
Mathematical Research Letters 11, 575–581 (2004)

PROPER DISCS IN STEIN MANIFOLDS AVOIDING
COMPLETE PLURIPOLAR SETS

Barbara Drinovec Drnovšek

1. Introduction and the results

Denote by � the open unit disc in C. Recall that a subset Y in a com-
plex manifold X is called complete pluripolar if there exists a plurisubharmonic
function ρ on X such that Y = {z; ρ(z) = −∞}.

In this paper we prove the following result.

Theorem 1.1. Let X be a Stein manifold of dimension at least 2. Given a
closed complete pluripolar set Y ⊂ X, a point p ∈ X \ Y and a vector v tangent
to X at p, there exists a proper holomorphic map f : � → X such that f(0) = p,
f ′(0) = λv for some λ > 0 and f(�) ∩ Y = ∅.

Clearly, every closed complex analytic subset A of a connected Stein manifold
X, A �= X, is locally complete pluripolar, that is, for any point a ∈ A there
is an open neighborhood U of a such that A ∩ U is complete pluripolar in
U . By [Col] every closed locally complete pluripolar set in a Stein manifold is
complete pluripolar, thus every closed complex analytic subset is closed complete
pluripolar. Therefore our theorem answers the question posed in [FG2] on the
existence of proper holomorphic discs in the complements of hypersurfaces.

J. Globevnik [Glo] proved in 2000 that for any point p in a Stein manifold
X of dimension at least 2 there exists a proper holomorphic map from the unit
disc to X with the point p in its image.

The most general result on avoiding certain sets by proper holomorphic discs
was given by H. Alexander [Ale] in 1975: he proved that for a closed polar set
E ⊂ C there exists a proper holomorphic map F = (F1, F2) : � → C

2 such that
F1(�) ∩ E = ∅. On the other hand, a proper holomorphic disc in C

2 cannot
avoid a non-polar set of parallel complex lines (see [Jul, Tsu, Ale, FG2]). F.
Forstnerič and J. Globevnik [FG2] in 2001 constructed a proper holomorphic
disc in C

2 omitting both coordinate axes and proper holomorphic discs avoiding
large real cones in C

2. However, it was unknown if the image of a proper holo-
morphic map from the disc can miss three or more complex lines. Our theorem
provides a positive answer to this question since a finite union of complex lines
in C

2 is closed complete pluripolar. Note that closed convex sets in C
2 which

can be avoided by the image of proper holomorphic maps from the disc were
characterized in [Dri].
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We shall prove the following approximation theorem, which easily implies
Theorem 1.1. In fact, Theorem 1.1 will follow directly from Lemma 2.3.

Theorem 1.2. Let X be a Stein manifold of dimension at least 2 and let Y ⊂ X
be a closed complete pluripolar subset. Let d be a complete metric on X which
induces the manifold topology. Assume that f : � → X is a holomorphic map
such that there is an open subset V ⊂⊂ � with the property f(ζ) /∈ Y for
ζ ∈ �\V . Given ε > 0 there is a proper holomorphic map g : � → X satisfying

(i) g(ζ) /∈ Y for ζ ∈ � \ V ,
(ii) d(g(ζ), f(ζ)) < ε for ζ ∈ V ,
(iii) g(0) = f(0) and g′(0) = λf ′(0) for some λ > 0.

We will prove Theorem 1.2 in section 2.

Corollary 1.3. Let X be a Stein manifold of dimension at least 2 and let Y ⊂ X
be a closed complete pluripolar subset. Assume that S is a discrete subset of X
such that S ∩Y = ∅. Then there are proper holomorphic maps fn : � → X such
that fn(�) are pairwise disjoint, fn(�) avoids Y (n ∈ N) and ∪nfn(0) = S.

Proof. We first note that a finite union of complete pluripolar sets is complete
pluripolar, since a finite sum of plurisubharmonic functions is plurisubharmonic.
We will also need the fact that a discrete set S in a Stein manifold is complete
pluripolar. Namely, by [Col] it is enough to prove that S is locally complete
pluripolar, which follows from the fact that S is a complex analytic subset of X.

Let S = {sn; n ∈ N}. We shall construct the maps fn inductively. By
Theorem 1.1 there is a proper holomorphic map f1 : � → X such that f1(�) ∩
(Y ∪ S \ {s1}) = ∅ and f1(0) = s1. Assume that for some n ∈ N we have
already constructed proper holomorphic maps fj : � → X, 1 ≤ j ≤ n, such that
fj(�) are pairwise disjoint, fj(�) avoids Y and fj(�) ∩ S = {sj} (1 ≤ j ≤ n).
By Remmert’s proper mapping theorem [Re1, Re2], [Ch2, p. 65] the image
of a proper holomorphic map is a closed analytic subset of X and therefore
closed complete pluripolar. Thus Y ∪ f1(�)∪ · · · ∪ fn(�)∪ S \ {sn+1} is closed
complete pluripolar. Then by Theorem 1.1 there is a proper holomorphic map
fn+1 : � → X such that

fn+1(�) ∩ (Y ∪ f1(�) ∪ · · · ∪ fn(�) ∪ S \ {sn+1}) = ∅
and fn+1(0) = sn+1. The inductive construction is finished and the proof is
complete.

Let R be a bordered Riemann surface. By the theorem of Ahlfors [Ahl],
there are inner functions on R. Recall that a nonconstant continuous function
f : R → �, which is holomorphic on R \ bR, is called an inner function (or
an Ahlfors function) on R if |f | = 1 on bR. Therefore Theorem 1.1 implies the
following:

Corollary 1.4. Let X be a Stein manifold of dimension at least 2 and let Y ⊂ X
be a closed complete pluripolar subset. Given a bordered Riemann surface R there
is a proper holomorphic map f : R \ bR → X such that f(R \ bR) ∩ Y = ∅.
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2. Proof of Theorem 1.2

As it was observed in [FG2] the methods developed in [FG1, Glo] actually
prove the following:

Theorem 2.1. Let X be a Stein manifold of dimension at least 2 and ρ : X → R

a smooth exhaustion function which is strongly plurisubharmonic on {ρ > M}
for some M ∈ R. Let f : � → X be a continuous map which is holomorphic
on � such that ρ(f(ζ)) > M for each ζ ∈ b�. Let d be a complete metric on
X which induces the manifold topology. For any numbers 0 < r < 1, ε > 0,
N > M and for any finite set A ⊂ � there exists a continuous map g : � → X,
holomorphic on �, satisfying

(i) ρ(g(ζ)) > N for ζ ∈ b�,
(ii) ρ(g(ζ)) > ρ(f(ζ)) − ε for ζ ∈ �,
(iii) d(f(ζ), g(ζ)) < ε for |ζ| ≤ r, and
(iv) g(ζ) = f(ζ) and g′(ζ) = f ′(ζ) for ζ ∈ A.

In the proof of Theorem 1.2 we also need the following lemma which is a
slight generalization of [Ch1, Lemma 1]. Since its proof is essentially the same,
we omit it.

Lemma 2.2. Let X be a Stein manifold and Y ⊂ X a complete pluripolar
set. Let L1 ⊂ L2 ⊂ X be holomorphically convex compact sets. Then the set
(L1 ∪ Y ) ∩ L2 is holomorphically convex.

The main tool in the proof of Theorem 1.2 is the following

Lemma 2.3. Let X be a Stein manifold of dimension at least 2 and let Y ⊂ X
be a closed complete pluripolar subset. Let d be a complete metric on X which
induces the manifold topology. Assume that f : � → X is a holomorphic map
such that there is an open subset V ⊂⊂ � with the property f(ζ) /∈ Y for
ζ ∈ �\V . Given ε > 0 there are a domain Ω, {0}∪V ⊂⊂ Ω ⊂⊂ �, conformally
equivalent to the unit disc and a proper holomorphic map g : Ω → X with the
following properties

(i) g(ζ) /∈ Y for ζ ∈ Ω \ V ,
(ii) d(g(ζ), f(ζ)) < ε for ζ ∈ V ,
(iii) g(0) = f(0) and g′(0) = f ′(0).

Proof. One can choose a simply connected domain Ω1 such that {0} ∪ V ⊂⊂
Ω1 ⊂⊂ �. By [Hör, Theorem 5.1.6] there is a smooth strongly plurisubharmonic
exhaustion function ρ for Stein manifold X. Sard’s theorem implies that one can
choose a strictly increasing sequence {Mn} of regular values of ρ converging to
∞ with M1 so big that ρ(f(ζ)) < M1 for ζ ∈ Ω1. By continuity there is a simply
connected domain �1, Ω1 ⊂⊂ �1 ⊂⊂ �, such that ρ(f(ζ)) < M1 for ζ ∈ �1.
Let U0 = ∅ and for n ∈ N denote by Un the sublevel set {z ∈ X; ρ(z) < Mn}.
Since Mn is a regular value of ρ it holds that Un = {z ∈ X; ρ(z) ≤ Mn}. This
implies that Un is a holomorphically convex compact set, because on a Stein
manifold plurisubharmonic hull equals holomorphic hull.
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We shall construct inductively a decreasing sequence of domains {�n} con-
formally equivalent to �, an increasing sequence of domains {Ωn} conformally
equivalent to �, Ωn ⊂⊂ �n (n ∈ N), a sequence of continuous maps gn : �n →
X, holomorphic on �n, and a decreasing sequence of positive numbers {εn},
satisfying for each n ∈ N the following

(I) gn(ζ) ∈ Un \ (Un−1 ∪ Y ) (ζ ∈ �n \ Ωn),
(II) gn+1(ζ) /∈ Un−1 ∪ Y (ζ ∈ �n+1 \ Ωn),

(III) d(gn(ζ), gn+1(ζ)) < εn

2n (ζ ∈ Ωn),
(IV) gn+1(0) = gn(0) and g′n+1(0) = g′n(0),
(V) if z ∈ X such that d(z, gn(�n \ V )) < εn then z ∈ Un \ Y ,

(VI) if z ∈ X such that d(z, gn+1(�n+1 \ Ωn)) < εn+1 then z /∈ Un−1.
Let g1 = f and let �1 and Ω1 as above. Then (I) holds. Choose ε1, 0 < ε1 < ε,

so small that (V) holds for n = 1. Suppose that j ∈ N and that we have
constructed gn, �n, Ωn and εn, 1 ≤ n ≤ j, such that (I) and (V) hold for
1 ≤ n ≤ j and (II), (III), (IV) and (VI) hold for 1 ≤ n ≤ j − 1. It follows by
Lemma 2.2 that the set (U j−1∪Y )∩U j+1 is holomorphically convex. Therefore
there is a smooth strongly plurisubharmonic exhaustion function ρj+1 on X such
that ρj+1(z) < 0 (z ∈ (U j−1 ∪ Y ) ∩ U j+1) and ρj+1(gj(ζ)) > 0 (ζ ∈ �j \ Ωj)
[Hör, Theorem 5.1.6]. There is N so big that Uj ⊂ {z; ρj+1(z) < N}. We use
Theorem 2.1 to get a continuous map gj+1 : �j → X, holomorphic on �j , with
the following properties

(a) ρj+1(gj+1(ζ)) > N for ζ ∈ b�j ,
(b) ρj+1(gj+1(ζ)) > 0 for ζ ∈ �j \ Ωj ,
(c) d(gj+1(ζ), gj(ζ)) <

εj

2j for ζ ∈ Ωj , and
(d) gj+1(0) = gj(0) and g′j+1(0) = g′j(0).
By (a) and by the choice of N we get that ρ(gj+1(ζ)) > Mj (ζ ∈ b�j). Thus

there is M , Mj < M < Mj+1, such that the holomorphic disc gj+1(�j) and the
level set {z; ρ(z) = M} intersect transversally. It follows by (c) and (V) that
gj+1(Ωj\V ) ⊂ Uj . This and the fact that ρ◦gj+1 is subharmonic imply that there
is a simply connected component of {ζ ∈ �j ; ρ(gj+1(ζ)) < M} which contains
Ωj . We denote such component by �j+1. Choose a simply connected domain
Ωj+1, Ωj ⊂⊂ Ωj+1 ⊂⊂ �j+1, such that ρ(gj+1(ζ)) > Mj (ζ ∈ �j+1 \ Ωj+1). It
is easy to see that �j+1, Ωj+1, gj+1 satisfy (I) for n = j + 1 and (II), (III) and
(IV) for n = j. Since we have gj+1(�j+1) ⊂ Uj+1 and gj+1(�j+1 \ Ωj)∩ Y = ∅
and since by (V) for n = j and by (c) we get that gj+1(Ωj \ V )∩Y = ∅ it follows
that gj+1(�j+1 \ V ) ⊂ Uj+1 \ Y . This together with (II) for n = j implies that
there is εj+1, 0 < εj+1 < εj , so small that (V) holds for n = j + 1 and that (VI)
holds for n = j. The construction is finished.

Denote by Ω the union ∪∞
j=1Ωj . As Ω is a union of an increasing sequence

of simply connected open sets it is simply connected and therefore conformally
equivalent to the unit disc. It follows by (III) that for ζ ∈ Ω the sequence gn(ζ)
is Cauchy with respect to the complete metric d therefore it converges to g(ζ).
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Since the convergence is uniform on compact sets it follows that the map g is
holomorphic on Ω.

Next we show that the map g and the domain Ω have all the required prop-
erties. Fix j ∈ N ∪ {0}. It follows by (III) that

d(g(ζ), gj+1(ζ)) ≤ d(gj+1(ζ), gj+2(ζ)) + d(gj+2(ζ), gj+3(ζ)) + · · · <

<
εj+1

2j+1
+

εj+2

2j+2
+ · · · < εj+1 (ζ ∈ Ωj+1).(1)

Thus for ζ ∈ Ωj+1 \ Ωj it holds by (VI) that g(ζ) /∈ Uj−1. This implies that
g : Ω → X is a proper map. To prove that g(Ω \ V ) avoids Y , choose ζ ∈ Ω \ V .
There is j ∈ N so large that ζ ∈ Ωj+1. It follows by (1) and by (V) that g(ζ) /∈ Y .
By (1) for j = 0 we obtain that d(g(ζ), f(ζ)) < ε for (ζ ∈ V ). We get by (IV)
that g(0) = f(0) and g′(0) = f ′(0). This completes the proof.

Proof of Theorem 1.2. There are r and R, 0 < r < R < 1, such that
V ⊂⊂ r�. One can choose ε0, 0 < ε0 < ε, so small that

for z ∈ X such that d(z, f(r� \ V )) < ε0 it holds that z /∈ Y.(2)

There is δ > 0 so small that

V ⊂⊂ (r − δ)� ⊂ (r + δ)� ⊂⊂ R�,(3)
ζ ∈ r�, ζ ′ ∈ � such that |ζ − ζ ′| < δ then d(f(ζ), f(ζ ′)) < ε0

2 .(4)

Let Ω0 = ∅ and choose an increasing sequence {Rn} of positive numbers con-
verging to 1 with R1 > R. We shall construct inductively an increasing sequence
of simply connected domains {Ωn} such that Rn� ∪ Ωn−1 ⊂⊂ Ωn ⊂⊂ �, a de-
creasing sequence of positive numbers {εn}, ε1 < ε0

2 , and a sequence of proper
holomorphic maps gn : Ωn → X such that

(a) gn(ζ) /∈ Y for ζ ∈ Ωn \ V ,
(b) d(gn(ζ), f(ζ)) < εn for ζ ∈ Rn�∪ Ωn−1,
(c) gn(0) = f(0) and g′n(0) = f ′(0).

Assume that we have already constructed Ωn and εn (0 ≤ n ≤ j) and gn (1 ≤
n ≤ j) for some j ∈ N ∪ {0}. One can choose εj+1, 0 < εj+1 <

εj

2 , with the
following property

for z ∈ X such that d(z, f((Rj+1�∪ Ωj) \ V )) < εj+1 it holds that z /∈ Y.(5)

Using Lemma 2.3 for V = Rj+1�∪Ωj and ε = εj+1 we obtain a simply connected
domain Ωj+1, Rj+1� ∪ Ωj ⊂⊂ Ωj+1 ⊂⊂ �, and a proper holomorphic map
gj+1 : Ωj+1 → X which satisfy (b) and (c) for n = j + 1 and it holds that
gj+1(ζ) /∈ Y for ζ ∈ Ωj+1 \ (Rj+1� ∪ Ωj). By (5) and (b) we get gj+1(ζ) /∈ Y
for ζ ∈ (Rj+1� ∪ Ωj) \ V , thus (a) holds for n = j + 1. This completes the
construction.

Note that ∪nΩn = �. Caratheodory kernel theorem [Car, Pom] implies that
the sequence of conformal maps hn : � → Ωn, such that hn(0) = 0, h′

n(0) > 0,
converges uniformly on compact sets to identity. Choose n so big that

|hn(ζ) − ζ| < δ (ζ ∈ r�).(6)
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Let g = gn ◦ hn. By the above g : � → X is a proper holomorphic map and
(c) implies (iii). Take ζ ∈ r�. By (6) and (3) we get that hn(ζ) ∈ R� which
by (b) implies that d(gn(hn(ζ)), f(hn(ζ))) < ε0

2 . It follows by (6) and (4) that
d(f(hn(ζ)), f(ζ)) < ε0

2 . Therefore d(g(ζ), f(ζ)) < ε0 (ζ ∈ r�). This proves
(ii) and for ζ ∈ r� \ V this together with (2) implies that g(ζ) /∈ Y . Choose
ζ ∈ � \ r�. By (6) it follows from Rouché’s theorem that (r − δ)� ⊂ hn(r�)
and thus we get by (3) that hn(ζ) /∈ V . By (a) it follows that g(ζ) /∈ Y . This
proves (i). The proof is complete.
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[FG1] F. Forstnerič, J. Globevnik, Discs in pseudoconvex domains, Comment. Math. Helvetici

67 (1992), 129–145.
[FG2] , Proper holomorphic discs in C

2, Math. Res. Lett. 8 (2001), 257–274.
[Glo] J. Globevnik, Discs in Stein manifolds, Indiana Univ. Math. J. 49 (2000), 553–574.
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