial because
the sets Pi = Bi ∩ (δΛ \Q) can have arbitrarily many points, depending on the
value δ. However, when Pi has more than n points, we can just take any n of
them. This is so because a node Bi with degree at least n is never a problem
for the matching: if Gδ \ Bi does not have a matching, then Gδ does not have
it either; if Gδ \Bi has a matching M , then at most n− 1 nodes from the class
P participate in M , and one of the n edges leaving Bi has to go to a node in P
that is not in M , and this edge can be added to M to get a matching in Gδ.

For a disk Bi we can decide in constant time if it contains some point from
the lattice δΛ: we round its center ci to the closest point p of the lattice, and
depending on whether p belongs to Bi or not, we decide. Each disk Bi adds
at most 4 points to Q, and so |Q| ≤ 4n. We can construct Q and remove
repetitions in O(n log n) time.

If a disk Bi has radius bigger than 3δ
√

n, then it contains more than 5n
lattice points, that is, |Bi ∩ δΛ| > 5n. Because Q contains at most 4n points,
Pi has more than n points. Therefore, we can shrink the disks with radius
bigger than 3δ

√
n to disks of radius exactly 3δ

√
n, and this does not affect to

the construction of the matching. We can then assume that each disk Bi ∈ B
has radius O(δ

√
n). In this case, each Bi contains at most O(n) points of δΛ,

and so the set P =
⋃

i Pi has O(n2) elements.
In fact, we only need to consider a set P with O(n

√
n) points. The idea is

to divide the disks B into two groups: the disks that intersect more than
√

n
other disks, and the ones that intersect less than

√
n other disks. For the former

group, we can see that they bring O(n
√

n) points in total to P . As for the latter
group, we only need to consider O(

√
n) points per disk.

Lemma 3.6 It is sufficient to consider a set P with O(n
√

n) points. Moreover,
we can construct such a set P in O(n

√
n log n) time.

Proof: As mentioned above, we can assume that all disks in B have radius
O(δ

√
n). Among those disks, let B< be the set of disks that intersect less than√

n other disks in B, and let B> be the set of disks that intersect at least
√

n
other disks in B. We treat B< and B> independently. We first show that for the

50 CHAPTER 3. SPREADING POINTS

disks in B< we only need to consider O(n
√

n) points, and then we show that
the disks in B> add at most O(n

√
n) points to P .

For each disk Bi ∈ B<, it is enough if Pi consists of
√

n points. This is so
because then the node Bi is never a problem for the matching in Gδ . If Gδ \Bi

does not have a matching, then Gδ does not have it either. If Gδ \ Bi has a
matching M , then at most

√
n − 1 nodes of Pi participate in M because only

the disks that intersect Bi can use a point in Pi, and there are at most
√

n− 1
by definition of B<. Therefore, one of the

√
n edges leaving Bi has to go to a

node in Pi that is not in M , and this edge can be added to M to get a matching
in Gδ.

We can construct the sets Pi for all the disks in B< in O(n
√

n log n) time.
First, construct Q and preprocess it to decide in O(log n) time if a query point
is in Q or not. This takes O(n log n) time. For each disk Bi ∈ B<, pick points
in Bi ∩ (δΛ \ Q) as follows. Initialize Pi = ∅. Take a point p ∈ Bi ∩ δΛ and
check in O(log n) time if p ∈ Q. If p ∈ Q, then take another point p and repeat
the test. If p 6∈ Q, then add p to Pi. Stop when Pi has

√
n points or there are

no points left in Bi ∩ δΛ.

For a disk Bi we may spend Ω(n) time if, for example, Q ⊂ (Bi ∩ δΛ).
However, each point in Q has appeared in the construction of at most

√
n

different sets Pi, as otherwise there is a point q ∈ Q that intersects
√

n disks in
B<, which is impossible. Therefore, we have spent O(n

√
n log n) time overall.

As for the disks in B>, let U =
⋃

Bi∈B<
Bi be the region that they cover. We

will see how to compute U ∩ δΛ in O(n
√

n log n) time, and this will finish the
proof. Consider the disk Bi ∈ B with biggest radius, say r, and grow each disk
in B to have radius r. We keep calling them B. Construct a subset B̃> ⊂ B> as
follows. Initially set B̃> = ∅, and for each Bi ∈ B>, add Bi to B̃> if and only if
Bi does not intersect any disk in the current B̃>.

Consider the number I of intersections between elements of B̃> and B. On
the one hand, each disk in B̃> intersects at least

√
n elements of B by definition

of B>, so we have |B̃>|
√

n ≤ I . On the other hand, because the disks in B̃>

are disjoint by construction and all the disks in B have the same size after the
growing, each disk of B can intersect at most four other disks of B̃>, and we get
I ≤ 4n. We conclude that |B̃>| ≤ O(

√
n).

Each disk in B> intersects some disk in B̃>. Therefore, because r is at
least the radius of the largest disk in B>, we can cover the whole region U by
putting disks of radius 3r centered at the disks of B̃>. Formally, we have that
U ⊂ ⋃

Bi∈B̃>
B(ci, 3r) =: Ũ . There are O(

√
n) such disks, and each of them

contains O(n) points of δΛ because 3r = O(δ
√

n). We can then compute all the
lattice points P̃ = Ũ ∩ δΛ in this region and remove repetitions in O(n

√
n log n)

time. In particular, we have that |U ∩ δΛ| ≤ |P̃ | = O(n
√

n).

To report U ∩ δΛ, we first compute U and decide for each point in P̃ if it
belongs to U or not. Because the disks behave like pseudo-disks, U has linear
size description, and we can compute it in near-linear time [92]. We can then
process U to decide in O(log n) time if it contains a query point or not. We
query with the O(n

√
n) points in P̃ , and add to P those that are contained in

3.2. A PLACEMENT ALGORITHM IN L∞ 51

U . This accomplishes the computation of U ∩ δΛ in O(n
√

n log n) time. 2

We are left with the following problem: given a set P of O(n
√

n) points,
and a set B of n disks, find a maximum matching between P and B such that a
point is matched to a disk that contains it. We also know that each Bi contains
at most O(n) points of P .

If we forget about the geometry of the problem, we have a bipartite graph
Gδ whose smallest class has n vertices and O(n2) edges. We can construct Gδ

explicitly in O(n2) time, and then compute a maximum matching in O(
√

nn2) =
O(n2.5) time [89]; see also [116]. In fact, to achieve this running time it would
be easier to forget Lemma 3.6, and construct each set Pi by choosing 5n points
per disk Bi, and then removing Q from them.

However, the graph Gδ does not need to be constructed explicitly because
its edges are implicitly represented by the the disk-point containment. This
type of matching problem, when both sets have the same cardinality, has been
considered by Efrat et al. [62, 63]. Although in our setting one of the sets may
be much larger than the other one, we can make minor modifications to the
algorithm in [62] and use Mortensen’s data structure [104] to get the following
result.

Lemma 3.7 In the L∞ metric, the algorithm Placement can be adapted to
run in O(n

√
n log n) time.

Proof: We compute the set P of Lemma 3.6 in O(n
√

n log n) time, and then
apply the idea by Efrat et al. [62] to compute the matching; see also [63]. The
maximum matching has cardinality at most n, and then the Dinitz’s matching
algorithm finishes in O(

√
n) phases [89]; see also [116].

In each of the phases, we need a data structure for the points P that supports
point deletions and witness queries with squares (disks in L∞). If we construct
the data structure anew in each phase, and P has Ω(n

√
n) points, then we

would need Ω(n
√

n) time per phase, which is too much. Instead, we construct
the data structure D(P) of [104] only once, and reuse it for all phases. The
data structure D(P) can be constructed in O(n

√
n log n) time, and it supports

insertions and deletions in O(log n) time per operation. Moreover, D(P) can
be modified for answering witness queries in O(log n) time [105]: for a query
rectangle R, it reports a witness point in R ∩ P , or the empty set.

We show how a phase of the algorithm can be implemented in O(n log n)
time. Consider the construction of the layered graph L, as in Section 3 of
[62]; B for the odd layers, and P for the even layers. We make the following
modifications:

• We construct the whole layered graph L but without the last layer. Call
it L′. The reason is that the graph L′ only has O(n) vertices. All odd
layers together have at most n vertices; an odd layer is a subset of B, and
each Bi ∈ B appears in at most one layer. In all the even layers together
except for the last, the number of vertices is bounded by the matching,
and so it has O(n) vertices (points).

52 CHAPTER 3. SPREADING POINTS

The last layer may have a superlinear number of vertices (points), but we
can avoid its complete construction: if we are constructing a layer L2j

and we detect that it contains more than n vertices, then L2j necessarily
has an exposed vertex, that is, a vertex that is not used in the current
matching. In this case we just put back into D all the vertices of L2j that
we already computed.

For constructing L′ we need to query O(n) times the data structure D,
and make O(n) deletions. This takes O(n log n) time. If P ′ ⊂ P is the
subset of points that are in L′, the final status of D is equivalent, in time
bounds, to D(P \ P ′).

• For computing the augmenting paths, we use the reduced version L′ that
we have computed, together with the data structure D(P \ P ′). All the
layers but the last can be accessed using L′; when we need information of
the last layer, we can get the relevant information by querying D(P \ P ′)
for a witness and delete the witness element from it. We need at most
one such query per augmenting path, and so we make at most n witness
queries and deletions in D. The required time is O(n log n).

• Instead of constructing the data structure D(P) anew at the beginning
of each phase, we reconstruct it at the end of each phase. Observe that
we have deleted O(n) points from D(P). We can insert all of them back
in O(n log n) time because the data structure is fully-dynamic. In fact,
because the points that we are inserting back are exactly all the points
that were deleted, a data structure supporting only deletions could also
do the job: for each deletion we keep track of the operations that have
been done and now we do them backwards.

We have O(
√

n) phases, and each phase takes O(n log n) time. Therefore, we
only need O(n

√
n log n) time for all the phases after P and D(P) are constructed.

2

Computing the closest pair in a set of n points can be done in O(n log n)
time, and so the time to decide if Placement(δ) succeeds or fails is dominated
by the time needed to compute Placement(δ).

3.3 Approximation algorithms for L∞

When we have a lower and an upper bound on the optimum value δ∗ = D(B),
we can use Lemma 3.7 to perform a binary search on a value δ such that
Placement(δ) succeeds, but Placement(δ + ε) fails, where ε > 0 is any
constant fixed a priori. Due to Lemma 3.2, this means that δ ≤ δ∗ < 2(δ + ε)
and so we can get arbitrarily close, in absolute error, to a 2-approximation of
δ∗.

We can also apply Megiddo’s parametric search [101] to find a value δ̃ such
that Placement(δ̃) succeeds, but Placement(δ̃+ε) fails for an infinitesimally

3.3. APPROXIMATION ALGORITHMS FOR L∞ 53

small ε > 0. Such a value δ̃ can be computed in O(n3 log2 n) time, and it is a
2-approximation because of Observation 3.5. Megiddo’s ideas [102] of using a
parallel algorithms to speed up parametric search are not very fruitful in this
case because the known algorithms for computing maximum matchings [77] in
parallel machines do not have an appropriate tradeoff between the number of
processors and the running time.

Instead, we will use the geometric characteristics of our problem to find a
2-approximation δ̃ in O(n

√
n log2 n) time. The idea is to consider for which

values δ the algorithm changes its behavior, and use it to narrow down the
interval where δ̃ can lie. More specifically, we will use the following facts in a
top-bottom fashion:

• For a given δ, the disks Bi with radius above 3δ
√

n are shrunk. There-
fore, for values δ below and above ri

3
√

n
the algorithm may construct non-

isomorphic graphs Gδ.

• The disks Bi with radius ri < δ∗

4 are disjoint.

• If all the disks in B are disjoint, placing each point in the center of its disk
gives a 2-approximation.

• For a value δ, assume that the disks B can be partitioned into two sets
B1,B2 such that the distance between any disk in B1 and any disk in B2 is
bigger than δ. If 2δ ≤ δ∗, then we can compute a successful placement by
putting together Placement(δ) for B1 and and Placement(δ) for B2.

• If for a given δ and B we cannot apply the division of the previous item,
and each disk Bi ∈ B has radius at most R, then B can be enclosed in a
disk B of radius O(|B|R).

We show how to solve this last type of problems, and then we use it to prove
our main result.

Lemma 3.8 Let B be an instance consisting of m disks such that each disk
Bi ∈ B has radius O(r

√
k), and assume that there is a disk B of radius R =

O(mr
√

k) enclosing all the disks in B. If Placement(r
3
√

k
) succeeds, then we

can compute in O(m
√

m log2 mk) time a placement p1, . . . , pm with pi ∈ Bi that
yields a 2-approximation of D(B).

Proof: The proof is divided into three parts. Firstly, we show that we can as-
sume that the origin is placed at the center of the enclosing disk B. Secondly, we
narrow down our search space to an interval [δ1, δ2] such that Placement(δ1)
succeeds but Placement(δ2) fails. Moreover, for any δ ∈ (δ1, δ2], the subset
of lattice points P̃ ⊂ Λ such that δP̃ are inside the enclosing ball B is exactly
the same. Finally, we consider all the critical values δ ∈ [δ1, δ2] for which the
flow of control of Placement(δ) is different than for Placement(δ + ε) or
Placement(δ−ε). The important observation is that the values δ1, δ2 are such
that not many critical values are in the interval [δ1, δ2].

54 CHAPTER 3. SPREADING POINTS

Let B′ be a translation of B such that the center of the enclosing disk B
is at the origin. By hypothesis, Placement(r

3
√

k
) for B succeeds. There-

fore, if Placement(r
3
√

k
) for B′ fails, then Placement(r

3
√

k
) for B gives a

2-approximation due to Observation 3.3, and we are done. From now on, we
assume that Placement(r

3
√

k
) succeeds and the center of B is at the origin.

This finishes the first part of the proof.

As for the second part, consider the horizontal axis h. Because the enclosing
disk B has radius R = O(mr

√
k), the lattice (r

3
√

k
)Λ has O(mk) points in B∩h.

Equivalently, we have t = max{z ∈ Z s.t.(r
3
√

k
)(z, 0) ∈ B} = b 3R

√
k

r c = O(mk).

In particular, R
t+1 ≤ r

3
√

k
.

If Placement(R
t+1) fails, then Placement(r

3
√

k
) is a 2-approximation due

to Observation 3.4. So we can assume that Placement(R
t+1) succeeds. We can

also assume that Placement(R
1) fails, as otherwise B consists of only one disk.

We perform a binary search in Z ∩ [1, t + 1] to find a value t′ ∈ Z such that
Placement(R

t′) succeeds but Placement(R
t′−1) fails. We can do this with

O(log t) = O(log mk) calls to Placement, each taking O(m
√

m log m) time
due to Lemma 3.7, and we have spent O(m

√
m log2 mk) time in total. Let

δ1 := R
t′ and δ2 := R

t′−1 .

Consider the lattice points P̃ := Λ
⋂

[−(t′ − 1), t′ − 1]2. For any δ ∈ (δ1, δ2],
the points δP̃ are in B. The intuition behind why these values δ1, δ2 are relevant
is the following. If for a point p ∈ Λ we consider δp as a function of δ, then the
points p that are further from the origin move quicker. Therefore, the points
δ2P̃ cannot go very far from δ1Λ because the extreme cases are the points on
∂B. This finishes the second part of the proof.

Before we start the third part, let us state and prove the property of δ1, δ2

that we will use later; see Figure 3.3. If p ∈ Λ is such that δ1p is in the interior
of B, and Cp is the union of all four cells of δ1Λ having δ1p as a vertex, then
δ2p ∈ Cp, and more generally, δp ∈ Cp for any δ ∈ [δ1, δ2]. Therefore, if for a
point p ∈ Λ there is a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then ∂Bi must intersect
Cp.

To show that indeed this property holds, consider a point p = (px, py) ∈ Λ
such that δ1p is in the interior of B. We then have |δ1px| < R, and because
|px| < R

δ1
= R

R/t′ = t′ and px ∈ Z, we conclude that |px| ≤ t′ − 1. This implies

that

|δ2px − δ1px| =

∣

∣

∣

∣

δ1px

(δ2

δ1
− 1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

δ1px

(t′

t′ − 1
− 1

)

∣

∣

∣

∣

= δ1
|px|

t′ − 1
≤ δ1.

The same arguments shows that

|δ2py − δ1py| ≤ δ1.

Since each coordinate of δ2p differs by at most δ1 of the coordinates of δ1p, we
see that indeed δ2p is in the cells Cp of δ1Λ.

3.3. APPROXIMATION ALGORITHMS FOR L∞ 55

δ1p

Cp

δ2p

To the origin

δ1Λ

B

Figure 3.3: If for p ∈ Λ we have δ1p ∈ B, then δ2p lies in one of the cells of δ1Λ
adjacent to δ1p.

We are ready for the third part of the proof. Consider the critical values
δ ∈ [δ1, δ2] for which the flow of control of the Placement changes. They are
the following:

• A point p ∈ Λ such that δp ∈ Bi but (δ + ε)p /∈ Bi or (δ − ε)p 6∈ Bi for an
infinitesimal ε > 0. That is, δp ∈ ∂Bi.

• Bi intersects an edge of δΛ, but not of (δ+ε)Λ (δ−ε)Λ for an infinitesimal
ε > 0.

Because of the property of δ1, δ2 stated above, only the vertices V of cells
of δ1Λ that intersect ∂Bi can change the flow of control of Placement. In
the L∞ metric, because the disks are axis-aligned squares, the vertices V are
distributed along two axis-aligned rectangles R1 and R2. All the vertices of V
along the same side of R1 or R2 come in or out of Bi at the same time, that is,
they intersect ∂Bi for the same value δ. Therefore, each disk Bi induces O(1)
such critical values ∆i changing the flow of control of Placement, and we can
compute them in O(1) time.

We can compute all the critical values ∆ =
⋃m

i=1 ∆i and sort them in
O(m log m) time. Using a binary search on ∆, we find δ3, δ4 ∈ ∆, with δ3 <
δ4, such that Placement(δ3) succeeds but Placement(δ4) fails. Because
|∆| = O(m), this can be done in O(m

√
m log2 m) time with O(log m) calls to

Placement. The flow of control of Placement(δ4) and of Placement(δ3+ε)
are the same. Therefore, Placement(δ3 + ε) also fails, and we conclude that
Placement(δ3) yields a 2-approximation because of Observation 3.5. 2

56 CHAPTER 3. SPREADING POINTS

Theorem 3.9 Let B = {B1, . . . , Bn} be a collection of disks in the plane with
the L∞ metric. We can compute in O(n

√
n log2 n) time a placement p1, . . . , pn

with pi ∈ Bi that yields a 2-approximation of D(B).

Proof: Let us assume that r1 ≤ · · · ≤ rn, that is, Bi is smaller than Bi+1.
Consider the values ∆ = { r1

3
√

n
, . . . , rn

3
√

n
, 4rn}. We know that Placement(r1

3
√

n
)

succeeds, and we can assume that Placement(4rn) fails; if it would succeed,
then the disks in B would be disjoint, and placing each point pi := ci would give
a 2-approximation.

We use Placement to make a binary search on the values ∆ and find
a value rmax such that Placement(rmax

3
√

n
) succeeds but Placement(rmax+1

3
√

n
)

fails. This takes O(n
√

n log2 n) time, and two cases arise:

• If Placement(4rmax) succeeds, then rmax 6= rn. In the case that 4rmax >
rmax+1

3
√

n
, we have a 2-approximation due to Observation 3.4. In the case

that 4rmax ≤ rmax+1

3
√

n
, consider any value δ ∈ [4rmax, rmax+1

3
√

n
]. On the

one hand, the balls Bmax+1, . . . , Bn are not problematic because they
have degree n in Gδ . On the other hand, the balls B1, . . . , Bmax have
to be disjoint because δ∗ ≥ 4rmax, and they determine the closest pair in
Placement(δ). In this case, placing the points p1, . . . , pmax at the centers
of their corresponding disks, computing the distance δ̃ of their closest
pair, and using Placement(δ̃) for the disks Bmax+1, . . . , Bn provides a
2-approximation.

• If Placement(4rmax) fails, then we know that for any δ ∈ [rmax

3
√

n
, 4rmax]

the disks Bj with
rj

3
√

n
≥ 4rmax have degree at least n in Gδ . We shrink

them to have radius 12rmax
√

n, and then they keep having degree at least
n in Gδ , so they are not problematic for the matching. We also use B for
the new instance (with shrunken disks), and we can assume that all the
disks have radius O(12rmax

√
n) = O(rmax

√
n).

We group the disks B into clusters B1, . . . ,Bt as follows: a cluster is a
connected component of the intersection graph of the disks B(c1, r1 +
4rmax), . . . , B(cn, rn + 4rmax). This implies that the distance between
different clusters is at least 4rmax, and that each cluster Bj can be enclosed
in a disk of radius O(rmax|Bj |

√
n).

For each subinstance Bj , we use Lemma 3.8, where m = |Bj | and k =

n, and compute in O(|Bj |
√

|Bj | log2(|Bj |n)) time a placement yielding
a 2-approximation of D(Bj). Joining all the placements we get a 2-

approximation of D(B), and because n =
∑t

i=1 |Bi|, we have used

t
∑

j=1

O
(

|Bj |
√

|Bj | log2(|Bj |n)
)

= O(n
√

n log2 n)

time for this last step.

2

3.4. APPROXIMATION ALGORITHMS IN THE L2 METRIC 57

A cell

Edges

Figure 3.4: Hexagonal packing induced by the lattice δΛ = {δ(a+ b
2 , b

√
3

2) | a, b ∈
Z}. A cell and a couple of edges of δΛ are also indicated.

3.4 Approximation algorithms in the L2 metric

We will now study how the L2 metric changes the bounds and results of the
algorithms studied for the L∞ metric. First, we consider arbitrary disks. Then,
we concentrate on congruent disks, for which we can improve the approximation
ratio.

3.4.1 Arbitrary disks

For the L∞ metric, we used the optimal packing of disks that is provided by
an orthogonal grid. For the Euclidean L2 metric we will consider the regular
hexagonal packing of disks; see Figure 3.4. For this section, we let

Λ := {(a +
b

2
,
b
√

3

2
) | a, b ∈ Z}.

Like in previous sections, we use δΛ = {δp | p ∈ Λ}. For disks of radius δ/2, the
hexagonal packing is provided by placing the disks centered at δΛ. The edges
of δΛ are the segments connecting each pair of points in δΛ at distance δ. They
decompose the plane into equilateral triangles of side length δ, which are the
cells of δΛ; see Figure 3.4.

Consider a version of Placement using the new lattice δΛ and modifying
it slightly for the cases when Bi contains no lattice point:

• If Bi is contained in a cell C, place pi := ci and add the vertices of C to
Q; see Figure 3.5a.

• If Bi intersects some edges of δΛ, let E be the edge that is closest to ci.
Then, place pi at the projection of ci onto E, and add the vertices of E
to Q; see Figure 3.5b.

Observe that, in this case, the distance between a point placed on an edge

and a point in δΛ \ Q may be δ
√

3
2 ; see Figure 3.5c. We modify accordingly

58 CHAPTER 3. SPREADING POINTS

δΛ

pi

pi

pi

pj

Bi Bi

Bi
Bj

(a) (b) (c)

Q

δΛ

Figure 3.5: Cases and properties of Placement for the L2 metric. (a) Place-
ment when Bi is fully contained in a cell. (b) Placement when Bi intersects an
edge: we project the center ci onto the closest edge. (c) A case showing that

the closest pair in Placement(δ) may be at distance δ
√

3
2 .

the criteria of Definition 3.1 regarding when Placement succeeds, and then
we state the result corresponding to Lemma 3.2.

Definition 3.10 In the L2 metric, we say that Placement(δ) succeeds if

the computed placement p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ
√

3
2 . Otherwise,

Placement(δ) fails.

Lemma 3.11 If 4δ√
3
≤ δ∗, then Placement(δ) succeeds.

Proof: We follow the proof of Lemma 3.2. Firstly, we argue that if 4δ√
3
≤ δ∗,

then Gδ has a matching. Secondly, we will see that if p1, . . . , pn is the placement

computed by Placement(δ) when 4δ√
3
≤ δ∗, then indeed D(p1, . . . , pn) ≥ δ

√
3

2 ,

that is, Placement(δ) succeeds.
Consider an optimal feasible placement p∗1, . . . , p

∗
n achieving δ∗. We then

know that the interiors of B(p∗1, δ
∗/2), . . . , B(p∗n, δ∗/2) are disjoint. To show

that Gδ has a matching, we have to argue that:

• If Bi ∩ δΛ = ∅, then the points that Bi contributed to Q are in the
interior of B(p∗i , δ

∗/2). We consider both cases that may happen. In
case that Bi is fully contained in a cell C of δΛ, then p∗i ∈ C, and so
C ⊂ B(p∗i , δ) ⊂ B(p∗i ,

2δ√
3
) ⊂ B(p∗i , δ

∗/2), and the vertices of C are in

B(p∗i , δ
∗/2). In case that Bi intersects edges of δΛ and pi was placed on

E, then E is the closest edge of δΛ to ci and E ⊂ B(p∗i ,
2δ√
3
), as can be

analyzed in the extreme cases depicted in Figures 3.6a and 3.6b.

• If Bi ∩ δΛ 6= ∅, we have to argue that there is point p ∈ Bi ∩ (δΛ \ Q). If
Bi has diameter smaller than δ∗/2, then Bi ⊂ B(p∗i , δ

∗/2) and the points
in Bi ∩ δΛ are inside B(p∗i , δ

∗/2), and so not in Q. If Bi has diameter
bigger than δ∗/2, then the region Bi ∩ B(p∗i , δ

∗/2) contains a disk B′ of
diameter at least δ∗

2 ≥ 2δ√
3
. It is not difficult to see that then B′ contains

3.4. APPROXIMATION ALGORITHMS IN THE L2 METRIC 59

δΛ
pi

Bi

(a)

p∗
i

pi

Bi

(b)

p∗
i

δΛ

Figure 3.6: Part of the analysis of Placement for the L2 metric. (a) and (b)
When Bi ∩ δΛ = ∅ and pi was placed on the edge E, then the distance from p∗

i

to any point of E is at most δ
√

3
2 , and therefore E ⊂ B(p∗i ,

δ
√

3
2).

a point p ∈ δΛ (actually this also follows from Lemma 3.16), and so there
is a point p ∈ δΛ ∩ B′ ⊂ (B(p∗i , δ

∗/2) ∩ δΛ) which cannot be in Q.

This finishes the first part of the proof. For the second part, consider a pair
of points pi, pj of the placement computed by Placement(δ) when 4δ√

3
≤ δ∗.

If they have been assigned in the matching of Gδ , then they are distinct points
of δΛ and so they are at distance at least δ. If pj was assigned in the matching
and Bi contains no point from δΛ, then the points in δΛd \Q are at distance at

least δ
√

3
2 from pi, and so are the distance between pi and pj .

If both Bi, Bj do not contain any lattice point, then we know that ri, rj <
δ√
3
, d(pi, ci) ≤ δ

2
√

3
, and d(ci, cj) ≥ d(p∗i , p

∗
j)−d(p∗i , ci)−d(p∗j , cj) > 4δ√

3
−2 δ√

3
=

2δ√
3
. We have the following cases:

• Bi and Bj do not intersect any edge of δΛ. Then d(pi, pj) = d(ci, cj) >
2δ√
3

> δ
√

3
2 .

• Bi intersects an edge E of δΛ, but Bj does not. Then d(pi, pj) ≥ d(ci, cj)−
d(pi, ci) − d(pj , cj) > 2δ√

3
− δ

2
√

3
− 0 = δ

√
3

2 .

• Both Bi, Bj intersect edges of δΛ. See Figure 3.7a to follow the analysis.
Without loss of generality, let’s assume that ci lies in the shaded triangle,
and so pi ∈ E, where E is the closest edge to ci. The problematic cases
are when pj is placed at the edges E1, E2, E3, E4, E5, as the other edges

are either symmetric to one of these, or further than δ
√

3
2 from pi ∈ E.

We then have the following subcases:

E1, E2. Consider the possible positions of cj that would induce pj ∈ E1, E2;
see Figure 3.7a. The center cj needs to lie in one of the dotted
triangles that are adjacent to E1 and E2. But the distance between
any point of the dotted triangles and any point of the grey triangle is
at most 2δ√

3
, and so in this case we would have d(ci, cj) ≤ 2δ√

3
, which

is not possible.

60 CHAPTER 3. SPREADING POINTS

(a)

(b)

(c)

(d)

ci

pi

cj

pj

p̃j

≤ δ

2
√

3

E3

ci

pi

cj

pj

E4

ci

pi

cj
pj

p̃j

E5

≤ δ

2
√

3

δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

≤ δ

2
√

3

δ

2
√

3

ci

E

δΛ

pi

E1

E2

E4

E3

E5

Figure 3.7: Analysis to show that d(pi, pj) ≥ δ
√

3
2 when Bi, Bj do not contain

any point from δΛ.

E3. Consider the possible positions of cj that would induce pj ∈ E3;
see Figure 3.7b. For a fixed value d(ci, cj), the distance between
pi and pj is minimized when ci and cj are on the same side of the
line through pi and pj , like in the figure. Consider the point p̃j

vertically below cj and at distance δ
2
√

3
from cj . Then, we have

that d(pi, p̃j) ≥ d(ci, cj) > 2δ√
3
. Because d(pj , p̃j) ≤ δ

2
√

3
, we get

d(pi, pj) ≥ d(pi, p̃j) − d(pj , p̃j) > 2δ√
3
− δ

2
√

3
= δ

√
3

2 .

E4. Consider the possible positions of cj that would induce pj ∈ E4;
see Figure 3.7c. For a fixed value d(ci, cj), the distance between
pi and pj is minimized when ci and cj are on opposite sides of
the line through pi and pj , and d(pi, ci) = d(pj , cj) = δ

2
√

3
. But,

in this case, we can use Pythagoras’ theorem to get d(pi, pj) =
√

d(ci, cj)2 −
(

d(pi, ci) + d(pj , cj)
)2

>

√

(

2δ√
3

)2

−
(

2δ
2
√

3

)2

= δ.

E5. Consider the possible positions of cj that would induce pj ∈ E5;
see Figure 3.7d. For a fixed value d(ci, cj), The distance between
pi and pj is minimized when ci and cj are on opposite sides of the

3.4. APPROXIMATION ALGORITHMS IN THE L2 METRIC 61

line through pi and pj , like in the figure. Consider the point p̃j

vertically above cj and at distance δ
2
√

3
from cj . Then, we have

that d(pi, p̃j) ≥ d(ci, cj) > 2δ√
3
. Because d(pj , p̃j) ≤ δ

2
√

3
, we get

d(pi, pj) ≥ d(pi, p̃j) − d(pj , p̃j) > 2δ√
3
− δ

2
√

3
= δ

√
3

2 .

In all cases, we have d(pi, pj) ≥ δ
√

3
2 and this finishes the proof of the lemma.

2

Like before, we have the following observations.

Observation 3.12 If Placement(δ) succeeds for B, but Placement(δ) fails
for a translation of B, then δ∗ ≤ 4δ√

3
holds and Placement(δ) gives an 8

3 -
approximation.

If for some δ > δ′, Placement(δ) succeeds, but Placement(δ′) fails, then

δ∗ ≤ 4δ′
√

3
< 4δ√

3
and Placement(δ) gives an 8

3 -approximation.

If Placement(δ) succeeds, but Placement(δ + ε) fails for an infinitesimal
ε > 0, then δ∗ ≤ 4δ√

3
and Placement(δ) gives an 8

3 -approximation.

Lemma 3.6 also applies to the L2 metric because all the properties of the
L∞ metric that we used in its proof also apply to the L2 metric.

In the proof of Lemma 3.7 we used a dynamic data structure D for point
sets that supports witness queries: given a disk Bi, report a point contained in
Bi. In the L2 case, we can handle this using a dynamic data structure D′ for
nearest neighbor queries: given a point p, report a closest point to p. When we
want a witness for Bi, we query with ci for a closest neighbor pci

. If pci
lies in

Bi, then we report it as witness, and otherwise there is no point inside Bi.
Using the data structure D′ by Agarwal and Matoušek [5] for the point set

P , we can construct the data structure in O(|P |1+ε) time, it answers nearest
neighbor queries in O(log3 |P |) time, and supports updates in O(|P |ε) amortized
time, where ε > 0 is an arbitrarily small positive value affecting the constants
hidden in the O-notation. In the special case that all the disks are congruent,
it is better to use the data structure developed by Efrat et al. [62]; it uses
O(|P | log |P |) preprocessing time, it answers a witness query and supports a
deletion in O(log |P |) amortized time. Using these data structures and with the
proof of Lemma 3.7, we get the following result for the L2 metric.

Lemma 3.13 The Algorithm Placement can be adapted to run in O(n1.5+ε)
time. When all the disks are congruent, it can be adapted to run in O(n

√
n log n)

time.

The running times would actually remain valid for any Lp metric, either
using the data structure for nearest neighbors by Agarwal et al. [4] for the
general case, or the semi-dynamic data structure of Efrat et al. [62] for congruent
disks. However, we would have to use suitable lattices and we would achieve
different approximation ratios.

62 CHAPTER 3. SPREADING POINTS

B

Λ-aligned quadrilateral

Figure 3.8: For computing δ1, δ2 in the proof of Lemma 3.14, we use, instead of
B, the smallest Λ-aligned quadrilateral that encloses B.

The proof of Lemma 3.8 is not valid for the L2 metric because we used the
fact that the disks in the L∞ metric are squares. Instead, we have the following
result.

Lemma 3.14 Let B be an instance with m disks such that each disk Bi ∈ B has
radius O(r

√
k), and that there is a disk B of radius R = O(mr

√
k) enclosing all

the disks in B. If Placement(r
3
√

k
) succeeds, then we can compute a placement

p1, . . . , pm with pi ∈ Bi that yields an 8
3 -approximation of D(B) in O(mk) time

plus O(log mk) calls to Placement.

Proof: Consider the proof of Lemma 3.8. The first part of it is perfectly valid
for the L2 metric as well.

For the second part of the proof, when computing the values δ1, δ2, instead
of using the enclosing disk B, we use the smallest Λ-aligned quadrilateral that
encloses the disk B; see Figure 3.8. Like in Lemma 3.8, we compute δ1, δ2 by

making a binary search on the values R
z with z ∈ Z ∩ [1, 3R

√
k

r]. We do not
need to compute them explicitly because they are ordered by the inverse of

integer numbers. Because 3R
√

k
r = O(mk), we can do this with O(log mk) calls

to Placement.
Like in Lemma 3.8, the values δ1, δ2 have the property that if for a point

p ∈ Λ there is a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then ∂Bi must intersect Cp.
An easy way to see this is to apply a linear transformation that maps (1, 0) to

(1, 0) and (1
2 ,

√
3

2) to (0, 1). Under this transformation, the lattice δΛ becomes
δZ

2, the disk becomes an ellipse, the enclosing Λ-aligned quadrilateral becomes
a square enclosing the ellipse, and the proof of the equivalent property follows
from the discussion in the proof of Lemma 3.8.

As for the third part of the proof in Lemma 3.8, where we bound the number
of critical values ∆i that a disk Bi induces, we used that in the L∞ case the
disks are squares. This does not apply to the L2 disks, but instead we have the
following analysis.

Because the perimeter of Bi is O(ri) = O(r
√

k) and we have δ1 = Ω(r/
√

k),

the boundary of Bi intersects O
(

r
√

k
r/

√
k

)

= O(k) cells of δ1Λ. Together with

3.4. APPROXIMATION ALGORITHMS IN THE L2 METRIC 63

the property of δ1, δ2 stated above, this means that Bi induces O(k) critical
values changing the flow of control of Placement. That is, the set ∆i =
{δ ∈ [δ1, δ2] | ∃p ∈ Λ s.t. δp ∈ ∂Bi} has O(k) values. Each value in ∆i can be
computed in constant time, and therefore ∆ =

⋃m
i=1 ∆i can be computed in

O(mk) time.
Making a binary search on ∆, we find δ3, δ4 ∈ ∆, with δ3 < δ4, such that

Placement(δ3) succeeds but Placement(δ4) fails. If at each step of the binary
search we compute the median M of the elements where we are searching, and
then use Placement(M), we find δ3, δ4 with O(log mk) calls to Placement

plus O(mk) time for computing all medians because at each step we reduce by
half the number of elements where to search.

The flow of control of Placement(δ4) and of Placement(δ3 + ε) are
the same. Therefore, Placement(δ3 + ε) also fails, and we conclude that
Placement(δ3) yields an 8

3 -approximation because of Observation 3.12. 2

Theorem 3.15 Let B = {B1, . . . , Bn} be a collection of disks in the plane with
the L2 metric. We can compute in O(n2) time a placement p1, . . . , pn with
pi ∈ Bi that yields an 8

3 -approximation of D(B).

Proof: Everything but the time bounds remains valid in the proof of Theo-
rem 3.9. The proof of Theorem 3.9 is applicable. For solving the subinstances
Bj we used Lemma 3.8, and now we need to use Lemma 3.14. Together with
Lemma 3.13, it means that for solving the subinstance Bj we have m = |Bj | and
k = n, and so we need to use

O(|Bj |n + |Bj |1.5+ε log |Bj |n)

time. Summing over all t subinstances, and because n =
∑t

j=1 |Bj |, we have
spent

t
∑

j=1

O
(

|Bj |n + |Bj |1.5+ε log n
)

= O(n2)

time overall. 2

3.4.2 Congruent disks

When the disks B1, . . . , Bn are all congruent, say, of diameter one, we can
improve the approximation ratio in Theorem 3.15. For general disks, the prob-
lematic cases are those balls that do not contain any lattice point. But when
all the disks are congruent, it appears that we can rule out those cases. For
studying the performance of Placement with congruent disks, we need the
following geometric result.

Lemma 3.16 Let B be a disk of diameter one, and let B ′ be a disk of diameter

1 ≤ δ∗ ≤ 2 whose center is in B. Consider δ =
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 . Then,

64 CHAPTER 3. SPREADING POINTS

the lattice δΛ has some point in B ∩ B′. Furthermore, this is the biggest value
δ having this property. If B′ has diameter δ∗ ≤ 1, then the lattice (δ∗/2)Λ has
some point in B ∩ B′.

Proof: Firstly, we consider the case 1 ≤ δ∗ ≤ 2 and give a construction show-

ing that δ =
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 is indeed the biggest value for which the
property holds. Then, we show that δΛ always has some point in B ∩ B ′ by
comparing the different scenarios with the previous construction. Finally, we
consider the case δ∗ ≤ 1.

Assume without loss of generality that the line through the centers of B
and B′ is vertical. The worst case happens when the center of B ′ is on the
boundary of B. Consider the equilateral triangle T depicted on the left in
Figure 3.9. If the center of B is placed at (0, 0), then the lowest point of T
is placed at (1/2 − δ∗/2, 0), and the line L forming an angle of π/3 with a
horizontal line has equation L ≡ y = 1/2 − δ∗/2 +

√
3x. The intersection of

this line with the boundary of B, defined by y2 + x2 = 1/4, gives the solutions

x = ±−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

8 . Because of symmetry about the vertical line
through the centers of B and B′, and because the angle between this line and

L, the depicted triangle is equilateral and has side length
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 .
This shows that the chosen value of δ is the biggest with the desired property.

We have to show now that the lattice δΛ has the desired property. It is
enough to see that when two vertices of a cell of δΛ are on the boundary of
B ∩B′, then the third one is also in B ∩B′. In the center of Figure 3.9 we have
the case when the two vertices are on the boundary of B. Consider the edge
connecting these two points, and its orthogonal bisector. The bisector passes
through the center of B, and its intersection with the boundary of B ′ contained
in B is further from it than the intersection of the boundary of B ′ with the
vertical line through the center. Therefore, the third vertex is inside B ∩ B ′.

In the right of Figure 3.9 we have the case where the two vertices are on
the boundary of B′. If we consider the case when the lowest edge of the cell
is horizontal, we can see that the triangle has the third vertex inside. This is
because the biggest equilateral triangle with that shape that is inside B ∩ B ′

has side δ∗/2, and this is always bigger than δ =
−
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 when
1 ≤ δ∗ ≤ 2. Then the same argument as in the previous case works.

If one vertex is on the boundary of B and one on the boundary of B ′, we
can rotate the triangle around the first of them until we bring the third vertex
on the boundary of B contained in B′. Now we would have two vertices on the
boundary of B. If the third vertex was outside B ∩B′ before the rotation, then
we would have moved the second vertex outside B∩B ′, which would contradict
the first case. Therefore, the third vertex has to be inside B ∩ B ′.

Regarding the case δ∗ ≤ 1, we replace the disk B by another disk B̃ of
diameter δ∗ contained in B and that contains the center of B′. We scale the
scenario by 1/δ∗ so that both B̃ and B′ have diameter 1. If we apply the result
we have shown above, we know that (1/2)Λ contains some point in B̃ ∩B′, and
scaling back we get the desired result. 2

3.4. APPROXIMATION ALGORITHMS IN THE L2 METRIC 65

L

1

B B B

1 ≤ δ
∗ ≤ 2

B
′

B
′

B
′

T

Figure 3.9: Illustration of the proof of Lemma 3.16.

On the one hand, for 1 ≤ δ∗ ≤ 2 and δ ≤ −
√

3+
√

3δ∗+
√

3+2δ∗−δ∗2

4 , we have
Q = ∅ when computing Placement(δ), and the graph Gδ has a matching
because of Lemma 3.16 and the proof of Lemma 3.11. In this case, if p1, . . . , pn is
the placement computed by Placement(δ), we have D(p1, . . . , pn) ≥ δ because
all the points pi ∈ δΛ. Therefore, for 1 ≤ δ∗ ≤ 2, we can get an approximation
ratio of

δ∗

δ
≥ 4δ∗

−
√

3 +
√

3δ∗ +
√

3 + 2δ∗ − δ∗2
.

For any δ∗ ≤ 1, the second part of Lemma 3.16 implies that Centers gives a
2-approximation.

On the other hand, we have the trivial approximation algorithm Centers

consisting of placing each point pi := ci, which gives a δ∗

δ∗−1 -approximation when
δ∗ > 1. In particular, Centers gives a 2-approximation when δ∗ ≥ 2.

The idea is that the performances of Placement and Centers are re-
versed for different values δ∗ in the interval [1, 2]. For example, when δ∗ = 2,
the algorithm Placement gives a 4√

3
-approximation, while Centers gives a

2-approximation because the disks need to have disjoint interiors to achieve
δ∗ = 2. But for δ∗ = 1, the performances are reversed: Placement gives a
2-approximation, while Centers does not give any constant factor approxima-
tion.

The approximation ratios of both algorithms are plotted in Figure 3.10.
Applying both algorithms and taking the best of both solutions, we get an
approximation ratio that is the minimum of both approximation ratios, which
attains a maximum of

α := 1 +
13

√

65 + 26
√

3
∼ 2.2393.

Theorem 3.17 Let B = {B1, . . . , Bn} be a collection of congruent disks in the
plane with the L2 metric. We can compute in O(n2) time a placement p1, . . . , pn

with pi ∈ Bi that yields a ∼ 2.2393-approximation of D(B).

66 CHAPTER 3. SPREADING POINTS

1.5 1.6 1.7 1.8 1.9

2.2

2.4

2.6

2.8

3

Figure 3.10: Approximation ratios for both approximation algorithms as a func-
tion of the optimum δ∗.

Proof: The x-coordinate of the intersection of the two curves plotted in Fig-
ure 3.10 is given by

4δ∗

−
√

3 +
√

3δ∗ +
√

3 + 2δ∗ − δ∗2
=

δ∗

δ∗ − 1
.

This solves to δ∗ := 1
13

(

13 +
√

13(5 + 2
√

3
)

, and therefore the approximation

ratio is given by δ∗

δ∗−1 = α ∼ 2.2393. 2

3.5 Concluding remarks

We have presented approximation algorithms for the spreading-points problem.
Our approximation ratios rely on packing arguments for the balls in the corre-
sponding metric. However, in the running time of our results, we did not use
the regularity of the point sets that we considered. An appropriate use of this
property may lead to better running times, perhaps designing data structures
for this particular setting.

In the proof of Lemma 3.14, the bottleneck of the computation is that we
construct D explicitly. Instead, we could apply randomized binary search. For
this to work, we need, for given values δ, δ′ and a disk Bi, to take a random
point in the set P̃i = {p ∈ Λ | δp ∈ Bi and δ′p 6∈ Bi, or vice versa}. For the L2

metric, we constructed
⋃n

i=1 P̃i explicitly in quadratic time, and we do not see
how to take a random sample in sub-quadratic time.

The approximate decision problem can be seen as using lattice packings to
place disks inside the Minkowski sum

⋃n
i=1 Bi ⊕ B(0, d/2). In the L2 metric,

we have used the lattice inducing the hexagonal packing, but we could use
a different lattice. For the L2 metric, the rectangular packing gives a worse

3.5. CONCLUDING REMARKS 67

approximation ratio, and it seems natural to conjecture that the hexagonal
packing provides the best among regular lattices. On the other hand, deciding if
better approximation ratios can be achieved using packings that are not induced
by regular lattices seems a challenging problem.

68 CHAPTER 3. SPREADING POINTS

Chapter 4

Testing homotopy

In this chapter we present efficient algorithms for a basic topological question,
namely, testing if two given paths are homotopic; that is, whether they wind
around obstacles in the plane in the same way. Specifically, suppose that the
input consists of a set P of up to n points in the plane, and two paths, α and β,
that start and end at the same points and are represented as polygonal lines of
at most n segments each. The goal is to determine whether α is deformable to β
without passing over any points of P ; see Figure 4.1. Equivalently, we determine
whether the closed loop αβR, which concatenates α with the reverse of β, is
contractible in the plane minus P . We assume (or simulate) general position,
so that no three points are colinear and no two points are on the same vertical
line. We are primarily concerned with paths that have no self-intersections.

The path homotopy question arises in several application areas: In circuit
board design, river routing, where the homotopy class of each wire is specified,
is one of the few polynomial-time solvable variations of the wire routing prob-
lem [74, 96]. In motion path planning, one may check to see that two ways
of getting from point A to point B are equivalent [85]. In Cartography and
Geographic Information Systems (GIS), one may wish to simplify a linear fea-
ture (road or river) while respecting the way in which the feature winds around
points [27, 46]. Michael Goodchild, in an invited lecture at the 11th ACM Sym-
posium on Computational Geometry, pointed out that even on a road map that

α β

Figure 4.1: Are α and β homotopic?

69

70 CHAPTER 4. TESTING HOMOTOPY

Figure 4.2: Θ(n2) segments in the shortest homotopic path

has features with 60m accuracy, you will still find all the houses on the proper
side of the road. In such a case, the operators entering data have used topologi-
cal constraints to make sure that the road winds properly when creating the road
layer or building layer. Efrat et al. [64] recently looked at computing shortest
paths among obstacles by identifying and bundling homotopic fragments. They
independently developed a sweep algorithm that uses ideas similar to ours. Our
rectification can be used to speed up their algorithm, which is further improved
by Bespamyatnikh [21].

Several approaches to test path homotopy among points in the plane give
algorithms with quadratic worst-case behavior. One approach is to find the
Euclidean shortest representatives of the homotopy classes for α and β using
known algorithms, then to check that they are identical. These algorithms [85]
trace each path through a triangulation, taking time proportional to the number
of triangles that intersect the paths, which may be Θ(n2). In fact, explicit
representation of the shortest path may take Θ(n2) segments for a path like
the one in Figure 4.2. The more general problem of testing if two paths are
homotopic in compact surfaces, with or without boundary, was considered by
Dey and Guha [49] and Dey and Schipper [50]. Here the specification of the path
essentially must be as a sequence of the edges that are crossed in the universal
cover of the surface, which may again be quadratic.

For simple paths, our algorithm runs in O(n log n) time, which we show is
tight. The approach is to convert α and β separately to near-canonical represen-
tations of their homotopy classes, then compare the representations to determine
if the paths are homotopic. For self-intersecting paths, our algorithm runs in
O(n3/2 log n) time.

After laying the topological groundwork in the next section, we show how to
test homotopy for simple paths in Section 4.2. We then describe our algorithm
for non-simple paths in Section 4.3. We establish lower bounds for both prob-
lems in Section 4.4, in particular showing that the non-simple case is related to
Hopcroft’s problem. We conclude in Section 4.5.

4.1 Topological preliminaries

We actually solve three natural variations of the path homotopy question, so
clear definitions are important.

4.1. TOPOLOGICAL PRELIMINARIES 71

4.1.1 Three variations on path homotopy

The topological concept of homotopy formally captures the notion of deforming
paths [9, 106]. Let I = [0, 1] denote the unit interval and M denote a topological
space, which for us will be the complement of some point or polygonal obstacles
in the plane. A path is a continuous function α : I → M ; that is, a function for
which the preimage α−1(A) of an open set A ⊆ M is open in I . Paths α and β
that share starting and ending points, α(0) = β(0) and α(1) = β(1), are said to
be path homotopic if one can be deformed to the other in M while keeping the
endpoints fixed. The formal definition is as follows [43, 82].

Definition 4.1 Two paths α, β with the same endpoints are equivalent (or ho-
motopic) in M if and only if there exists a continuous function F : [0, 1]×[0, 1] →
M such that:

• F (0, t) = α(t) and F (1, t) = β(t), for all t ∈ [0, 1] (the first path is α,
the final path is β),

• F (s, 0) = α(0) = β(0) and F (s, 1) = α(1) = β(1), for all s ∈ [0, 1] (the
endpoints are fixed).

By the standard topological definition, path endpoints must lie in the space
M , and the path can pass over them by continuous deformation, creating self-
intersections. This may be undesirable in some applications, so we also consider
two alternative definitions that allow a path to begin or end at obstacles in the
plane. Informally, we can think of the path as a thread winding above a plane
that is punctured with long needles that serve as obstacles. If we fix the ends of
the thread with tacks, pins, or pushpins, we can obtain three variations of the
homotopy problem, as defined below.

tack A thumbtack pushed flat into the plane presents no obstacle to the thread,
so this corresponds to the standard topological definition given above.

pin A straight pin serves as a point obstacle, so that the endpoints p0 and
p1 are not included in the topological space M . A path is a continuous
function from an open interval α : (0, 1) → M such that the one-sided
limits limx→0+ α(x) = p0 and limx→1− α(x) = p1.

pushpin A pushpin serves as a larger obstacle, so that closed ε neighborhoods
around the the endpoints are not included in the topological space M .
A path is defined as in the pin case, but now the limit points p0 and p1

are chosen on the boundaries of the ε neighborhoods. This is equivalent
to fixing the path direction at the endpoint, or to adding point obstacles
infinitesimally to the left and to the right of the path endpoint.

The two examples of Figure 4.3 show that these definitions lead to different
notions of path homotopy. Paths α and β are homotopic under the tack defi-
nition, but not under either the pin or pushpin definitions. Paths γ and δ are
homotopic under the tack and pin definitions, but are not homotopic under the
pushpin definition, which preserves how γ winds around the left endpoint.

72 CHAPTER 4. TESTING HOMOTOPY

α γ
δ

β

Figure 4.3: Distinguishing between path definitions

Because we can add obstacles to the plane to handle the pin and pushpin
definitions, we consider the tack (standard) definition in greatest detail. This
does cause extra complications in handling self-intersections, especially in Sec-
tion 4.2.6. The works of Efrat et al. [64] and Bespamyatnikh [21] use the pin
and pushpin definitions.

4.1.2 Canonical sequences

Whatever definition of path we choose, path homotopy is an equivalence re-
lation [9, 106], which implies we can identify a homotopy class by giving a
representative path.

We can write a simple representation of a path as the sequence of points
that it passes above and below. We can depict this by drawing vertical rays
upward and downward from each point of P to form vertical slabs. For a point
p, we use l+p and l−p to denote the vertical halfline with point p as lowest and
highest point respectively. The sequence just records the intersections with
these rays as we traverse a path through the slabs. Figure 4.4 illustrates the
paths with sequences α ≡ l−p1

l−p2
l−p2

l+p2
l+p3

l+p4
l−p4

l+p3
l+p3

l−p4
l−p5

l−p5
l−p4

l+p3
l−p2

l−p1
and β ≡

l−p1
l+p2

l+p3
l+p4

l−p5
l−p5

l−p4
l+p4

l+p4
l+p3

l+p2
l+p2

l−p2
l−p1

. This representation can be constructed
for paths with or without self-intersections.

A repeated ray with opposite signs is a turn point. Our α sequence has two
turn points, l−p2

l+p2
and l+p4

l−p4
. Polygonal path α can have at most n − 1 turn

points, since there must be at least one vertex of α between intersections with
two rays from the turn point, and each vertex is claimed by at most one turn
point.

An adjacent pair of repeated symbols can be deleted by deforming the curve
out of a slab without changing the homotopy class. This deletion can be re-
peated until we obtain a canonical sequence. (The canonical sequence may even
be empty.) For example, from α we delete l−p2

l−p2
and l−p4

l+p3
l+p3

l−p4
l−p5

l−p5
, and from

β we delete l−p5
l−p5

, l+p4
l+p4

, and l+p2
l+p2

, to find that both have the same canoni-
cal sequence l−p1

l+p2
l+p3

l+p4
l−p4

l+p3
l−p2

l−p1
. In fact, two paths have the same canonical

sequence if and only if they are homotopic. This is most easily seen using uni-
versal covers, which we sketch in the next subsection. (Unfortunately, canonical
sequences can have quadratic length, so we cannot store and manipulate them
explicitly.)

4.1. TOPOLOGICAL PRELIMINARIES 73

p1

p2

p3

α β

p5

p4

Figure 4.4: Sequences α ≡ l−p1
l−p2

l−p2
l+p2

l+p3
l+p4

l−p4
l+p3

l+p3
l−p4

l−p5
l−p5

l−p4
l+p3

l−p2
l−p1

and
β ≡ l−p1

l+p2
l+p3

l+p4
l−p5

l−p5
l−p4

l+p4
l+p4

l+p3
l+p2

l+p2
l−p2

l−p1
lead to the same canonical sequence

l−p1
l+p2

l+p3
l+p4

l−p4
l+p3

l−p2
l−p1

.

4.1.3 Covering space

The topological concept of covering space has been used in the work of Gao et
al. [74] and Hershberger and Snoeyink [85]. We briefly describe its properties
here, and refer to basic topology texts [9, 106] for a more thorough, complete
description.

Informally, a topological space U is a covering space of a space X if, at each
point u ∈ U , there is a corresponding point x ∈ X such that things around u
and x look the same in their respective spaces, but there may be many points
of U mapping to the same point x.

Formally, let p : U → X be a continuous and onto map between connected
topological spaces U and X . If every point x ∈ X has an open neighborhood N
where the inverse image p−1(N) is a union

⋃

i Ui of disjoint open sets of U and
the restriction p|Ui

is a homeomorphism from Ui onto N , then p is a covering
map and U is a covering space of X .

A space is always a covering space of itself under the identity map [9, 106]. A
more interesting covering space is the universal covering space, which is simply
connected—every loop in this space can be contracted to a point. In our setting
(Figure 4.4), this space is most easily described by a procedure that grows a
region by gluing together copies of vertical slabs at their boundary rays. Start
with a region that consists of any single vertical slab, and therefore has four
boundary rays (or two if we started with the leftmost or rightmost slab.) Then
loop forever, selecting a boundary ray and gluing on a copy of the missing slab
along that ray. Never form a cycle or enclose a ray’s endpoint.

When the set of obstacle points, P , is non-empty, the universal covering
space is infinite, which is why our procedure does not terminate. It is relatively
easy to construct only the portions of the universal cover that intersect the given
paths α and β because any path can be lifted to the universal cover by choosing
the sequence of rays and slabs in the order that a path intersects them. In fact,
every path in the plane minus P has a unique lift into the universal cover once
the starting point is specified [9, 106]. To test path homotopy, one can simply
lift both α and β to the universal cover starting from the same point and ask if
they end at the same point in the universal cover.

74 CHAPTER 4. TESTING HOMOTOPY

Because the universal cover is simply connected, the dual graph, with a
vertex for each slab, is an infinite tree. The dual of the portion visited by a
path is a finite tree, and the operation of constructing a canonical sequence
prunes leaves from this tree so that what remains is the unique shortest path
from the slab of the start point to the slab of the endpoint. This establishes the
difficult-to-prove direction of the following lemma.

Lemma 4.2 Two paths have the same canonical sequence if and only if they
are homotopic.

Proof: It is clear that two paths with the same canonical sequence are homo-
topic, since the construction of a canonical sequence from a path is a concate-
nation of homotopies on slabs. For the reverse, suppose that paths α and β are
homotopic. When we lift both to the universal cover, starting at the same point,
they end at the same point. Their canonical sequences, therefore, must go from
the same starting slab to the same ending slab. There is only one shortest path
that does so in the tree, so the canonical sequences are the same. 2

The following corollary will be useful in proving that paths have an empty
canonical sequence.

Corollary 4.3 Any path that can be lifted to the universal cover to start and
end on the same vertical segment has an empty canonical sequence.

Proof: The path is homotopic to the vertical segment, which has an empty
canonical sequence. 2

4.2 Homotopy test for simple paths

In this section we focus on homotopy testing for paths α and β that are simple—
they have no self-intersections. An aboveness ordering allows us to find a rec-
tified representation of a path. Using orthogonal range queries, we can adjust
the path to have the canonical sequence, then test homotopy for two adjusted
paths in O(n log n) time.

4.2.1 Aboveness ordering

For sets in the plane one can define an aboveness relation that is useful in
many algorithms in computational geometry [110]: A � B if there are points
(x, yA) ∈ A and (x, yB) ∈ B with yA > yB .

We say that a set is vertically convex if it is path connected [9, 106] and the
intersection with any vertical line is an (open or closed) interval. Break a path
α into x-monotone fragments and conceptually separate them at their common
endpoints to give a collection of disjoint vertically convex sets. When applied to
disjoint, vertically convex sets, we can easily show that the aboveness relation
is a partial order [18]:

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 75

0

1
2

3

4

5 6

7

8

9

1011

Figure 4.5: The aboveness tree for path α, and its inorder numbering in the
child/sibling representation.

(α, P)

0

1

p1

2

3

p2

4

5 6
7

8

p4

p5

9

1011

p3

0

5

10

0

5

10

0

1 2
3

4
5

6
7 8

9
10 11

α β

(β, P)

p1

p2

p3

p4

p5

Figure 4.6: Numberings for α and β are used to form rectified pairs (α, P) and
(β, P). Rectifying preserves path simplicity and sequences.

Lemma 4.4 The aboveness relation is acyclic for pairwise disjoint, vertically
convex sets A1, . . . , Ak in the plane.

It is easy to develop a plane sweep algorithm that can compute in O(n log n)
time, a total order for monotone fragments of a path and points that is consistent
with the aboveness relation. We sketch an algorithm adapted from Palazzi and
Snoeyink [109].

Define an aboveness tree on disjoint points and monotone path fragments,
in which each point and path is a child of the path directly above its rightmost
endpoint. This is a k-ary tree, in which children can be ordered left to right by
rightmost endpoints. We add a horizontal segment at y = ∞ to serve as the
root of this tree. For disjoint paths specified by n segments, this tree can be
constructed in O(n log n) time by a plane sweep algorithm.

We represent this k-ary tree as a binary tree by giving each path a pointer
to its left sibling and rightmost child, as in Figure 4.5. We then number the
points and paths according to an inorder traversal that recursively visits the left
sibling, the node, and then the rightmost child.

76 CHAPTER 4. TESTING HOMOTOPY

We can prove that this numbering is consistent with the aboveness relation.
Define a rightward trace from any point or monotone path by tracing paths to
their rightmost endpoints, and to parent pointers, up to the root. Note that
traces do not cross. If s � t then a trace from s must come from the left to
meet a trace from t, and the inorder traversal numbers the subtree containing
s before the subtree containing t. See [109] if more detail is desired.

4.2.2 Rectified pairs

We can use a total ordering that respects the aboveness to rectify any simple
path α around points P . Simply rank each point of P and monotone fragment
of the path and replace all y coordinates by their ranks. We call the result a
rectified pair (α, P).

Figure 4.6 shows the rectified pairs (α, P) and (β, P). Each path is consid-
ered to consist of horizontal segments that come from monotone path fragments
and vertical segments that connect these fragments in order.

Notice that the points receive different ranks for the numberings of the two
paths, and therefore different y coordinates in the two rectified pairs. The
points can still be distinguished by their x coordinates, which were assumed to
be distinct and do not change. All aboveness relationships are preserved, so
rectifying a pair does not change a path sequence or cause self-intersection.

4.2.3 Orthogonal range queries

Rectifying a pair makes it easier to compute a canonical sequence, because
we can search for turn points using orthogonal range queries. Our problem
is to preprocess a set of points P in the plane to answer queries of the form
“Report the rightmost point in an axis-aligned query rectangle Q, or ‘none’ if
the rectangle Q is empty.” (We use a symmetric structure to query for leftmost
points.) These are sometimes known as three-sided range queries, because it is
sufficient to supply the top, bottom, and right side of the query rectangle. This
problem can be solved in O(n log n) preprocessing time and linear space using
Chazelle’s data structure for segment dragging [38]. The RT of Edelsbrunner [57]
or the range priority tree of Samet [113] achieve the same time bound, with an
extra logarithmic factor in space but a savings in programming complexity.

Lemma 4.5 Three-sided range queries can be answered in O(log n) time, with
O(n log n) preprocessing and linear space.

4.2.4 A rectified canonical path

Given a rectified pair (α, P), we are going to describe an algorithm Rcp (short-
hand for Rectified canonical path) that computes a new path whose se-
quence is the canonical sequence for α. We also call this new path a rectified
canonical path. It must be understood that this is defined with respect to a
rectified pair (α, P), and not the original path and points. At the end of this

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 77

α

L2

α̂

L1

Figure 4.7: The path α̂ has the last intersection property.

subsection, we derive non-rectified canonical paths for α, β, and the original
point set P .

The algorithm Rcp is a simple, incremental procedure to compute a rectified
canonical path from the pair (α, P). We assume that α is represented by the
list x0, y0, x1, y1, . . . , yn−1, xn, which indicates that the path visits (x0, y0),
(x1, y0), (x1, y1), . . . , (xn−1, yn−1), (xn, yn−1), alternating between horizontal
and vertical segments. We think of α as oriented from the start to the end.

The canonical path that we compute is determined from (α, P) by an im-
portant last intersection property. Given any oriented curve γ in the plane, we
say that a curve γ̂ from the homotopy of γ has the last intersection property if
any vertical segment L in the universal cover intersecting the lift of γ̂ does so at
the last of its intersections with the lift of γ. In Figure 4.7, the dark curve α̂ has
the last intersection property in the universal cover. For example, segment L1

has three intersections with the lift of α, and the last is in the lift of α̂. Segment
L2 actually has only one intersection with the lift of α, which is in α̂.

We consider the horizontal segments of α in order. We maintain the invari-
ants that after i segments, for 0 ≤ i ≤ n,

• stack S contains a rectified canonical path for the prefix of α from x0 to xi,

• the canonical sequence for the path on S has no adjacent repeated symbols,
and

• the path on S has the last intersection property.

Begin by setting i = 0 and pushing x0 onto S. This establishes the initial
invariant for the stack; the others are trivially true.

While i < n, let X denote the top element on the stack, and if X 6= x0,
let Ys and Xs be the pair just below X on the stack. Figure 4.8 illustrates
cases (I)–(V) as we consider the current segment from (X, yi) to (xi+1, yi). We
assume that xi+1 < X , since the reverse is symmetric.

If we are not doubling back—that is, if (I): X = x0 or (II): xi+1 < X < Xs—
then push yi and xi+1 onto S, and increment i. The canonical sequence for this
path will not gain any repeated pair of symbols and the path is extended in the
current direction.

If we are doubling back, Xs ≤ X and there are three cases. Either (III):
there is a turn point p with max{Xs, xi+1} < p.x ≤ X , or there is no turn point

78 CHAPTER 4. TESTING HOMOTOPY

IV: erase curr

XSX = x0

yi

YS

xi+1

p

yi

YS

X

I: start II: continue III: turn V: erase old

xi+1 xi+1 xi+1 xi+1X X

X XS XS XS

Figure 4.8: Five cases in incrementally computing a canonical path.

and (IV): Xs < xi+1 < X or (V): xi+1 < Xs ≤ X . We check for a turn point by
performing an orthogonal range query with the rectangle [max{Xs, xi+1}, X]×
[Ys, yi]. We handle each case separately.

(III): Turn point (p.x, p.y) is found, so replace X with p.x at the top of S,
then push yi and xi+1 onto S, and increment i. Because of the turn
point, adjacent symbols in the canonical sequence will not be identical,
and vertical lines in the universal cover will intersect a single horizontal
segment. (Note: we may wind over and under p in this case; sometimes
it helps to think of p as a pair of points separated infinitesimally in x so
that winding generates infinitesimal horizontal segments.)

(IV): No turn point; erase current segment. Replace X with xi+1 at the top of
S and increment i. This shortens the path stored in S, so cannot create
repeated symbols or violate the last intersection property.

(V): No turn point; erase old segment. Pop stack S twice to remove the old
segment at the top. This case may apply repeatedly, as it does not incre-
ment i, but each repetition shortens the path in S.

We continue until i = n, and use Rcp(α, P) to denote the output.

Theorem 4.6 The algorithm Rcp correctly computes a path whose sequence is
the canonical sequence for (α, P) using at most 2n orthogonal range queries plus
O(n) time.

Proof: First, we show that the algorithm terminates after 2n iterations. Each
of the cases (I)–(IV) increments the loop variable i and pushes at most two
elements onto S. Case (V) pops S twice and leaves i unchanged. Initially i = 0,
and we stop when i = n, so we have n iterations in total with cases (I)–(IV)
and at most 2n elements pushed onto S. Case (V) never empties the stack—the
sentinel x0 triggers case (I)—so we have at most n iterations with case (V).

Using the arguments given in the description of the cases, we can establish
and inductively maintain the invariants that, after i segments, stack S contains
a rectified canonical path, with the last intersection property, that starts from
x0 and ends with xi. When the algorithm terminates at i = n, we have the
rectified canonical path. 2

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 79

(α, P)

α̂

Figure 4.9: Unrectifying the canonical path Rcp(α, P)

Once we have run the algorithm, we can un-rectify the path, as in Figure
4.9, to return to the original set of points. This will allow us to compare two
paths on the same point obstacles. The rectified canonical path uses horizontal
segments, corresponding to segments of α, and vertical segments corresponding
to portions that have been shrunk by homotopy. Since the x-coordinates of all
points and segments were preserved in rectification, and the aboveness relation
was respected, we can easily map back to the original portions of α and join
them by vertical segments, forming canonical path α̂. The last intersection
property (recall Figure 4.7) is also preserved.

We have described the algorithm for the standard (tack) definition of path
homotopy. For the pin and pushpin definitions, we add the two path endpoints
to the set of obstacle points P . Under the pushpin definition, we also add
two points that are infinitesimally left and right of the start point to make
the algorithm wind correctly around the start. Under the pin definition, the
algorithm unwinds at the start, and we postprocess, if needed, to unwind at the
endpoint.

4.2.5 A leftist path

Figure 4.10(a), adapted from Efrat et al. [64], illustrates that a canonical path
with the last intersection property need not be simple. In fact, one can create
examples with a quadratic number of self-intersections. We define the leftist
canonical path α̂ and prove that under the pin and pushpin definitions it has no
self-intersections and under the tack definition it has O(n) intersections.

The path is called “leftist” because it consists of monotone fragments that
are traversed from left to right, so the vertical segments chosen for homotopy

80 CHAPTER 4. TESTING HOMOTOPY

(a)

(b)

Figure 4.10: Self-intersections in (a) avoided by leftist path (b).

are as far to the left as possible, as in Figure 4.10(b). The idea is simple:
put together fragments of two canonical paths to change the last intersection
property to a left intersection property: any vertical segment in the universal
cover either does not intersect the lift of the path, or intersects it in the point
where the lift of α last crosses from left to right.

For a rectified pair (α, P), let αF and αR (forward and reverse) be the two
canonical paths obtained by running the algorithm of the previous section twice,
starting from either end of the curve α. Since both paths are homotopic to α,
the canonical sequence of αR is the reverse of that of αF —both have the same
turn points, which we can number p1 to pm−1 along αF . (Some points may be
duplicated, and we use infinitesimal horizontal segments for portions that wind
around a point.) Let p0 denote the start point and pm the endpoint.

We snip αF and αR at the turn points. Fragments ending below a turn point
are extended infinitesimally beyond the turn point by an amount proportional to
their rank order below the turn point. For example, if there are three fragments
whose right endpoints are below a turnpoint p ∈ P , then the lowest one is
extended 3ε to the right, the next 2ε and the highest by ε, for an infinitesimal
ε > 0. To assemble these fragments into the leftist path α̂, we start at point
p0, with i = 1. We take the fragment αi from αF if pi−1 is left of pi, otherwise
we take the fragment αi from αR. We connect fragments in order, extending
fragments above turn points to match the extensions below.

Notice that α̂ has the same canonical sequence as α—since it was derived
from fragments of αF and αR, it has the same turn points and the same sets of
points above and below. Thus, α̂ is homotopic to α.

A vertical segment within a fragment αi ⊂ α̂ has the left intersection
property, because it had the last intersection property with either αF or αR,
whichever came from the left. At the left endpoints, fragments have the left
intersection property for any vertical line just to the right of the obstacle point;
at the right endpoints, they have the left intersection property for vertical lines
just to the left of the obstacle point. We use these properties as we consider
self-intersections of the leftist path α̂ in the next lemma.

Lemma 4.7 Consider the leftist canonical path α̂ for a simple path α with n

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 81

q′ q′

γ′

(a) (d)

L′ L′
L′ L′

M ′

M ′

θ′

ρ′

q′ q′

θ′ θ′ θ′

γ′
γ′ γ′

ρ′

(b) (c)

Figure 4.11: Examples lifting γ ′ starting from q′ within R′ = R(L′, θ′).
(Striped areas are used toward the end of the proof of Lemma 4.7.)

segments: Under the pin and pushpin definitions α̂ is also simple. Under the
tack definition α̂ has at most 2n points of self-intersection.

Proof: On the leftist path α̂, consider any vertical segment L ⊂ α̂, from the
homotopy of a portion θ ⊂ α. Let p be the start point of curve α, and let γ be
the connected portion of α\θ that contains p. We lift γ to the universal cover to
consider whether a point q where γ intersects L can be a self-intersection of α̂.

Lift L and θ from either of their shared endpoints to obtain L′ and θ′, which
bound a simply-connected region R′ = R(L′, θ′) in the universal cover. Lift
intersection point q to q′ ∈ L′, and lift curve γ to γ′ starting from point q′.
If this lifts p to a point p′ that lies in R′, then we say that q is a normal
intersection, otherwise q is special. Point q is normal in Figure 4.11(a–b) and
special in (c–d). We aim to count self-intersections of α̂ by separately counting
the normal and special intersections that can create them. Figure 4.12 shows
a complex example (under the tack definition) in which L ∩ γ has both normal
and special intersections that appear as self-intersections of α̂.

Normal intersections actually come in equivalence classes: a given lift of p to
p′ ∈ R′ can contribute several intersections L′ ∩ γ′, all of which will be normal.
We consider all of these to be in the same equivalence class, by Corollary 4.3.
In fact, each class can contribute at most one self-intersection of α̂ by the left
intersection property. We therefore count the number of normal intersection
classes.

Under the pin and pushpin definition, there are no normal intersection
classes—endpoint p is an obstacle, so p cannot be lifted to lie inside the simply
connected region R′.

Under the tack definition, the number of normal intersection classes for L
and γ is the number of copies of point p that can be lifted into R′. (Two in
Figure 4.12, for example.) To count copies, from each copy p′ in the universal
cover draw a vertical ray downward to hit a segment of θ′; each segment of θ′

(except the one hitting the top of L′) can be hit by at most one ray in the
universal cover, since all the vertical rays have the same projection into the
plane. Thus, R′ contains at most |θ| distinct copies of p. The total number of
normal classes over all vertical segments of α̂ is 2n, since each vertical segment

82 CHAPTER 4. TESTING HOMOTOPY

L′

N ′

M ′

R′

γ′

θ′

p

γ′

Figure 4.12: L ∩ γ has normal intersections in two classes and special intersec-
tions.

contributes a unique contracted curve and at most two remaining fragments
of α.

It remains to count special points that are self-intersections of α̂. In the
remainder of the proof, we show that each special self-intersection q can be
mapped one-to-one to a normal class that contributes no normal self-intersection
to α̂. (Thus the number of normal and special self-intersections is bounded by
the number of normal classes.) The one special self-intersection in Figure 4.12
(marked with a diamond) maps to the normal class of M ′ ∩ θ′.

Therefore, consider a special point q ∈ L ∩ γ that is a self-intersection of α̂.
The lift γ′ enters R′ by crossing L′ at q′, but by the definition of special, γ ′

cannot end inside R′. Since γ′ does not cross θ′, it must leave by crossing L′

again. If R′ was to the right of L′ at q′, as in Figure 4.11(a–b), this would
violate the left intersection property, so we know that R′ lies to the left of L′.

The lift of α̂ must exit R′ by a vertical segment M ′ to the left of L′, as in
Figure 4.11(c–d). This M ′ has its own region R(M ′, ρ′), for some ρ ⊂ γ. Since
M ′ exits R′ without crossing L′, the curve θ′ must cross M ′ an odd number of
times, and therefore θ′ ends inside R(M ′, ρ′).

Let ` denote the line through L′ in the universal cover. Since θ′ ends on `
inside R(M ′, ρ′), there is a simply-connected subset of this region, defined by `
and ρ′, that the lift α′ enters from left to right at the endpoint of θ′. Examples
are drawn in Figure 4.11(c–d). Since curve α′ cannot cross ρ′ and crossing `
again would violate the left intersection property, α′ ends in this region, and
the first intersection of M and θ is normal.

We can further observe that the intersections of M ′ ∩ θ′ form a normal
class, because the other end of θ also crosses ` and cannot return to M ′ without
violating the left intersection property. This normal class corresponds to at most
one special self-intersection q ∈ α̂: the portion of α intersecting M contracts

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 83

to the unique vertical segment L, and the monotone chain of α̂ that contains
M contains at most one point q ∈ L. Since the normal class M ′ ∩ θ′ does not
contribute a normal self-intersection, the total number of normal and special
self-intersections is bounded by the maximum number of normal classes, which
is zero under the pin and pushpin definitions and 2n under the tack definition.
This completes the proof. 2

We use an unrectified leftist path as our canonical path α̂ from now on.

4.2.6 Comparing canonical paths

Canonical sequences can have quadratic size, as the example of Figure 4.2 shows,
so we still cannot compute the sequences for leftist canonical paths α̂ and β̂.
Fortunately, these paths can be compared by a more complicated version of the
sweep algorithm for rectifying paths.

We continue to use notation introduced in the previous section. Path α̂ is
a sequence of monotone chains delimited by turn points: let p0 be the path
starting point, pm the path endpoint, and pi the ith turning point we encounter
as we trace α̂. The ith monotone chain αi is defined as the portion of the
path α̂ from pi−1 to pi. We first state two lemmas that will allow us to compare
canonical paths, then we describe a sweep algorithm to perform the comparison.

Lemma 4.8 If the paths α̂ and β̂ have the same canonical sequences, the cor-
responding monotone chains αi and βi are defined by the same two endpoints
pi−1 and pi.

Proof: Each turning point pi corresponds to rays from the same points and
opposite direction (l+pi

l−pi
or l−pi

l+pi
) in the canonical sequence. Since the path α

and β have the same canonical sequences, the sequence of point label pairs with
opposite bars are also the same. Therefore, the sequence of turning points are
the same. By the definition of a monotone chain, each monotone chain αi and
βi have the same endpoints. 2

Lemma 4.8 gives a necessary condition for α̂ and β̂ to have the same canonical
sequences: their monotone chains must have the same endpoints. If this is not
satisfied, we can report that α̂ and β̂ do not have the same canonical sequence,
therefore α and β are not homotopic. Otherwise, further tests are needed.

We define above sets for points as follows: for each point p in the plane, let
A(α, p) ⊂ {1, 2, . . . , m} be the set of indices of monotone chains {α̂i} that lie

above p. Similarly, let A(β, p) be the set of indices of monotone chains {β̂i} that
lie above p.

Lemma 4.9 If Lemma 4.8 is satisfied, then the paths α̂ and β̂ have the same
canonical sequence if and only if above sets A(α, p) = A(β, p) for each p ∈ P .

Proof: To compare the canonical sequences, we can traverse the two paths α̂
and β̂ with the same speed along the x-coordinate. Since the endpoints of each
monotone chain α̂i are the same as β̂i, we pass the same sequence of points

84 CHAPTER 4. TESTING HOMOTOPY

above or below in the plane as we traverse α̂ and β̂. Suppose that monotone
chains α̂i and β̂i are being traversed (since their indices are both i) and we pass

a point p. If the canonical sequences for α̂ and β̂ are the same, the same ray
from p (either l+p or l−p) is in both sequences, so index i is either in both A(α, p)
and A(β, p) or in neither. Conversely, if A(α, p) = A(β, p), then p will have the

same bar in the canonical sequences for α̂ and β̂. 2

Lemma 4.9, with one more idea, allows us to compare the canonical sequences
using a sweep algorithm. The input of the algorithm is the set of monotone α-
chains from leftist path α̂ and monotone β-chains from the leftist path β̂. We
sweep these chains from left to right with a vertical line. We maintain three
invariants during the sweep, the most important being the difference numbers
Dx(k) defined below.

1. We maintain the set of monotone α-chains and the set of monotone β-
chains intersected by the sweep line at position x.

2. Within each set, we maintain the aboveness order of the monotone chains
and the rank of each chain in this order. It should be noted that the
monotone chains could intersect, so this aboveness order depends on the
current sweep line position x. (We keep the orders for α̂ and for β̂ separate,

otherwise we would need to compute all intersections between α̂ and β̂.)

3. Finally, for sweep position x, let A(α, k) denote the above set of indices
of monotone chains from α̂ that have ranks 1 through k. (That is, if we
choose a point p on the sweep line just below the kth intersection with
a monotone chain of α̂, then A(α, k) = A(α, p).) We maintain the size
of symmetric differences between A(α, k) and A(β, k), and denote these
difference numbers Dx(k) = |diff(A(α, k), A(β, k))|.

The invariants allow us to check the hypothesis of Lemma 4.9 to compare
the canonical sequences. When the sweep encounters a point p, we locate p
in the set of ordered monotone α̂-chains and the set of β̂-chains. This gives
us the sizes of the above sets, |A(α, p)| and |A(β, p)|. If these sizes are not
equal, then the canonical sequences are not the same according to Lemma 4.9.
Otherwise, we let k equal this size, and check if Dx(k) = 0. If it is not the case,
A(α, p) 6= A(β, p), and Lemma 4.9 again tells us that the canonical sequences
are not the same. If it is, we continue. If these conditions are satisfied by all
p ∈ P , then the canonical sequences are the same by Lemma 4.9.

Having shown that the invariants allow us to compare canonical sequences,
we give algorithms to maintain these invariants and establish their complexity.
To maintain the aboveness order and the difference numbers, we keep these data
structures:

• Two balanced binary search trees that use aboveness as the order: Tα

stores the monotone α-chain indices, and Tβ stores β-chain indices. Trees
Tα and Tβ allow us to search for the interval at which a point splits the
monotone chains into above sets and below sets. By keeping counts in
each subtree, we can also find the sizes of these sets.

4.2. HOMOTOPY TEST FOR SIMPLE PATHS 85

• A balanced binary tree TD that stores difference numbers Dx(k) and uses
k as the order. Difference numbers may be inserted or deleted.

We maintain these structures by handling events during a sweep, but let us
first describe how to initialize these data structures for a given sweep position x.

Lemma 4.10 The sweep data structures can be initialized for n chains at a
sweep position x in O(n log n) time.

Proof: We need to form Tα, Tβ, and TD, as defined above. For γ ∈ {α, β}, sort
the chains of γ by aboveness to form Tγ .

To form TD, we must compute the difference numbers Dx(k), for k = 1 . . .m.
First build two auxiliary tables: Let Iγ(r) be the chain index at a given rank in
Tγ and let Rγ(i) be the rank of a given index; these are inverses: Iγ(Rγ(i)) = i
and Rγ(Iγ(r)) = r. Initialize Dx(k) = 0. Then, for k = 1 . . .m, compute

Dx(k) = Dx(k − 1) + sgn
(

Rβ(Iα(k)) − k
)

+sgn
(

Rα(Iβ(k)) − k
)

,

where sgn(t) is 1 if t is positive, −1 if t is negative, and 0 if t = 0. This simply
says that the difference number increases by one whenever the kth chain in the
α list ranks higher in the β list and decreases when it ranks lower, and the same
for the kth chain in the β list.

The most time-consuming step of this computation is sorting and ranking,
which takes O(n log n) time for n chains. 2

We maintain the data structure as we sweep the plane with a vertical line.
At certain events, the sweep reaches the x-coordinate of a point at which we
must update the data structures or compare the canonical sequences. In order
to do this, the events clearly need to include monotone chain endpoints and
points in the plane. Since the monotone chains from one path could intersect
each other, the events also need to include all self-intersections of α̂ and β̂.
These intersections are computed during the sweep [18].

Before we describe how each event is handled, we make some simplifying
assumptions about the monotone chains so that the algorithm is easier to
describe—we will remove these assumptions later. First, we will treat each
monotone chain as strictly monotone, even though chains from the canonical
path may contain vertical line segments. Second, we will assume that no two
event points have the same x-coordinate, even though this is not the case be-
cause of the vertical line segments. We consider five types of events.

(I) point in the plane: We check that the canonical sequences are still the
same. First, locate the point among the monotone chains using Tα and
Tβ, then check that the difference number is zero, thereby verifying that
the α above set is the same as the β above set.

(II) intersection event: Suppose the intersection is caused by monotone chains
αi and αj so that αi is below αj after the intersection. To update Tα,
we simply swap the monotone chain indices i and j. To update TD,

86 CHAPTER 4. TESTING HOMOTOPY

first find the aboveness rank k of αi. Then, we know that the mono-
tone chain αi has deserted the aboveness set A(α, k); and the mono-
tone chain αj has entered A(α, k). Recall that the difference number
Dx(k) = |diff(A(α, k), A(β, k))|. So it is clear that Dx(k)—and only Dx(k)
in TD—needs to be changed. To change Dx(k) appropriately, we find out
whether the monotone chain βi is in A(β, k). If it is, then increment
Dx(k). Otherwise, do nothing. Symmetrically, if the monotone chain βj

is in A(β, k), decrement Dx(k). Otherwise, do nothing.

(III) path endpoint: At a path endpoint, which must be shared by the α chain
and β chain, we use Lemma 4.10 to reinitialize the data structures.

(IV) chain starting event: At a turn point, we may have m monotone chains
that begin in α and in β. We compute the difference numbers restricted
only to the m new chains, which we denote D′

x(r), for r = 1 . . . m. This
can be done using Lemma 4.10 restricted to these m new chains.

To update the algorithm’s data structures, we next locate the event point
in the trees Tα and Tβ and then insert the new chains in these trees in
the aboveness order. Because the new chains in α and β start at the same
turning point, they are adjacent in their respective trees, and we can insert
them efficiently.

We must now update the difference numbers in TD. Note that because the
event is a turning point, if the insertion does not take place at the same
rank k in both Tα and Tβ, or if different numbers of α and β chains are
inserted, then the paths are not homotopic by Lemma 4.9. Thus, we need
only insert m new differences; the old difference numbers do not otherwise
change. Since the rth interval in the new monotone chains becomes the
(r +k)th interval after the insertion, we insert the new difference numbers
Dx(r + k) = D′

x(r) + Dx(k) for r = 1, 2, . . . , m into TD.

(V) chain ending event: The operations for updating data structures at a
turning point where m monotone chains end are exactly the reverse of the
operations at a chain starting event. To update Tα and Tβ, we delete the
indices of all monotone chains ending at the event point. Assuming that
these had ranks k + 1 through k + m, we delete the difference numbers
{Dx(k + 1), Dx(k + 2), . . . , Dx(k + m)} from TD.

The number of intersection events (type II) depends on the definition of path
that we use, but we have shown a linear upper bound in the previous section.
Thus, our sweep to compare canonical sequences is efficient for all definitions of
homotopy that we described.

Lemma 4.11 Linear space and O(n log n) time are sufficient to compare the

canonical sequences of canonical paths α̂ and β̂, assuming that the number of
self-intersections in each canonical path is O(n).

Proof: The space is linear since all the data structures we used are linear (Tα,
Tβ and TD). To bound the time, note that each operation to maintain Tα and

4.3. HOMOTOPY TEST FOR NON-SIMPLE PATHS 87

Tβ (insertion or deletion of the chain indices) can be charged to a monotone
chain endpoint, and each operation for maintaining TD (computing, insertion
or deletion of the difference numbers) can be charged either to a monotone chain
endpoint or an intersection point. Since the time for each of these operations is
at most O(log n), and we assume that there are O(n) monotone chain endpoints
and intersection points, the total time is O(n log n). 2

By careful implementation, we can get rid of the assumptions that simpli-
fied the algorithm description. First, we assumed that the chains were strictly
monotone, but in fact they contain vertical line segments. Therefore, in order
for intersection points to be handled correctly, the sweep line should stop at a
vertical line segment, compute the intersections on it and order these intersec-
tion events by the order they are encountered by the path. Second, we assumed
that no two events have the same x-coordinate, although some points in the
plane, such as the turning points, lie on vertical line segments. To handle these
points correctly, we need to perturb them away from the vertical line segments
in the right direction: from the canonical path computation, we know whether
the line segment is some path contracted from the right side of the point or from
the left. If it is from the left, this event should be handled immediately after
the vertical line segment; if is from the right, it should be handled immediately
before the vertical line segment. We summarize.

Theorem 4.12 Given two simple paths α, β, each consisting of n segments,
and a set P of n points, we can decide if α and β are homotopic in the plane
minus P in O(n log n) time and linear space. This holds for the tack, pin, and
pushpin definitions of homotopic paths.

4.3 Homotopy test for non-simple paths

When paths are allowed to intersect themselves, as well as each other, then we
cannot use aboveness to rectify the paths as in the previous section. In this
section we show that we can use a different construction of a universal cover
and achieve a running time near O(n3/2).

Since the paths may self-intersect, we simply concatenate them as suggested
in the introduction and consider whether a closed loop α is contractible in the
plane minus P . The idea is to lift the path into a universal cover constructed
in an appropriate way, and test if the endpoints of the lifted path coincide. We
will use a simple path d going through all points in P in order to construct such
a universal cover, but, in order to minimize the number of operations during
the lifting of α, we have to minimize the number of intersections between d and
α. The way to construct d is using a spanning tree with low crossing number,
that is, a spanning tree T of the point set P such that any line intersects T at
most O(

√
n) times.

Lemma 4.13 A simple spanning tree of P with crossing number O(
√

n) can be
constructed in O(n1+ε) time, for any ε > 0.

88 CHAPTER 4. TESTING HOMOTOPY

Proof: We combine ideas and results from [59, 78, 98, 99]. Start by computing
a spanning tree T1 of P with crossing number O(

√
n). Matoušek shows in [99]

how a simplicial partition {P1, . . . , Pn/2} with |Pi| ≤ 4 and crossing number
O(

√
n) can be constructed in time O(n1+ε). This partition plays the role of the

partial matching used in [98]: for each class Pi with |Pi| ≥ 2, we put an edge
between a pair of points lying in Pi, and remove either of its endpoints from the
set of points P . Iterating this step O(log n) times, we get the spanning tree T1

within O(n1+ε) operations.

Tree T1 can have self-intersections, but we can use it to construct a Steiner
spanning tree T2 that is simple [59]. We start with an empty tree T2. Then, we
traverse T1 in preorder. When we visit a vertex p ∈ P , we shoot a ray along the
edge connecting p toward its predecessor q in the preorder of T1. Then we add
to T2 the segment from p to the first intersection of the ray with the current
T2. Note that this first intersection may be q. The dynamic data structure for
ray shooting described in [78] supports updates and queries in O(log2 n) time,
so T2 can be constructed in O(n log2 n) time. Observe that T2 has O(n) edges,
and that, as subset of T1, it also has crossing number O(

√
n).

As proved in [59], from T2 we can construct in O(n log n) time a spanning
tree T3 with no Steiner points, and whose crossing number is twice that of T2.
2

Theorem 4.14 We can decide if a closed loop α is contractible in the plane
minus P in O(n3/2 log n) time.

Proof: Take a bounding box B enclosing α and P , and let p− and p+ be two
points on the left and on the right of B, respectively. We apply the previous
lemma to the set P ∪ {p−, p+} to obtain a simple spanning tree, and then we
use it to make a path starting at p− and finishing at p+. If we perturb some
edges of this path slightly, we can convert it into a simple path d from p− to
p+, passing through all points, and having crossing number O(

√
n).

This path d splits B into two pieces, B0 and B1, which we can use as building
blocks for the portion of a universal cover that contains the lift of the loop α.
We actually build the dual graph T (a tree) for the universal cover, and keep
just one copy of each block. Thus, we can represent the portion of the universal
cover containing the lift of α in space linear in n plus the number of nodes of
the dual tree T .

The construction of T is as follows. Preprocess blocks B0 and B1 for ray
shooting [86]. Start with some vertex of α in Bi, where i ∈ {0, 1}, and create a
tree node ν to represent this copy of Bi.

Now, use ray shooting along the segments of α to trace α in Bi until it leaves
by crossing an edge e of the path d. If edge e has never been crossed before,
then make a new node η in the dual tree T , put an edge between current node
ν and η, annotated with the edge e. If edge e has been crossed before, then ν
has an edge annotated with e that connects to a node η. In either case, update
the current node ν = η, and set i = i + 1 mod 2 to switch to the other block.

4.4. LOWER BOUNDS 89

a1 a2b1 b2 an bn

xi xj

α

β

1
2

Figure 4.13: Lower bound for simple paths.

When we complete the tracing, we know that α is contractible if and only if we
ended up in the same node of T in which we started.

Because each edge of T comes from one intersection of d and α, and given
that the crossing number of d is O(

√
n), tree T has size O(n3/2). An additional

logarithmic factor in the running time is sufficient to pay for the ray shooting.
2

4.4 Lower bounds

In this section we establish lower bounds for the path homotopy problem among
points in the plane. The bounds are different depending on whether the paths
are simple or not.

4.4.1 Simple paths

When both paths α and β are simple, to decide if they are homotopic takes a
minimum of Ω(n logn) operations in the decision tree model. In order to show
this, consider the following problem: given a set of n unsorted numbers x1, . . . ,
xn, and a set of n disjoint intervals [a1, b1], . . . , [an, bn], in increasing order,
is there any interval containing any point? Using Ben-Or’s theorem [17], it is
straightforward to see that in the algebraic decision tree model, this problem
has a lower bound of Ω(n log n).

This problem can be reduced to testing whether two simple paths are ho-
motopic. Consider α to be the segment with endpoints (a1, 0) and (bn, 0), and
β to be the path following α except when it overlaps with some interval [ai, bi],
in which case it will follow the horizontal segment at height 2, as shown in Fig-
ure 4.13. If we consider the set of points P = {(xi, 1) | 1 ≤ i ≤ n}, then no point
belongs to any interval if and only if the paths α and β are homotopic.

Theorem 4.15 Given two simple paths α, β, each consisting of n segments,
and a set P of n points, any algorithm in the algebraic decision tree model needs
Ω(n log n) time to decide if α and β are homotopic in the plane minus P .

4.4.2 Non-simple paths

When the polygonal lines α and β are allowed to self-intersect, then the prob-
lem becomes computationally harder: we can reduce Hopcroft’s problem to the
problem of testing if two paths are homotopic.

90 CHAPTER 4. TESTING HOMOTOPY

β

α
p

q

Figure 4.14: Reduction from Hopcroft’s problem.

Given n points and n lines, Hopcroft’s problem asks if any point lies on any
line. The best algorithms known to solve Hopcroft’s problem take just slightly
more than O(n4/3) time [44]. Erickson showed that partition algorithms, a
certain class of algorithms that includes the natural and known algorithms,
take at least Ω(n4/3) time [68].

We give a reduction that works for any algorithm whose primitive tests
check the signs of bounded-degree polynomials of the input point coordinates,
which includes partition algorithms. We need this restriction so that we can use
infinitesimal quantities in the construction. As is common in perturbation meth-
ods, we can expand the primitives as polynomials in one infinitesimal variable
and determine the sign of the term of smallest degree [60].

Given an instance of Hopcroft’s problem, determine a bounding box whose
top (bottom) side is higher (lower) than all the vertices of the arrangement of
lines. Let p and q be points on the bounding box that lie in these faces, as
illustrated in Figure 4.14. This can be done in linear time after sorting the lines
by slope. Let β be the left path along the bounding box from p to q. Let α be the
path that follows β except for leaving the bounding box at every line, crossing
the box infinitesimally above the line, and returning infinitesimally below the
line to β. Paths α and β are homotopic if and only if no point lies on any line.

Theorem 4.16 Given two paths α, β, each consisting of n segments, and a set
P of n points, any partition algorithm needs Ω(n4/3) time to decide if α and β
are homotopic in the plane minus P .

4.5 Concluding remarks

We have given an efficient algorithm to test homotopy for simple paths in the
plane by using an aboveness ordering to rectify paths. We believe that it may
be possible to eliminate the range queries by adding segments to the path in
aboveness order instead of traversal order, but each way we have tried so far
slips back to a quadratic worst case running time. For non-simple paths, we use
standard machinery to give a subquadratic algorithm. Lower bounds show that
the running time of our first algorithm is tight. The algorithm for the non-simple
case has been recently improved by Bespamyatnikh [21] with an algorithm that
matches our lower bounds up to a polylogarithmic factor.

Chapter 5

Schematic maps

This chapter presents efficient algorithms for schematic map construction. The
input we assume is a planar embedding of a graph consisting of polygonal paths
between specified points called endpoints. It represents, for instance, a road
or railroad network. The output should consist of another planar embedding
where all endpoints have the same positions, and every path is displayed as
a two-link or three-link path where links are restricted to certain orientations
(Figure 5.1). Furthermore, the output map should be equivalent to the input
map in the sense that a continuous deformation exists such that no path passes
over an endpoint during the transformation. This topological equivalence can
also be expressed in the following way: our algorithm keeps the face structure
in both embeddings. A consequence of this equivalence is that cyclic order of
paths around endpoints is maintained. If a schematized map of the specified
type does not exist, our algorithm reports this failure.

Figure 5.1: Northwest of Iberic Peninsula. Left: original map. Right: the
schematized version made by the implementation.

91

92 CHAPTER 5. SCHEMATIC MAPS

In our approach, we assume that the types of schematic paths that are
allowed in the schematic map are fixed a priori. We cannot handle all types, but
subclasses that have some sort of well-ordering property. Schematic types with
this property include, for example, axis-parallel paths with at most two links
each, or paths with links in the four main orientations (axis-parallel, and angles
of 45◦ and 135◦). A vertical minimum separation distance between schematic
paths can be specified, and in certain cases we can allow or disallow that paths
leaving the same endpoint partially share the first link. Details are given in
Section 5.3. When the original map consists of n segments, our algorithm runs
in O(n log n) time, and experimental results show the quality of the output.

The rest of this chapter is structured as follows. Section 5.1 describes the
basic definitions and concepts. We extend the concept of equivalent paths (Def-
inition 4.1) to equivalent maps. Furthermore, we define an order between the
paths of a map and we discuss its basic implications.

Section 5.2 explains how to compute the order introduced in Section 5.1
among the paths of the input map. Globally, our algorithm works as follows.
Similar to Section 4.2 (see also [64]), we use an aboveness order among monotone
pieces of the paths and we bring our problem into an orthogonal setting. While
keeping homotopy type and simplicity, we simplify each path to an x-monotone
one. Then, we show that the order among paths in this map and in the original
one are the same, and we use the map with x-monotone paths to compute this
order.

In a map, several paths may share a common endpoint, and this makes a
difference with respect to the previous chapter. Furthermore, if we directly use
the results of the previous chapter to simplify each path independently, then we
get quadratic running time if we have a linear number of endpoints (which play
the role of obstacles). Therefore, although most of the ideas that we present
in Sections 5.1 and 5.2, have already appeared in the previous chapter, we also
make a careful presentation here.

Section 5.3 describes the method to place the schematized paths. We place
each path following the computed order from top to bottom. Each path is placed
at the topmost position that is still possible. This will leave the maximum
freedom for later paths that need to be placed. We can specify the type of
schematized paths allowed and a vertical separation distance between paths, if
desirable. If in the transformed map of Section 5.2 there is no order (a cycle
is detected) among its paths, or the placement of some schematized path fails,
then a schematized map of the desired type does not exist.

Section 5.4 shows some experimental results in order to evaluate the visual
quality of the output provided by our algorithm; see Figure 5.1. Finally, Sec-
tion 5.5 gives a summary and directions for further research.

5.1. EQUIVALENT MAPS: DEFINITION AND BASIC PROPERTIES 93

5.1 Equivalent maps: definition and basic prop-

erties

5.1.1 Equivalent paths and equivalent maps

Like in the previous chapter, a path is a continuous mapping α : [0, 1] → R
2,

and the path is simple (no self-intersections) if the mapping is injective. We use
|α| to denote the complexity of path α, defined as the number of edges it has.

Definition 5.1 A map M is a set of simple polygonal paths {α1, . . . , αm} such
that two paths do not intersect except at shared endpoints. A monotone map is
a map where all paths are x-monotone.

We use PM to denote the set of endpoints {α(0), α(1) |α ∈ M}, and n =
∑m

i=1 |αi| for the complexity of the whole map. To simplify presentation we
assume that all vertices in the map have different x-coordinates; our algorithm
can be adapted in a straightforward way for the general case.

Our goal is to construct schematized versions of a given map that are equiva-
lent to it. Intuitively, two maps are equivalent if we can transform all paths from
one map to the other one in a continuous way, fixing the endpoints and without
crossing any ‘important point’. For example, if a road passes to the north of an
important city, we do not want the schematized version to pass to the south of
that city. Furthermore, we want the cyclic order of roads at crossings to stay
the same. We let the important points for one path be the endpoints of the
other paths; our algorithms can easily be adapted to take additional important
points into account.

To formalize the approach and its properties we use the concept of equivalent
paths (see Definition 4.1 and the discussion that follows it). For cartographic
purposes, it seems better to consider the pin definition of equivalent maps.

Definition 5.2 Two maps M = {α1, . . . , αm} and M̃ = {β1, . . . , βm} are
equivalent maps if and only if for some renumbering of the paths in M̃ , paths
αi and βi are equivalent in (R2 \ PM) ∪ {αi(0), αi(1)} for all paths αi ∈ M .

The problem of schematizing a map can now be restated as follows: given
a map, compute an equivalent map whose paths are of a certain type (such as
axis-aligned, x-monotone, 3-links, etc.) and have certain properties (such as a
minimum vertical distance between two schematized paths).

5.1.2 Order among paths

For a point p, we use l+p and l−p to denote the vertical halfline with point p as
lowest and highest point respectively. We next define aboveness of paths, which
is an invariant among equivalent paths and equivalent maps.

Definition 5.3 Let α be a path. A point p ∈ R
2 with p 6∈ α is above (below)

α if for every equivalent path β in R
2 \ {p} the intersection of l−p (respectively

94 CHAPTER 5. SCHEMATIC MAPS

l+p) and β is nonempty. A path αi is above αj if αi(0) or αi(1) is above αj , or
if αj(0) or αj(1) is below αi.

We would like to remark that, in this definition, to decide whether a point
is above or below a path, we do not take into account any other point, that is,
our universe is reduced exclusively to the point and the path. Observe that in
some cases, it is possible that a point is both above and below a curve. In other
cases, no order is present. See Figure 5.2 for an example.

p p

α

p

α α

Figure 5.2: Example of relations between points and paths. Left: p is both
above and below α. Center: p and α have no relation. Right: p is below α.

Lemma 5.4 The above-below relation among paths is invariant between equiv-
alent maps.

Proof: The equivalence of paths is an equivalence relation [43, 82]. For this
reason, for any point p ∈ R

2, equivalent paths in R
2 \{p} have the same relation

with respect to the point p.
Let M and M̃ be equivalent maps. For any path αi ∈ M , let βi ∈ M̃

be its corresponding path. Because αi and βi are equivalent in (R2 \ PM) ∪
{αi(0), αi(1)}, it holds that for any endpoint p ∈ PM \ {αi(0), αi(1)} they are
also equivalent in R

2 \ {p}. So, any endpoint different from αi(0), αi(1) has the
same above-below relation with αi and βi, and this implies the result. 2

From an algorithmic point of view, it is not clear how Definition 5.3 can be
used to decide if a point p ∈ P has some above-below relation with a path α.
The canonical sequences introduced in Section 4.1.2 can handle this issue.

Consider the canonical sequence of α for the particular case when P consists
of only one point p. Any path β equivalent to α in R

2 \{p} has to cross the rays
l+p or l−p that appear in the canonical sequence of α with respect to {p}. Thus,
a point p is below (above) a path α if and only if l+p (respectively l−p) appears
in the canonical sequence of α with respect to {p}. See Figure 5.3, right, for an
example.

5.1.3 Above-below relations in monotone maps

In Section 4.2.1 the following aboveness order between x-monotone paths A and
B has been introduced: A � B if and only if there are points (x, yA) ∈ A and

5.1. EQUIVALENT MAPS: DEFINITION AND BASIC PROPERTIES 95

p2

l+
p2

l−
p2

α

p1

l+
p1

l−
p1

p3

l+
p3

l−
p3

α
p2

l+
p2

l−
p2

Figure 5.3: Left: example of a canonical sequence. The original sequence is
l+p1

l+p2
l+p3

l−p3
l+p2

l−p2
l−p3

l−p3
l−p2

l+p2
and thus its canonical one is l+p1

l+p2
l+p3

l−p3
. Right: ex-

ample comparing p2 with α. The sequence to consider is l+p2
l+p2

l−p2
l−p2

l+p2
≡ l+p2

,
and we can conclude that p2 is below path α.

(x, yB) ∈ B with yA > yB . It is important to note that this relation is the same
as the one given in Definition 5.3 for the case of disjoint, x-monotone paths. We
restate Lemma 4.4 and the discussion that follows in this context.

Lemma 5.5 For a simple, monotone map M , the above-below relation among
paths is acyclic. Furthermore, if M has complexity n, a total order extending
this relation can be computed in O(n log n) time.

Corollary 5.6 For a given map M , if there is no partial order among its paths,
then no monotone map can be equivalent to M .

Proof: This follows from Lemma 5.4 and Lemma 5.5. 2

Because we are only interested in schematic maps with x-monotone paths,
this corollary implies that the algorithm to be developed may report the im-
possibility of the schematic map. For monotone maps, the above-below relation
provides a complete characterization up to equivalence, which is shown in the
next lemma.

Lemma 5.7 Let M = {α1, . . . , αm} and M̃ = {β1, . . . , βm} be two monotone
maps such that the paths αi and βi have the same endpoints. Then, the maps M
and M̃ are equivalent if and only if they define the same above-below relation.

Proof: One implication is provided by Lemma 5.4. For the other implication,
we show that if M and M̃ are not equivalent, then they define a different above-
below relation. Observe that if αi and βi are not equivalent in (R2 \ PM) ∪
{αi(0), αi(1)}, it is due to the existence of some point p ∈ PM \ {αi(0), αi(1)}
in the regions between αi and βi (these regions are well-defined because both
αi and βi are x-monotone; see Figure 5.4 left). It follows that p has a different

96 CHAPTER 5. SCHEMATIC MAPS

above-below relation with αi and βi, and for any path αj with p as an endpoint,
the relation between paths αj and αi will be different from the relation between
βj and βi. 2

Observe that this result is not true if we remove the monotonicity conditions,
as shown in Figure 5.4 right.

αi

βi

R

α1

α2

α3

β1

Figure 5.4: Left: two x monotone paths αi, βi that share the same endpoints
have a well-defined region R between them (gray in figure). If there is a point
p inside R, then αi and βi cannot be equivalent in R

2 \ {p}. Right: maps
{α1, α2, α3} and {β1, α2, α3} define the same above-below relations but they
are not equivalent.

5.2 Computing order in a map

The straightforward approach of comparing each pair of paths to decide their
relation gives a worst-case quadratic time algorithm. In this section we show
how to compute a total order extending the partial order defined in the previ-
ous section in O(n log n) time. Since sorting real numbers can be reduced to
computing the order in a map, our approach is asymptotically optimal. The
basic ideas explained here are taken from the previous chapter, but we have to
use them carefully because many paths may share endpoints, which makes some
of the argumentations more involved. Firstly, we convert the path into what is
called a rectified map. Secondly, we transform the rectified map into one with
x-monotone pieces, and, finally, we compute the order in this map.

5.2.1 Rectified maps

Definition 5.8 A set of paths M ′ = {α′
1, . . . , α

′
m} is a rectification of a map

M = {α1, . . . , αm} if:

• M ′ is a map (its paths only intersect in common endpoints);

• the complexity of map M ′ is linear in the complexity of map M ;

• paths α′
i are made of axis-aligned segments;

5.2. COMPUTING ORDER IN A MAP 97

• paths αi and αj have the same above-below relation as α′
i and α′

j .

A map M = {α1, . . . , αm} can be rectified in the following way. Decompose
each path αi ∈ M into monotone pieces α1

i , . . . , α
ki

i . By promoting every locally
leftmost or rightmost vertex of a path to an endpoint, we make a monotone map
Mmono with the set of pieces {α1

1, . . . , α
k1

1 , . . . , α1
m, . . . , αkm

m } as the new set of
paths. Because Mmono has complexity O(n), we can compute—among the pieces
αj

i —a total order extending the partial order in O(n log n) time (Lemma 5.5).

1 2
3

45
6

1

2

3

4

5

6

Figure 5.5: A map with its paths partitioned into monotone pieces, and their
ranks. Right, the corresponding rectified map.

Using the rank of each monotone piece in the total order, we can construct
the rectified version of a path as follows; see Figure 5.5. Let αj

i be a monotone
piece with left endpoint (px, py), right endpoint (qx, qy), and rank r. Then,

we make the horizontal segment hj
i = [px, qx] × r in the rectified map, and we

form the path α′
i that joins h1

i , . . . , h
ki

i by connecting the endpoints of every
two consecutive horizontal segments by a vertical segment. We denote by M ′

the collection of all such paths, that is, M ′ := {α′
1, . . . , α

′
m}. Observe that an

endpoint sharing several paths will be mapped in several points vertically above
each other in M ′.

Lemma 5.9 Given a map M of complexity n, we can construct a rectification
M ′ in O(n log n) time.

Proof: The computation of M ′ as described takes O(n log n) time if we use
Lemma 5.5. It is also clear from the construction that M ′ satisfies the first
three conditions to be a rectification of M . It remains to show that it also
fulfills the fourth condition.

Consider the canonical sequence s of the path αi with respect to the end-
point αj(0) and the canonical sequence s′ of the path α′

i with respect to α′
j(0).

From the construction of M ′, it follows that, replacing in the sequence s each
occurrence of l+αj(0)

(respectively l−αj(0)
) by l+α′

j
(0) (respectively l−α′

j
0)), we get the

sequence s′. Since a canonical sequence is obtained by removing adjacent ele-
ments that are identical, we conclude that the above-below relation of αj(0) to
αi is identical to the above-below relation of α′

j(0) to α′
i. The same argument

applies to the relation of αj(1) to αi and the relation of αi(0), αi(1) to αj , and
thus the above-below relation of αi and αj is the same as that of α′

i and α′
j . 2

98 CHAPTER 5. SCHEMATIC MAPS

5.2.2 Computing order using a rectified map

Let M ′ = {α′
1, . . . , α

′
m} be a map such that all segments are axis-aligned. In

Section 4.2.4 we have introduced the algorithm Rcp that transforms the path
α′

i into another path Rcp(α′
i). Let us summarize the properties of Rcp(α′

i) that
we will use:

1. Rcp(α′
i) is equivalent to α′

i in (R2 \ PM ′) ∪ {α′
i(0), α′

i(1)};

2. |Rcp(α′
i)| ≤ |α′

i|;

3. if α′
i and α′

j do not intersect, and Rcp(α′
i), Rcp(α′

j) are monotone, then
Rcp(α′

i) and Rcp(α′
j) do not intersect either;

4. Rcp(α′
i) has the minimum possible number of x-monotone pieces that any

path equivalent to α′
i in (R2 \ PM ′) ∪ {α′

i(0), α′
i(1)} can have.

To use Rcp, we first have to preprocess the endpoints PM ′ of the map M ′

for the three-sided range queries that were discussed in Section 4.2.3. This can
be done in O(|PM ′ | log |PM ′ |) time, and then, it takes O(|α′

i| log |PM ′ |) time to
compute Rcp(α′

i) because of Theorem 4.6. Therefore, computing Rcp(α′
i) for

all paths α′
i ∈ M ′ takes

O(|PM ′ | log |PM ′ |) +
∑

α′
i
∈M ′

O(|α′
i| log |PM ′ |) =

= O(|M ′| log |PM ′ |) = O(|M ′| log |M ′|).
This is the basic ingredient for the main result of this section.

Theorem 5.10 For a map M of total complexity n, we can decide in O(n log n)
time whether an equivalent, simple, monotone map exists.

Proof: Given the map M = {α1, . . . , αm}, we start by making a rectifi-
cation of it, M ′ = {α′

1, . . . , α
′
m}, and then we use Rcp to compute N :=

{Rcp(α′
1), . . . ,Rcp(α′

m)}. Observe that by Definition 5.8, Lemma 5.9, and the
first two properties of Rcp, it follows that N has complexity O(n), it can be
constructed in O(n log n) time, and it has the same above-below relations among
its paths as M does. We claim that N is a monotone map if and only if M
admits an equivalent, monotone map.

Recall that a point p ∈ PM that is an endpoint of several paths in M , is
mapped into several endpoints in M ′. Let p′ be this set of endpoints. By con-
struction, no segment of M ′ can pass between two points of p′, and when consid-
ering the canonical sequences of a path α′

i with respect to PM ′ \ {α′
i(0), α′

i(1)},
we can just consider all points in p′ as one point, which we also denote by p′.
With this notation, if we replace in the canonical sequence of αi with respect
to PM \ {αi(0), αi(1)} each occurrence of l+p by l+p′ and l−p by l−p′ , where p is
any point in PM \ {αi(0), αi(1)}, then we get the canonical sequence of α′

i with
respect to PM ′ \ {α′

i(0), α′
i(1)}.

5.3. PLACING PATHS IN THE SCHEMATIC MAP 99

If M admits an equivalent, monotone map, then for each path αi ∈ M , the
canonical sequence of αi with respect to PM \{αi(0), αi(1)} does not contain two
rays emanating from the same point. But this is equivalent to saying that the
canonical sequence of α′

i with respect to PM ′ \ {α′
i(0), α′

i(1)} does not contain
two rays emanating from the same point, which, by property 4 of Rcp, implies
that Rcp(α′

i) is x-monotone. Together with property 3, this implies that N is
a monotone map.

Conversely, if N is a monotone map, then for each path αi ∈ M there is a
path βi that is x-monotone and equivalent to αi in (R2 \ PM) ∪ {αi(0), αi(1)}.
Consider the collection of paths {β1, . . . , βm}. They do not need to be a map,
but we will show how to convert it into a monotone map that is equivalent to
M . Let βi and βj be paths that intersect, which implies that they do so at least
twice (tangencies and common endpoints do not count as intersections): if βi

and βj would intersect only once, then βi would be both above and below βj

(see Figure 5.6 left), but then also Rcp(α′
i) would be above and below Rcp(α′

j),
which is not possible because N is a monotone map by hypothesis. On the other
hand, no point p ∈ PM can lie in the region that βi, βj define between their first
and second intersection (see Figure 5.6 right), otherwise βi would be both above
and below βj . Therefore, we can deform βi and βj into other paths (we also
use βi, βj for the new paths) and we reduce the total number of intersections
by two (see Figure 5.6 right). The new path βi is also equivalent to αi in
(R2 \ PM) ∪ {αi(0), αi(1)}, and the similar statement holds for βj . Each time
we apply this process we reduce the number of intersections in {β1, . . . βm},
and thus if we repeat this process for each pair of paths that intersect, we will
eventually end up with a set of x-monotone paths that do not have intersections
(except at shared endpoints). This is a monotone map that is equivalent to the
original one. 2

Corollary 5.11 If for a map M there is an equivalent, monotone map, then
we can compute a total order extending the partial order among its paths in
O(n log n) time.

Proof: The order among paths in map M = {α1, . . . , αm} is the same as the
order in map N = {Rcp(α′

1), . . . ,Rcp(α′
m)}. The hypothesis implies that N is

monotone, and by Lemma 5.5 we can therefore compute such a total order. 2

5.3 Placing paths in the schematic map

In the previous sections we determined a partial top-to-bottom order on the
paths in the input map. This section concentrates on the actual placement of
the paths: we show that placing the paths one by one, in the computed order,
where each path is placed topmost (that is, as high as possible) will result in a
schematic map if one exists. We use the notation X1X2X3-path (X1X2-path),
with Xi ∈ {H, V, D} to denote a 3-link (respectively 2-link) path whose i-th

100 CHAPTER 5. SCHEMATIC MAPS

βi

βi(0)

βj(1)

βj

βj

empty

βi

βj

βi

Figure 5.6: Left: if the paths βi and βj only intersect once, then they have
a cyclic above-below relation. In this example, because the endpoint βi(0) is
below βj , the path βi is below βj , but also βj(1) is below αi, and so βj is below
βi. Right: if βi and βj intersect more than once, the region between the first two
intersections is well-defined because they are x-monotone (grey in the picture).
This region cannot contain any point p ∈ PM , otherwise βi is above p which
is above βj , and we get a cyclic order. Then we can remove the intersection
continuously in (R2 \ PM) ∪ {αi(0), αi(1)}.

link is of type Xi. Here, type H means horizontal, type V means vertical, and
type D means diagonal.

To explain the main features of the placement we will describe the algorithm
for one concrete case: 3-link {HDH, VDV}-paths that are L2-shortest. This type
of paths is shown in Figure 5.7 left and center, and a map using this type of
paths is in Figure 5.8 (a). Later we will generalize to other types of paths.
The idea is to incrementally place the paths from top to bottom, respecting the
order, and maintaining the lower envelope of the previously placed paths in a
binary search tree T . The tree stores in its leaves, ordered from left to right, the
vertices and segments of the lower envelope by increasing x-coordinate. When
adding a path, we search with the left and right endpoints in T , ending in two
leaves µ and µ′. We collect the part of the lower envelope in between. The
new path must be below the collected pieces of the lower envelope. If one of
the endpoints of the new path is above the lower envelope stored at µ or µ′,
the algorithm fails and no schematization exists. Otherwise, we can determine
the topmost placement of the new path, with or without a minimum vertical
separation distance. By topmost placement we mean the placement that makes
the new lower envelope as high as possible. Again, we may fail to find such
a path if a previously placed path will be intersected by the new path, or the
desired separation distance cannot be attained. If the new path can be placed,
it will replace the pieces of the lower envelope we collected, except, possibly, for
the outermost two. These may be truncated horizontally. In the tree T , this
comes down to deleting the leaves in between µ and µ′. Up to three new leaves
are inserted instead. Appropriate updates have to be done at µ and µ′.

In this concrete case with {HDH, VDV}-paths that are L2-shortest, the end-

5.3. PLACING PATHS IN THE SCHEMATIC MAP 101

HDH-path VDV-path {HVH,VHV}-path

Figure 5.7: Some types of schematic paths.

(a) (b) (c)

αi

αj

αi

αj

Figure 5.8: (a) A schematized map with 3-link, {HDH, VDV}-paths with shared
departure from common endpoints; topmost placement. (b) Same, but without
shared departure. (c) The indecision in aboveness for αi and αj when shared
departure is not allowed.

points of the next path to be placed provides us a decision between a HDH-path
or a VDV-path because the path has to be L2-shortest: we need a HDH-path
when the vertical distance between the endpoints is smaller than the horizon-
tal distance, and otherwise we need a VDV-path. In general, this property
does not hold for certain combinations of types of schematic paths, for example
{HVH, VHV}-paths that are L2-shortest (Figure 5.7). In this case, whether we
place a HVH-path or a VHV-path can influence whether we can place another,
later schematic path or not. To understand what types of schematic paths our
method can handle, we make the following definitions.

Definition 5.12 A schematic map model specifies, for any two points p, q in
the plane, the collection of (schematic) paths with p and q as endpoints that can
be used. A schematic map model is x-monotone if all paths in any collection
that it specifies are x-monotone paths. A schematic map model is ordered if,
for any two points p, q, and any two paths α1, α2 in the collection specified by
the model for p, q, no two points a, b exist such that a is above α1 and below α2,
and b is below α1 and above α2.

In Figure 5.7, one can see that a model that allows for shortest {HVH, VHV}-
paths is not ordered: points a and b can be placed in the two distinct bounded
regions between the paths. However, L2-shortest {HDH, VDV}-paths result in

102 CHAPTER 5. SCHEMATIC MAPS

an ordered x-monotone schematic map model. Our algorithm can handle any
ordered x-monotone schematic map model. Examples are {VDH, HDV, VDV,
HDH}-paths that are L1-shortest, {VH, HV}-paths, and {HVH, VHV}-paths
where the distance between the endpoints determines which of the two types is
used (for instance, when the horizontal distance between the endpoints is larger
than the vertical distance, use a HVH-path, otherwise a VHV-path). Paths may
degenerate to fewer links by using zero-length segments.

Besides the types of schematic paths, we may also specify a minimum vertical
separation distance between two paths that do not have any shared endpoint.
Observe that horizontal distance cannot be taken into account because this does
not relate to the ordering used among paths.

In most cases, we can specify that two schematic paths with the same end-
point (shared endpoint) may not depart in the same direction from that end-
point. However, in some cases, it makes a difference which schematized path is
placed first; see Figure 5.8(c). In a degenerate sense, the paths are above and be-
low each other, giving a cycle in the placement order. Therefore, our algorithm
cannot forbid shared departure in the vertical upward direction in all cases.
Disallowing shared departure in the non-vertical directions can be incorporated
efficiently, however, because the above-below relations give the placement order.
Shared departure in the vertical downward direction is automatically avoided if
it is possible, because every schematic path is placed topmost.

Theorem 5.13 Given a map M with complexity n, and an ordered x-monotone
schematic map model, a minimum vertical separation distance specified, and op-
tionally, shared non-vertical departure disallowed, we can compute in O(n log n)
time a schematized map equivalent to M satisfying the separation distance and
shared departure conditions as specified, or report that no such map exists.

Proof: By Theorem 5.10, we can detect in O(n log n) time if M has an equiv-
alent, monotone map. In the negative case, no schematization of M is possible
in an x-monotone schematic map model, and we are done. Otherwise, we can
compute a total order extending the partial order among the paths in M in
O(n log n) time by Corollary 5.11. By Lemma 5.7 we have that any mono-
tone map with this order among its paths is equivalent to M . In particular,
a map constructed with top-to-bottom placement as detailed in this section is
equivalent to M .

It remains to show that we can place top-to-bottom all the schematic paths
in O(n log n) time. Recall that we use a binary search tree T to represent the
lower envelope of the placed schematic paths. To insert a new path, we find the
two leaves µ and µ′ with the x-coordinates of the endpoints of the new path in
O(log n) time. Assume that k leaves lie in between µ and µ′ in T . Then we
can determine in O(k) time whether a placement of the new path exists, in any
ordered x-monotone schematic map model, and with the separation distance
and shared departure conditions. If a placement meeting the conditions does
not exist, we can stop and report failure. Otherwise, we determine the topmost
placement within the same time bound, asymptotically. The updating of T

5.4. EXPERIMENTAL RESULTS 103

involves the deletion of k leaves, the insertion of O(1) leaves, and the updating
of two leaves µ and µ′. This takes O((k + 1) log n) time. Since in total O(n)
leaves are inserted, and any leaf can be deleted only once, it follows that the
total running time of placing the schematic paths is O(n log n).

If, at some moment, the algorithm cannot place the next schematic path
because we would violate some condition, like placement closer than the specified
minimum separation distance, or the placement would introduce an intersection,
then the schematic map as desired does not exist. This follows from the fact
that we maintain the topmost lower envelope among all possible placements
of the previously placed schematic paths, which is well-defined in an ordered
x-monotone schematic map model. 2

Note that we always need to start ensuring that our original map admits an
equivalent, monotone map, like we have done at the beginning of the previous
proof. That is so because if we just compute the above-below relation among
paths, for example by comparing each pair, and then place the schematic paths
in the way that was explained in this section, we may construct a schematic map
that is not equivalent to the original one, although it has the same above-below
relation as the original map. This happens, for example, in Figure 5.4 right.

5.4 Experimental results

In order to test the quality of the output when applying the aforementioned
ideas, a prototype has been implemented as a Java applet and can be seen on
the web [2]. Although some of the techniques to speed up the algorithm that
were explained are not used, the time of computation does not appear to be
problematic.

Some editing tools were included in the prototype in order to make it more
flexible and interactive for the user. Recall that the algorithm described above
does not move the endpoints of paths, but some adjustments may be necessary.
For example, it appeared to be useful to identify and merge the endpoints of
paths when they are very close. Observe that our algorithm would report failure
in the cases that the paths have a slight overlap in the vertical direction, or they
are closer in the vertical direction than allowed; see Figure 5.9. When some
path cannot be schematized, the prototype draws the original path. Also, the
presence of intersections close to endpoints plays an important role, because this
prevents an ordering of the paths. Sometimes, this type of problem, which can
be present in inaccurate data, can be resolved by editing; see Figure 5.9.

From an aesthetic point of view, several practical improvements can be done
during the placing of paths. For example, given the minimum vertical distance
d to be kept between the schematic paths, this applet attempts to find the
maximum distance d′ ≥ d that permits the schematization of as many paths as
d does. This improvement is done by a binary search over the integers (distance
in pixels) to find this distance d′. Other improvements are to place paths in
top-to-bottom and bottom-to-top order simultaneously, where the bottommost
paths are schematized in the lowest placement possible. This adaptation yields

104 CHAPTER 5. SCHEMATIC MAPS

α α
′

α

α
′

{ε

Figure 5.9: Some editing of the original map is necessary if it is topologically
not correct or it has inaccuracies. Left: there is no order among paths. Right:
the minimum separation distance between two paths cannot be respected.

maps that are more “rounded” than when all schematized paths are placed
topmost. There are many other improvements that could be implemented too,
like replacing corners by circular arcs to get C1 continuity, parallel departure
from endpoints represented by rectangles or bars, and so on.

The prototype was tested on maps of Canada, Ireland and Spain. They
consist of between 769 and 1612 segments, and the time of computation is
less than 3 seconds on a standard PC. The most time consuming part is the
binary search to find the optimal distance, as explained at the end of previous
paragraph. In all examples and results in this section, the smallest allowed
vertical distance between two schematized paths was set to 10 pixels. Some
of the results can be seen in Figures 5.10–5.12, where paths that could not be
schematized are shown in their original shape and with thicker line style.

Figure 5.10: Ireland. Left: original railway map. Right: schematic map with
{HDH, VDV}-paths and without shared departure.

For the maps of Ireland and Canada, a top-to-bottom placement order exists
and hence, could be computed without any editing. But the map of Spain does
not have a placement order. This is due to inaccuracies in the data, which
is topologically not correct. Different paths had intersections that were not
endpoints. After a few modifications with the editing tool, it was possible to

5.4. EXPERIMENTAL RESULTS 105

Figure 5.11: East of Spain. Left: original railway map. Right: schematic map
with {HDH, VDV}-paths and without shared departure.

compute a placement order.

As can be seen in the pictures, some schematic paths cannot be placed be-
cause they would intersect some other one already placed, give shared departure,
or would not respect the specified distance. It appears in the figures that more
schematic paths could be placed, like the two non-schematized paths in Fig-
ure 5.10. However, there are two endpoints very close together at the upper
end of the non-schematized paths, which would yield a placement too close to
another path with different endpoints. Editing of the original map would be
necessary to resolve this. In Table 5.1 we can see how many paths were present
originally, and which percentage of these couldn’t be placed. After analyzing
the pictures in the prototype, which allows us to zoom in the original map, one
can see that the biggest source of problems in all maps is indeed that some
endpoints are very close together.

Figure Total number of paths A B
5.10 right 65 61 61
5.11 right 100 76 79
5.12 center 155 115 134
5.12 bottom 155 139 139

Table 5.1: Data for the maps shown in the figures. A: number of schematic
paths when shared departure is not allowed. B: number of schematic paths
when shared departure is allowed.

106 CHAPTER 5. SCHEMATIC MAPS

Figure 5.12: West of Canada. Top: original road map. Center: schematic map
with two links per path without shared departure. Bottom: schematic map with
{HDH, VDV}-paths without shared departure.

5.5 Concluding remarks

This chapter describes an efficient approach to compute schematized maps. Con-
trary to previous methods, our algorithm uses a bounded number of links per
path, each of a given orientation (horizontal, vertical, or diagonal), as commonly
used in transportation maps. Our approach, in contrast to previous works, is
not an iterative, hopefully converging process, but it uses a combinatorial ap-
proach and always gives a correct solution if one exists. Experimental results
that show the quality of the output have been presented.

There are many directions for further research. Firstly, we would like to be

5.5. CONCLUDING REMARKS 107

able to disallow shared departure for paths leaving the same endpoint in all cases,
without sacrificing efficiency. This appears to be difficult for the vertical upward
direction, if we want to guarantee a solution when one exists. Secondly, there
are several types of schematic paths that cannot be handled by our method.
It would be interesting to develop efficient algorithms that find a result if one
exists in these cases too. Finally, before a schematization algorithm like ours
can be useful in practice, certain local improvements and display styles must
be incorporated, and more experimental work in order to improve the aesthetic
quality of the output has to be done. Depending on the requirements for an
aesthetic schematic map that follows all cartographic rules, this may involve
more complex versions of the model than considered in this chapter.

108 CHAPTER 5. SCHEMATIC MAPS

Chapter 6

Linear cartograms

In this chapter, we consider the problem of finding a planar embedding of a (pla-
nar) graph with a prescribed Euclidean length on every edge. There has been
substantial previous work on the problem without the planarity restrictions,
which has close connections to rigidity theory. For general graphs, a recon-
struction is always unique and easy-to-compute for a complete graph of (exact)
distances, or any graph that can be “shelled” by incrementally locating nodes
according to the distances to three noncollinear located neighbors (Figure 6.1).
More interesting is that such graphs include visibility graphs [41] and segment
visibility graphs [69]. In general, however, the reconstruction problem is NP-
hard [122], even in the strong sense [115]. The uniqueness of a reconstruction in
the generic case (in 2D) was recently shown to be testable in polynomial time
by a simple characterization related to generic rigidity [83, 91], but this result
has not yet led to efficient algorithms for actual reconstruction in the generic
case.

Motivated by our application into linear cartograms, as discussed in Chap-
ter 1, we consider a variation on this basic problem of reconstruction from
distances: given a planar graph with prescribed lengths on the edges, construct
a planar embedding of the graph that adheres to the specified edge lengths,
and determine whether this embedding is unique, or determine that no such
embedding exists.

Figure 6.1: Locating a vertex from the distances to three located neighbors.

109

110 CHAPTER 6. LINEAR CARTOGRAMS

In the rest of the chapter, we show the following main results:

1. For planar 3-connected graphs, we can decide in O(|V |) time whether
there is a planar embedding with specified edge lengths in which only the
outer face is not a triangle. Furthermore, such an embedding is always
unique up to rigid motions (translations, rotations, and reflections), and
can be constructed in O(|V |) time. More generally, we can find planar
embeddings in which the triangular faces form a connected family of cells
and the nontriangular faces form a forest of cells. This extends the results
by Di Battista and Vismara [52], where under the assumption that the
graph is triangulated and the outer face is convex, the authors can test
embeddability in linear time, but without providing an actual embedding.
See Section 6.1.

2. Even for planar 3-connected graphs, deciding planar embeddability with
unit edge lengths is strongly NP-hard, even when the embeddings are
guaranteed to be infinitesimally rigid.1 This improves upon results by
Whitesides [120], where weak hardness was shown for (2-connected) pla-
nar linkages, and upon the work by Eades and Wormald [56], where the
strong hardness is shown for 2-connected graphs with unit edge lengths
and for 3-connected graphs with arbitrary edge lengths. Another (aes-
thetic) difference with respect to [56] is that our reduction is directly from
planar 3-SAT, rather than using a synthetic problem as a bridge. See
Section 6.2.

These results give a fairly precise division between tractable and intractable
forms of planar embedding with specified edge lengths. Triangles seem to play a
more fundamental role than other rigid structures, despite the close connections
between rigidity and embedding with specified edge lengths [40, 83, 91]. Other
than visibility graphs [41, 69] and dense graphs [19], our results are the first
positive results for efficient embeddings of (special) graphs with specified edge
lengths.

6.1 Triangulated graphs

Let G be a 3-connected planar graph. By Whitney’s Theorem, G has only
one topological embedding into the 2-dimensional sphere, or equivalently the
faces in any planar embedding of G are always induced by the same cycles [53,
Chapter 6]. In particular, all embeddings of G have the same dual graph G∗,
and once we have fixed the outer face, the topological embedding into the plane
is completely determined. This is the basic ingredient for the following result:

Theorem 6.1 If G = (V, E) is a 3-connected graph with specified edge lengths,
we can decide in O(|V |) time on a real RAM whether there is a planar embedding
such that all faces are triangles, with the possible exception of the outer face.

1Infinitesimal rigidity is a strong form of rigidity, stating that no first-order motion of the
vertices preserves the lengths of the edges to the first order. See e.g. [79] for formal definitions.

6.1. TRIANGULATED GRAPHS 111

Proof: Consider any planar embedding of G, which can be computed in O(|V |)
time [51]. If two or more faces are not triangles, then we can decide that the
desired realization is not possible because of Whitney’s theorem. If exactly one
face is not a triangle, that face must be the outer face in the desired realization.
If all faces are triangles, any longest edge has to be part of the outer face, which
gives us at most two candidates T and T ′ for the outer face. If T is the outer
face, then T ′ must fit inside T while sharing the common edge, and vice versa.
This test leaves us with at most one candidate for the outer face fext.

All nodes in G∗\fext correspond to triangular faces. We pick a node f0 in this
graph, and compute coordinates for the vertices of the corresponding triangle
that realize the triangle edge lengths. Now we visit all nodes in G∗ \ fext using
breadth-first search from f0. When visiting a node fi, two options arise:

1. If all vertices of the face fi have already been assigned coordinates, we
check that all the edges in fi have the specified edge lengths.

2. If some vertex of the face fi has not been assigned coordinates, we know
that the other two vertices u, v of fi participate in another face fj that has
been already visited, and so they have already been assigned coordinates.
We can compute the coordinates of the third vertex using the specified
edge lengths and the restriction that fi and fj must lie on opposite sides
of the line segment uv due to Whitney’s Theorem.

At the end, every edge in the graph has been checked whether it satisfies the
specified edge length, including the lengths of the edges of the outer face fext.
In the process, we visited each face once, and we spent constant time per face,
so, overall, the embedding process takes O(|V |) time.

We need to check that the realization that we constructed is indeed planar,
to avoid situations like the ones depicted in Figure 6.2. A simple plane sweep
would do this in O(|V | log |V |) time. To get linear time, we first construct a
triangulation of the whole plane: We enclose all points in a large triangle T
and triangulate the area between T and the boundary of the outer face fext.
To do this, we insert an edge from an extreme vertex of V to a corner of T
and triangulate the resulting simple polygon in linear time [39]. Under the
assumption that the original embedding was planar, we obtain a graph which
is a triangulation of T and is embedded in the plane without crossings. On
the other hand, if the original embedding contains crossings, the triangulation
algorithm will either (i) terminate in error, or (ii) it will produce a subdivision
of T which is topologically consistent but whose embedding contains crossings.
Topological consistency means that the two triangle faces incident to an edge
are embedded on different sides of the edge, except for the edges of T where the
other triangle is embedded inside T . The existence of crossings (ii) for a convex
subdivision can be tested in linear time [48]. 2

Observe that, in the proof of the Theorem 6.1, we have only used that the
coordinates of the vertices can be computed by considering the triangular faces
in an appropriate order. To get this property, we only need that each vertex of G

112 CHAPTER 6. LINEAR CARTOGRAMS

Figure 6.2: These examples show that we need to check that the embedding is
indeed planar.

is incident to a triangular face, and that the set of triangular faces is connected
in the dual graph G∗. Once we have fixed the outer face, these hypotheses would
be enough to prove the result.

This result extends the one by Di Battista and Vismara [52] in two ways.
Firstly, we do not need to assume that the outer face is convex, although in
return we have to use linear time triangulation [39]. To avoid using the result
in [39], a checker for non-convex subdivisions should be developed, but this
problem remains elusive [22, Problem 21]. Secondly, we do not need to assume
that the outer face is fixed, which becomes relevant when all the faces of the
graph are triangles.

In the previous theorem, we have assumed a real RAM model when com-
puting the coordinates. This model is customary in computational geometry;
see [110] for a description. In the Turing machine model, if all faces are tri-
angles we can test embeddability, without constructing coordinates, as follows.
We start detecting the outer face T in linear time like we did in the previous
proof, and then use the result in [52]: the graph G admits a planar realization
if and only if, for all vertices v /∈ T , the sum of the angles that are incident to v
is 360 degrees.

The cosine of an angle incident to v can be described by an algebraic ex-
pression on the edge lengths incident to it because of the cosine law. The cosine
and sine of a sum of angles can be expressed as a polynomial on the cosines and
sines of the angles. Therefore, the condition that the sum of the angles that
are incident to v is 360 degrees can be reduced to an evaluation of polynomials:
starting from an angle, we consider the sine and cosine of the clockwise partial
sums of angles. Studying their signs, we can make sure that the partial sums
do not exceed 360 degrees, and then the sum of the angles is 360 degrees if an
only if the cosine and the sine of the sum are 1 and 0, respectively.

The maximum degree of the polynomials that we evaluate depends on the
degree of the vertices. For graphs of bounded degree, the polynomials have
bounded degree, and the condition can be tested in polynomial time in the
classical Turing machine model, with rational edge lengths as inputs, using
separation bounds for algebraic computations, see [25, 26, 94]. We may also
allow square roots of rationals as inputs. (Otherwise, it will be difficult to come
up with interesting examples of realizable graphs with rational edge lengths.)

6.2. NP-HARDNESS 113

. . .v1 v2 v3 v4 v5 vn

. . .v1 v2 v3 v4 v5 vn

Figure 6.3: Top: example of a planar 3-satisfiability instance. The variables
can be arranged on a straight line, and the clauses are represented as a vertex
with three orthogonal edges leaving from it and one bend in each edge. Bottom:
High-level sketch of NP-hardness reduction. Each line will be replaced by a rigid
3-connected structure.

For general graphs, this algorithm is singly-exponential in the degree.

6.2 NP-hardness

To show the NP-hardness of deciding if a planar embedding with specified edge
lengths exist, we reduce from the P3-SAT (planar 3-satisfiability) problem,
which is strongly NP-complete [95]. In an instance of P3-SAT, we are given
a planar bipartite graph whose nodes on one side of the bipartition represent
the variables v1, . . . , vn, and whose nodes on the other side represent the clauses
C1, . . . , Cm, and edges connect each clause to the three variables it contains.
Moreover, the variables can be arranged on a horizontal line, and the three-
legged clauses be drawn such that all edges lie either above or below this line;
and the graph can be drawn on a rectangular grid of polynomial size as shown
in Figure 6.3, top [93].

The high-level workings of the reduction are as follows. We slant the grid
into a hexagonal grid to get angles that are multiples of 60 degrees. This slant

114 CHAPTER 6. LINEAR CARTOGRAMS

A

p2
p1

q1 q2

q
′

2
q
′

1

CB

p1

p2

q q
′

p

q
q
′

Figure 6.4: Assume that the grey regions are rigid and fixed. A. The segments
p1p2 and q1q2 are parallel in any realization. B. How to make rotations while
keeping 3-connectedness. C. The vertex q can only be realized in two positions.

will allow us to make all lengths one. Furthermore, we modify the drawing so
that all the corners have angles of 120 degrees, and the three edges arriving at
a clause form angles of 120 degrees; see Figure 6.3, bottom. We make a rigid
structure that will leave a tunnel for each edge connecting a variable with a
clause. A variable will be represented by a rigid structure that has two different
realizations, representing the truth assignment of the variable. The value of the
literal will be transmitted to the clause through the tunnel corresponding to the
edge, and we will represent the clause by a structure that can be realized if and
only if at least one of the literals is true. Furthermore, each of the lines in the
figure will be represented by a rigid 3-connected bar, like a “thick” line. This
will be the basic trick to make the whole graph 3-connected as well.

The construction relies on three basic rigid structures that are depicted in
Figure 6.4, and that we explain in the following. In all cases, the grey regions
represent 3-connected, rigid structures which are fixed. Firstly, in Figure 6.4A,
the edges p1q1 and p2q2 have the same length, and so do p1p2 and q1q2. Under
these conditions, in any realization of this structure, the edges p1p2 and q1q2

have to be parallel. Secondly, in Figure 6.4B, there is a 3-connected structure
that allows q to rotate around p. Finally, in Figure 6.4C, if the vertices p1 and
p2, marked with squares, are fixed, then the vertex marked with a circle has two
possible positions, q and q′. This is so because the distance between this vertex
and p1 and p2 is fixed, and therefore it has to be placed at the intersection of
two circles centered at p1 and p2.

Theorem 6.2 Deciding planar embeddability of a planar 3-connected graph
with unit edge lengths is NP-hard.

Proof: We have already described the general idea, so it only remains to de-
scribe the gadgets that are used. For the tunnels, we need a structure that
allows us to fix the relative positions of both sides of the tunnel, while trans-
mitting the value of the literal through the tunnel. The value will be either true
or false, so we need a structure that allows two realizations.

6.2. NP-HARDNESS 115

In Figure 6.5A the holder gadget is shown. Consider the upper half of it.
Observe that the two points that are marked with big dots, p1, p2, and the two
points that are marked with squares, q1, q2, represent a situation like shown in
Figure 6.4A. Therefore, the bar that supports q1, q2 is always parallel to the one
that supports p1, p2, and the point q2 is always vertically above point q. The
points q, q2 and p2, implement the idea shown in Figure 6.4C, and so p2 has
only two possible placements with respect to q, q2. Overall, this implies that
the upper half of Figure 6.5A can be realized in two ways. The lower half of the
holder is a mirrored copy of upper half, and so it also has two realizations.

The holder gadget can be realized in four different ways: two of them keep
the relative position of both sides of the tunnel (Figure 6.5A and B), while two
of them would move them (Figure 6.6A and B). We can concatenate two of
these gadgets with one bend, as shown in Figure 6.6C, in such a way that the
realizations in Figure 6.6A and B are not possible. Thus, the two sides of the
tunnel are connected in a (globally) rigid way. We define the transmitter to
be the bar that is inside the tunnel, because it will transmit the truth value of
the literal from the variable to the clause. Observe that in one of the possible
realizations of the holder, the transmitter is shifted four units with respect to
the other possible realization. Below we will discuss the meaning of the possible
realizations of the transmitter.

The structure that we have described is 3-connected, and so we can construct
a rigid 3-connected structure, as shown in Figure 6.3, bottom, where the distance
between the upper and the lower part will be defined later on by the height of
the variables. The sides of the tunnels taken together form a rigid structure in
which the transmitters and the variables can move: If a tunnel contains a bend,
its two sides can be connected rigidly by two holders, as in Figure 6.6C. One
can check that the sides of a tunnel without a bend are always connected to a
tunnel with a bend, and therefore are also immobile. (Or we could introduce
two bends in a zigzag way to make an otherwise straight tunnel rigid in its own
right.)

We still have to discuss how the variables, the transmitter, and the clauses
work.

For each variable we repeat the structure of the upper half of the holder
gadget, but with a thicker bar (variable-bar) inside; see Figure 6.7. Consider
the realization of the structure assigned to true. On the sides of the variable-
bar that are facing the tunnels, for each literal that is not negated, we place an
indentation on it that prolongates the tunnel of the literal. For the literals that
are negated, we place such an indentation on the part of the variable bar that
faces the tunnel in the “false” realization of the structure; see Figure 6.7. We
have to make the variable-bar large enough that tunnels for all occurrences of
each variable can be accommodated on its sides. (In Figure 6.7, there are three
tunnels on each side.)

The graph that we have constructed so far is 3-connected and rigid. Fur-
thermore, whenever a literal is true, the transmitter bar inside the tunnel can
be pushed towards the variable-bar. Furthermore, we can transmit this “push-
ing information”, or pressure, through the tunnel, and also through the corners

116 CHAPTER 6. LINEAR CARTOGRAMS

B

p1
p2

q1
q2

q

A

Figure 6.5: A. The holder gadget. A–B. Two possible realizations of the holder.
In B, the transmitter is four units to the right with respect to its position in A.

6.2. NP-HARDNESS 117

BA

C

Figure 6.6: A–B. Two other possible realizations of the holder. C. We avoid
these realizations connecting by a bend two consecutive holders. This rigidly
connects the sides of the tunnel.

using Figure 6.6C, so that it can be used at the clause.

Our next goal is to design a clause checker that is realizable if and only
if one of the three transmitters can be pushed towards its variable. It turns
out to be easier to solve the reverse problem: a clause that is realizable if and
only if one of the transmitters is pushed towards the clause. Therefore, we
design a pushing-inverter which we place on each tunnel just before the clause.
It is described in Figure 6.8, where its two possible realizations are displayed.
In particular, the top two thick dots correspond to the possible positions of a
vertex depending on whether the pressure is towards the clause or the variable.
The inverter gadget changes pressure towards the clause into pressure towards
the variable, and vice versa. We can make it 3-connected by putting a holder
gadget just before it, and another holder gadget immediately after it.

Finally, a clause is described in Figure 6.9, with its relevant realizations.
The big dots in each literal are at four units distance, and they indicate the
two possible positions for the end of the transmitter. The one that is closer to
the center indicates that the literal is true (pushing towards the clause). In all
cases, the position of the big dot in the center is completely determined by the
values of li and lj . When all li, lj , lk are false, then the big dot in the center is
too far from lk to be realizable; see Figure 6.9A. In the other cases, it is always
realizable; see Figure 6.9B–D for some cases.

118 CHAPTER 6. LINEAR CARTOGRAMS

vi ≡ false

vi ¬vivi

vi vi¬vi

vi ≡ true

vi ¬vivi

vi vi¬vi

Figure 6.7: A variable assigned to true (top) and false (bottom). The transmit-
ter can be pushed towards the variable only when the literal is true. Observe
that in this case, if some other literal in the same clause is true, then the trans-
mitter does not need to come into the indentation.

6.2. NP-HARDNESS 119

A B C

Figure 6.8: An inverter. A–B are realizable, but C is not.

To conclude, we summarize the argument why a realization of the graph
corresponds to a satisfying truth assignment. The clause checker can be realized
if and only if at least one transmitter is at the position closer to the clause
checker. This can only be the case if, at the variable side of the corresponding
inverter, the transmitter is pushed away from the clause checker. This pushing
is transmitted through all bends and holders to the variable wheels. It follows
that the literal must be true.

One can check by inspection that the clause-gadget is 3-connected, and there-
fore the whole construction is 3-connected. Furthermore, the lengths of the con-
structed graph are one because the vertices and edges lie on a hexagonal grid.
The grid has polynomial size. Therefore, we are using a polynomial number of
edges and bits, and so the reduction can be done in polynomial time. 2

Our NP-hardness result is in the standard Turing machine model because
we construct a graph with a polynomial number of edges, all of them with unit
edge length. On the other hand, it is not clear that the problem belongs to NP,
as the coordinates of the embedding are not rational or algebraic numbers of
bounded degree.

The 3-SAT problem is NP-hard even if each variable occurs at most 6 times,
and this property is maintained in the reduction from 3-SAT to P3-SAT [95]. If
a variable needs to accommodate at most six tunnels, then a variable is formed
by a bounded number of edges, the faces that participate in the variable gadget
have bounded degree. By filling the free space between the tunnels and on the
outside by a triangulation, we can make sure that all the faces have bounded
degree. Therefore, the problem remains NP-hard even if we assume bounded
face degree.

Observe that when the graph is realizable, the realization is infinitesimally

120 CHAPTER 6. LINEAR CARTOGRAMS

lk ≡ true

li ≡ true

lj ≡ true

lk ≡ false

li ≡ true

lj ≡ false

lk ≡ true

li ≡ false

lj ≡ false

A B

DC

the same

lk ≡ false

li ≡ false

lj ≡ false

Figure 6.9: A clause checker. The situation in A is not realizable, but the ones
in B–D are realizable.

rigid. In other words, its vertices cannot be infinitesimally perturbed in a way
that preserves the edge lengths to the first order. This condition is stronger
than rigidity, and implies that the underlying graph is generically rigid [79].
Therefore, the problem remains NP-hard even when we know that the graph is
generically rigid.

Bibliography

[1] Webpage: http://www.esri.com/software/arcgis/arcgisxtensions/
schematics/index.html.

[2] http://www.cs.uu.nl/archive/sw/schematic-map/.

[3] M. Abellanas, F. Hurtado, and P.A. Ramos. Structural tolerance and
Delaunay triangulation. Information Processing Letters, 71:221–227, 1999.

[4] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shal-
low levels in 3-dimensional arrangements and its applications. SIAM J.
Comput., 29:912–953, 1999.

[5] P. K. Agarwal and J. Matoušek. Ray shooting and parametric search.
SIAM J. Comput., 22(4):794–806, 1993.

[6] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimiza-
tion. ACM Comput. Surv., 30:412–458, 1998.

[7] M. Agrawala and C. Stolte. Rendering effective route maps: Improving
usability through generalization. In Proc. SIGGRAPH 2001, pages 241–
250, 2001. http://graphics.stanford.edu/papers/routemaps/.

[8] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs. Journal of
Graph Theory, 35:83–88, 2000.

[9] M. A. Armstrong. Basic Topology. McGraw-Hill, London, UK, 1979.

[10] S. Arora. Approximation schemes for NP-hard geometric optimization
problems: A survey, 2002. http://www.cs.princeton.edu/~arora/

pubs/arorageo.ps.

[11] S. Avelar. Schematic Maps on Demand: Design, Modeling and Visualiza-
tion. PhD thesis, Swiss Federal Institute of Technology, Zurich, 2002.

[12] S. Avelar and R. Huber. Modeling a public transport network for gener-
ation of schematic maps and location queries. In Proc. 20th Int. Carto-
graphic Conference, pages 1472–1480, 2001.

121

122 BIBLIOGRAPHY

[13] S. Avelar and M. Müller. Generating topologically correct schematic maps.
In Proc. 9th Int. Symp. on Spatial Data Handling, pages 4a.28–4a.35, 2000.

[14] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. Journal of the ACM, 41:153–180, 1994.

[15] T. Barbowsky, L.J. Latecki, and K. Richter. Schematizing maps: Sim-
plification of geographic shape by discrete curve evolution. In Spatial
Cognition II, LNAI 1849, pages 41–48, 2000.

[16] C. Baur and S.P. Fekete. Approximation of geometric dispersion prob-
lems. Algorithmica, 30:451–470, 2001. A preliminary version appeared in
APPROX’98.

[17] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th
Annu. ACM Sympos. Theory Comput., pages 80–86, 1983.

[18] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting
geometric intersections. IEEE Trans. Comput., C-28(9):643–647, Septem-
ber 1979.

[19] B. Berger, J. Kleinberg, and T. Leighton. Reconstructing a three-
dimensional model with arbitrary errors. In Proc. 28th Annu. ACM Sym-
pos. Theory Comput., pages 449–458, May 1996.

[20] M. W. Bern and D. Eppstein. Approximation algorithms for geometric
problems. In D. Hochbaum, editor, Approximation Algorithms for NP-
hard Problems, chapter 8, pages 296–345. PWS Publishing, 1996.

[21] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. In
SODA03, pages 609–617, 2003. To appear in J. of Algorithms.

[22] F. Brandenberg, D. Eppstein, M.T. Goodrich, S.G. Kobourov, G. Liotta,
and P. Mutzel. Selected open problems in graph drawing. In Graph
Drawing (Proc. GD’03), LNCS, 2003. To appear.

[23] U. Brandes, G. Shubina, R. Tamassia, and D. Wagner. Fast layout meth-
ods for timetable graphs. In J. Marks, editor, Graph Drawing, Proceedings
of 8th International Symposium, GD 2000, volume 1984 of Lecture Notes
in Computer Science, pages 127–138. Springer-Verlag, 2001.

[24] U. Brandes and D. Wagner. Using graph layout to visualize train intercon-
nection data. Journal of Graph Algorithms and Applications, 4(3):135–
155, 2000. http://www.cs.brown.edu/publications/jgaa/volume04.

html.

[25] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and
easily computable separation bound for arithmetic expressions involving
radicals. Algorithmica, 27(1):87–99, 2000.

BIBLIOGRAPHY 123

[26] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separa-
tion bound for real algebraic expressions. In F. Meyer auf der Heide, edi-
tor, Algorithms — ESA 2001, 9th Annual European Symposium, Aarhus,
Denmark, August 28–31, 2001, Proceedings, volume 2161 of Lecture Notes
in Computer Science, pages 254–265. Springer-Verlag, 2001.

[27] B. Buttenfield. Treatment of the cartographic line. Cartographica, 22:1–
26, 1985.

[28] S. Cabello. Approximation algorithms for spreading points. Technical
report UU-CS-2003-040, Available at http://www.cs.uu.nl/research/

techreps/UU-CS-2003-040.html, 2003.

[29] S. Cabello, M. de Berg, S. van Dijk, M. van Kreveld, and T. Strijk.
Schematization of road networks. In Proc. 17th Annu. ACM Sympos.
Comput. Geom., pages 33–39, 2001.

[30] S. Cabello, M. de Berg, and M. van Kreveld. Schematization of networks.
Technical report, University Utrecht. Submitted to journal, 2002.

[31] S. Cabello, E.D. Demaine, and G. Rote. Planar embeddings of graphs
with specified edge lengths. In Graph Drawing 2003, LNCS, 2004. To
appear.

[32] S. Cabello, Y. Leo, A. Mantler, and J. Snoeyink. Testing homotopy for
paths in the plane. Discrete & Computational Geometry. To appear. A
preliminary version appeared in SoCG’02.

[33] S. Cabello and M. van Kreveld. Schematic networks: an algorithm and
its implementation. In D.E. Richardson and P. van Oosterom, editors,
Advances in Spatial Data Handling, pages 475–486. Springer, 2002.

[34] S. Cabello and M. van Kreveld. Approximation algorithms for aligning
points. Algorithmica, 37:211–232, 2003. A preliminary version appeared
in SoCG’03.

[35] J. Campbell. Map Use and Analysis. McGraw-Hill, Boston, 4th edition,
2001.

[36] S. Čapkun, M. Hamdi, and J. Hubaux. GPS-free positioning in mobile ad-
hoc networks. In Proceedings of the 34th Hawaii International Conference
on System Sciences, pages 3481–3490, January 2001.

[37] B. Chandra and M. M. Halldórsson. Approximation algorithms for dis-
persion problems. J. Algorithms, 38:438–465, 2001.

[38] B. Chazelle. An algorithm for segment-dragging and its implementation.
Algorithmica, 3:205–221, 1988.

[39] B. Chazelle. Triangulating a simple polygon in linear time. Discrete
Comput. Geom., 6(5):485–524, 1991.

124 BIBLIOGRAPHY

[40] R. Connelly. On generic global rigidity. In P. Gritzman and B. Sturmfels,
editors, Applied Geometry and Discrete Mathematics: The Victor Klee
Festschrift, volume 4 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 147–155. AMS Press, 1991.

[41] C. Coullard and A. Lubiw. Distance visibility graphs. Internat. J. Comput.
Geom. Appl., 2(4):349–362, 1992.

[42] G. M. Crippen and T. F. Havel. Distance Geometry and Molecular Con-
formation. John Wiley & Sons, 1988.

[43] F.H. Croom. Basic Concepts of Algebraic Topology. Springer Verlag,
Berlin, 1978.

[44] M. de Berg and O. Schwarzkopf. Cuttings and applications. Internat. J.
Comput. Geom. Appl., 5:343–355, 1995.

[45] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
Germany, 2nd edition, 2000.

[46] M. de Berg, M. van Kreveld, and S. Schirra. Topologically correct subdi-
vision simplification using the bandwidth criterion. Cartography and GIS,
25:243–257, 1998.

[47] B.D. Dent. Cartography: Thematic Map Design. McGraw-Hill, 5th edi-
tion, 1999.

[48] O. Devillers, G. Liotta, F. P. Preparata, and R. Tamassia. Checking the
convexity of polytopes and the planarity of subdivisions. Comput. Geom.
Theory Appl., 11:187–208, 1998.

[49] T. K. Dey and S. Guha. Transforming curves on surfaces. Journal of
Computer and System Sciences, 58:297–325, 1999.

[50] T. K. Dey and H. Schipper. A new technique to compute polygonal schema
for 2-manifolds with application to null-homotopy detection. Discrete
Comput. Geom., 14:93–110, 1995.

[51] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[52] G. Di Battista and L. Vismara. Angles of planar triangular graphs. SIAM
Journal on Discrete Mathematics, 9(3):349–359, 1996. A preliminary ver-
sion appeared in STOC’93.

[53] R. Diestel. Graph Theory. Springer-Verlag, New York, 2nd edition, 2000.

[54] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Canadian Cartographer, 10(2):112–122, December 1973.

BIBLIOGRAPHY 125

[55] C.A. Duncan, A. Efrat, S.G. Kobourov, and C. Wenk. Drawing with fat
edges. In Graph Drawing 2001, volume 2265 of LNCS, pages 162–177,
2002.

[56] P. Eades and N. Wormald. Fixed edge length graph drawing is NP-hard.
Discrete Appl. Math., 28:111–134, 1990.

[57] H. Edelsbrunner. A note on dynamic range searching. Bull. EATCS,
15:34–40, 1981.

[58] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Heidelberg, West Germany, 1987.

[59] H. Edelsbrunner, Leonidas J. Guibas, J. Hershberger, R. Seidel, Micha
Sharir, J. Snoeyink, and Emo Welzl. Implicitly representing arrangements
of lines or segments. Discrete Comput. Geom., 4:433–466, 1989.

[60] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Trans. Graph.,
9(1):66–104, 1990.

[61] H. Edelsbrunner and E. Waupotitsch. A combinatorial approach to car-
tograms. Comput. Geom. Theory Appl., 7:343–360, 1997.

[62] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31(1):1–28, 2001.

[63] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data struc-
tures for fat objects and their applications. Comput. Geom. Theory Appl.,
15:215–227, 2000. A preliminary version appeared in WADS’97, LNCS
1272.

[64] A. Efrat, S.G. Kobourov, and A. Lubiw. Computing homotopic shortest
paths efficiently. In 10th Annual European Symposium, ESA’02, volume
2461 of LNCS, pages 411–423, 2002.

[65] D. Elroi. Designing a network line-map schematization software en-
hancement package. In Proc. 8th Ann. ESRI User Conference, 1988.
http://www.elroi.com/fr2_publications.html.

[66] D. Elroi. GIS and schematic maps: A new symbiotic relationship. In Proc.
GIS/LIS’88, 1988. http://www.elroi.com/fr2_publications.html.

[67] D. Elroi. Schematic views of networks: Why not have it all. In Proc. of
the 1991 GIS for Transportation Symposium, pages 59–76, 1991. http:

//www.elroi.com/fr2_publications.html.

[68] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput.
Geom., 16:389–418, 1996.

126 BIBLIOGRAPHY

[69] H. Everett, C. T. Hoàng, K. Kilakos, and M. Noy. Distance segment
visibility graphs. Manuscript, 1999. http://www.loria.fr/~everett/

publications/distance.html.

[70] S.P. Fekete and H. Meijer. Maximum dispersion and geometric maximum
weight cliques. To appear in Algorithmica 38(3), 2004.

[71] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Geometric systems of disjoint
representatives. In Graph Drawing, 10th GD’02, Irvine, California, num-
ber 2528 in Lecture Notes in Computer Science, pages 110–117. Springer
Verlag, 2002.

[72] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Systems of sets and their rep-
resentatives. Technical Report 2002-573, KAM-DIMATIA, 2002. Avail-
able at http://dimatia.mff.cuni.cz/.

[73] H.N. Gabow. A matroid apporach to finding edge connectivity and packing
arborescences. J. Comput. Systems Sci., 50:259–273, 1995.

[74] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. Rülling, and C. Storb.
On continuous homotopic one layer routing. In Proc. 4th Annu. ACM
Sympos. Comput. Geom., pages 392–402, 1988.

[75] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[76] S.H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons,
Chichester, 1999.

[77] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-time parallel
algorithms for matching and related problems. Journal of Algorithms,
14:180–213, 1993. A preliminary version appeared in FOCS’88.

[78] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest
paths in planar subdivisions via balanced geodesic triangulations. J. Al-
gorithms, 23:51–73, 1997.

[79] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Amer-
ican Mathematical Society, 1993.

[80] R. Grossi and E. Lodi. Simple planar graph partition into three forests.
Discrete Applied Mathematics, 84:121–132, 1998.

[81] J. H̊astad. Some optimal inapproximability results. J. ACM, 48:798–859,
2001.

[82] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[83] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Com-
put., 21(1):65–84, February 1992.

BIBLIOGRAPHY 127

[84] B. Hendrickson. The molecule problem: Exploiting structure in global
optimization. SIAM J. on Optimization, 5:835–857, 1995.

[85] J. Hershberger and J. Snoeyink. Computing minimum length paths of a
given homotopy class. Comput. Geom. Theory Appl., 4:63–98, 1994.

[86] J. Hershberger and Subhash Suri. A pedestrian approach to ray shooting:
Shoot a ray, take a walk. J. Algorithms, 18:403–431, 1995.

[87] I. Heywood, S. Cornelius, and S. Carver. An Introduction to Geographical
Information Systems. Addison Wesley Longman, New York, 1998.

[88] D. S. Hochbaum and W. Maass. Approximation schemes for covering and
packing problems in image processing and VLSI. J. ACM, 32:130–136,
1985.

[89] J. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[90] H. Imai and T. Asano. Efficient algorithms for geometric graph search
problems. SIAM J. Comput., 15(2):478–494, 1986.

[91] B. Jackson and T. Jordán. Connected rigidity matroids and unique real-
izations of graphs. Manuscript, March 2003.

[92] K. Kedem, R. Livne, J. Pach, and Micha Sharir. On the union of Jordan
regions and collision-free translational motion amidst polygonal obstacles.
Discrete Comput. Geom., 1:59–71, 1986.

[93] D. E. Knuth and A. Raghunathan. The problem of compatible represen-
tatives. SIAM J. on Discrete Mathematics, 5(3):422–427, August 1992.

[94] C. Li and C. Yap. A new constructive root bound for algebraic expressions.
In Proc. 12th Annu. ACM–SIAM Sympos. Discrete Algorithms, pages 496–
505, 2001.

[95] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982.

[96] F. M. Maley. Single-Layer Wire Routing and Compaction. MIT Press,
Cambridge, MA, 1990.

[97] F.M. Maley. Testing homotopic routability under polygonal wiring rules.
Algorithmica, 15:1–16, 1996.

[98] J. Matoušek. More on cutting arrangements and spanning trees with low
crossing number. Technical Report B-90-2, Fachbereich Mathematik, Freie
Universität Berlin, Berlin, 1990.

[99] J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–
334, 1992.

128 BIBLIOGRAPHY

[100] J. Matousek. Lectures on Discrete Geometry. Springer Verlag, Berlin,
2002.

[101] N. Megiddo. Combinatorial optimization with rational objective functions.
Math. Oper. Res., 4:414–424, 1979.

[102] N. Megiddo. Applying parallel computation algorithms in the design of
serial algorithms. J. ACM, 30(4):852–865, 1983.

[103] M. Monmonier. How to Lie with Maps. The University of Chicago Press,
Chicago, 1991.

[104] C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and
line segment intersection reporting in logarithmic time. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 618–627. Society for Industrial and Applied Mathematics, 2003.

[105] C. W. Mortensen. Personal communication, 2003.

[106] J. R. Munkres. Topology: A first course. Prentice Hall, Englewood Cliffs,
NJ, 1975.

[107] G. Neyer. Line simplication with restricted orientations. In Algorithms
and Data Structures, WADS’99, volume 1663 of LNCS, pages 13–24, 1999.

[108] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
2nd edition, 1998.

[109] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment in-
tersections. CVGIP: Graph. Models Image Process., 56(4):304–311, 1994.

[110] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 3rd edition, October 1990.

[111] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
location-support system. In Proceedings of 6th Annual International Con-
ference on Mobile Computing and Networking, pages 32–43, Boston, MA,
August 2000.

[112] R. Raghavan, J. Cohoon, and S. Sahni. Single bend wiring. J. Algorithms,
7:232–257, 1986.

[113] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Reading, MA, 1990.

[114] C. Savarese, J. Rabaey, and J. Beutel. Locationing in distributed ad-hoc
wireless sensor networks. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, pages 2037–2040, Salt Lake
City, UT, May 2001.

129

[115] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-
hard. In Proc. 17th Allerton Conf. Commun. Control Comput., pages
480–489, 1979.

[116] A. Schrijver. A course in combinatorial optimization. Lecture Notes.
Available at http://homepages.cwi.nl/~lex/files/dict.ps, 2003.

[117] B. Simons. A fast algorithm for single processor scheduling. In Proc. 19th
Annu. IEEE Sympos. Found. Comput. Sci., pages 246–252, 1978.

[118] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[119] R. Weibel. Generalization of spatial data: Principles and selected al-
gorithms. In Lecture notes from CISM Advanced School on Algorithmic
Foundations of Geographic Information Systems, pages 99–152. Springer-
Verlag, 1996.

[120] S. Whitesides. Algorithmic issues in the geometry of planar linkage move-
ment. Australian Computer Journal, 24(2):42–50, May 1992.

[121] G. Woeginger. Personal communication, 2003.

[122] Y. Yemini. Some theoretical aspects of position-location problems. In
Proc. 20th Annu. IEEE Sympos. Found. Comput. Sci., pages 1–8, 1979.

130

Curriculum Vitae

Sergio Cabello, born in 1977 in Lleida, Spain, got his degree (Llicenciat) in
Mathematics in 1999 from the Universitat Politècnica de Catalunya, in Barce-
lona. In 2000 he started as PhD student (AIO) at at the Institute of Information
and Computing Sciences of Utrecht University, where he completed this thesis
in 2004.

131

132

Samenvatting

In een onbekende omgeving zijn kaarten een belangrijk hulpmiddel om te navi-
geren, en door onze reislust zien we ze steeds vaker. Kaarten met een bijzonder
doel, bijvoorbeeld het toelichten van één route, zijn bijzonder nuttig. Gezien het
toenemende gebruik van kaarten is het de moeite waard het ontwerpproces te
automatiseren, zodat een plattegrond met dezelfde functionaliteit en kwaliteit
met minder werk gemaakt kan worden. Dit is het doel van geautomatiseerde
kartografie. Dit onderzoeksveld probeert met behulp van computers het werk
van kartografen te verlichten.

Dit proefschrift onderzoekt geometrische vraagstukken die ontstaan bij het
automatisch construeren van schematische netwerken: vereenvoudigde kaarten
die veelal voor metro en trein worden gebruikt (zie de figuur). Bij deze kaarten
wordt de echte kaart vervormd om zijn leesbaarheid, en dus bruikbaarheid, te
vergroten. In dit proefschrift hebben we de volgende eigenschappen van een
schematische kaart geanalyseerd:

• Verbindingen tussen stations moeten zo mogelijk horizontaal, verticaal of
diagonaal zijn

• Als dat niet mogelijk is, dan moet de verbinding tussen twee stations

Detail van de metrokaart van Londen, een klassiek voorbeeld van een schema-
tische kaart.

133

134

uit twee of drie rechte lijnstukken bestaan die horizontaal, verticaal of
diagonaal moeten zijn.

• Drukke delen op de kaart mogen niet voorkomen. Als objecten verder van
elkaar af staan, zijn ze beter herkenbaar en leesbaar.

• De relatieve posities van de verbindingen en stations moet hetzelfde blij-
ven.

Daarnaast hebben we de problematiek van kaarten geanalyseerd, waar af-
standen op de kaart evenredig zijn met reistijden in plaats van fysieke afstanden.

In dit proefschrift drukken we deze eigenschappen uit in wiskundige termen,
en beschouwen ze in het kader van de computationele geometrie. We geven
methoden en technieken om de kaart te veranderen en zo deze eigenschappen
te garanderen. We onderzoeken de effectiviteit en rekentijd van deze metho-
des wiskundig. Met technieken uit de theoretische informatica laten we de
rekenkundige beperkingen van zulke ontwerptaken zien.

