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Abstract. Denote byA the open unit disc irC. We prove that given a
discrete subsef of a connected Stein manifolt! there is a proper holo-
morphic mapf : A — M such thatS C f(A); if dim M > 3 the mapf

can be chosen to be an embedding. In addition we prove that we can prescribe
higher order contacts g¢f(A) with given one dimensional submanifolds in

M.

1 Introduction and the results

Denote byA the open unit disc irC. It is known that given a discrete
subsetS of a convex domairD ¢ C there is a proper holomorphic map
f A — D suchthatS C f(A);if N > 3 the mapf can be chosen
to be an embedding [G2]. It is also known that given a Stein manifé|d
dim M > 2, a pointz € M and a directionX € T,M \ {0} there is a
proper holomorphic map : A — M such thatf(0) = z andf'(0) = A X

for some\ > 0 [G1],[FG]. Our main result generalizes both these results.

Theorem 1.1 Let {z,;n € N} be a discrete set of a connected Stein
manifold M with dim M > 2. There is a proper holomorphic immersion
f: A — M suchthatz, € f(A) (n €N).

In addition, ifdim M > 3 then there is suclf which is a proper holo-
morphic embedding.

In fact we shall prove a stronger result. We shall prescribe higher order
contact off (A) with given one dimensional submanifolds at the poipts
Before we state our theorem, we explain what we mean by the contact of at
least ordelk:
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Let N and P be p-dimensional submanifolds of a complex manifold
M. If N and P intersect at a pointy, € M, we shall say thatV and
P have contact of at least ordérat zo. If N and P intersect at a point
20 € M andifT,,N = T,,P we shall say thatv and P have contact of
at least orderl at zy. In this case one can choose a holomorphic coordinate
system(U, ¢) aroundz, and a complex subspade c CY4mM sych that
Tqb(zo)d)(N) e L= (Cdim.M. Write z = (Zl, Z//) with 2/ € T¢(zo)¢(N) anc_i
2" € L. There are a neighborhodd C T,.,)¢(N) of 0 and holomorphic
mapsgy : U — L, gp : U — L satisfyinggy(0) = ¢gp(0) = 0 and
Dgn(0) = Dgp(0) = 0 such that near the poiwt(zy), (V) is given by
{20+(2, gn()); 2" € U} andp(P)isgivenby{zo+ (2, gp(2')); 2" € U}
If the mapsygy andgp have the samg-jets at0 we say thatV and P have
contact of at least ordek at zj. It is easy to see that in this way the contact
of at least ordek is well defined.

Theorem 1.2 Let{z,;n € N} be a discrete set of a connected Stein man-
ifold M, dim M > 2. Then there are a sequen¢¢,} C A and a proper
holomorphic immersiotf : A — M such thatf (¢,) = z, for eachn € N.

Moreover, given a sequen¢&,, € T, M \ {0}}, f and(,, € A canbe
chosen so that for each € N there is)A,, > 0 such thatf’(¢,,) = A\ Xy

Moreover, given a sequence of local one-dimensional complex subman-
ifolds{N,,} in M such that,, € N,, andX,, € T,, N,, foreachn € N and
given a sequence of positive integéks, }, there are a proper holomorphic
immersionf : A — M, ¢, € A and neighborhood®V,, of ¢,, in A such
that for eachn € N, f((,) = 2n, f'(¢n) = M\ X, for some),, > 0 and the
manifoldsf,,(W,,) and NV,, have contact of at least ordér, at z,,.

In addition, ifdim M > 3 then the mapg can be chosen to be proper
holomorphic embeddings.

2 Preliminaries

By the embedding theorem for Stein manifolds [H] we may assumeithat
is a closed submanifold 6" for someN < N. By the theorem of Docquier
and Grauert [GR, pp. 257] there are an open neighborti®oti M in CV
and a holomorphic map : £ — M such thatr(z) = z (z € M).
Throughout the paper we denote Bythe unit ball inC". Let p,(z) =
|z —a|? (a € CV, 2z € CV). Sard’s theorem implies that for almost every
a € Bthefunctiorp, isaMorse function oM. Itis easytoseethat,(z,)is
aregularvalue of,| M ifand only ifthe spheré¢z € CV;|z—a| = |z,—a|}
intersectsM transversely. Fixx € N. For almost every, € B the sphere
{z € CN;|z — a|] = |z, — a|} intersectsM transversely (see [GP, pp.
68]). Therefore for almost every € B and for alln € N the sphere
{z € CN;|z — a| = |2n — a|} intersectsM transversely ang, is a Morse
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function on M. Thus, after translating/ for a suitable smalt we may
assume that the functign= p, is a Morse function o/ andp(z,) is a
regular value op|M for eachn € N.

We shall frequently use the following lemma proved by R. Narasimhan
[N].

Lemma 2.1 LetU be a neighborhood of a compact gétin C.

If f: U — C is a holomorphic, regular and one to one map, then there
is ane > 0 such that for a holomorphic magp: U — C with |g(¢)| < ¢
(¢ € U) the mapf + ¢ is regular and one to one oR'.

If f:U — CV is a regular holomorphic map, then there is an> 0
such that for a holomorphic map: U — CV with |g(¢)| < € (¢ € U) the
map f + g is regular onkK.

3 Ouitline of the proof

In the proof we use the following lemma about pushing the boundaries of
analytic discs inM to higher levels of the exhaustion function:

Lemma 3.1 Leta < b < A < B < co. Assume that has no critical value
onla,b] U [A, B].

Suppose thaf : A — M is a continuous map, holomorphic ah,
such thate < p(f(¢)) < b (¢ € bA). Given(y,...,(, € A, K € N, R,
0 < R < 1,ande > 0 there arer, R < r < 1, and a continuous map
g : A — M, holomorphic o\, such that

(i) A<p(g)<B ((€bh)

(i) plg(tC)) = p(f(C)) —€ (C€bA, r<t<1)
(i) [g(¢) = f(Q)] <e (|¢I<7)

(iv) gV(¢) =fD(¢) (0<j<K, 1<i<n)

Givend > 0 there is a magy that, in addition, satisfies

V) pg(Q) > p(f(Q) =0 (CeA).

In the proof of our theorems the map will be obtained as the limit of
a sequence of maps constructed in an induction process. (iii) above will
be necessary for convergence and (i) and (v) will be necessary to obtain a
proper map in the limit.

Let S = {z,;n € N}. We choose an increasing sequefgeof the
components of the sublevel setsgasuch that their union ig/.

We construct the desired map by induction. At each induction step we
begin with an analytic disc which hits the points 8fn U,, and whose
boundary is close to the boundary Gf,. We push the boundary of this
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disc close to the boundary @f,,; and we construct for each point in
SN(Un+1\Uy,) an analytic disc that hits that point and such that its boundary
is close to the boundary &f, ., 1. Then we glue these discs together by paths
which are close to the boundary bf,.;. Then we apply the Mergelyan
approximation theorem in the ambient space and thus obtain an analytic
disc which hitsS n U,,. 1 and whose boundary is close to the boundary of
Un+1.

Additional care in the construction is necessary to insure that the limit
map is an immersion and that it hits the prescribed points in the prescribed
directions and has given finite order contacts with the prescribed submani-
folds in M.

4 Pushing the boundaries of the disc to higher levels gi

Lemma 3.1 is actually a generalization of Lemma 9.1 in [G1]. The main
modification of the proof is the generalization of the construction of the
continuous family of analytic discs from the case wiiem M = 2 to the
case whenlim M > 3. The construction goes as follows:

Letm = dim M. For eachy € CV \ {0} let E(q) = {z € CV;(z —
q,q) = 0} be the affine complex hyperplane passing throgghd tangent
to the spheré(¢B), and for eachy € M let T'(q) be the affine complex
subspace of dimension passing through and tangent td/ atgq.

Assume that) C M is a compact set consisting of regular pointgof
For eachy € Q, T'(¢) intersectsE(q) transversely, s&(q) N T(q) = L(q)
is an affine complex subspace of dimension- 1 and neag, E(q) N M
ism — 1 dimensional submanifold a¥/ tangential tol.(¢) atq. Therefore
there ared > 0 and a mapy, : L(q) N (¢ +0B) — L(¢)* = {z €
CV; (2,w) = 0, Yw € L(q)} satisfyingg,(¢) = 0, Dg,(q) = 0 such that
MNE(q)N(g+0B) = {z+g4(2); 2 € L(¢)N(g+IB)}N(g+IB). Taking
smallers if necessary for each 0 < r < 4, and for each one dimensional
affine subspacé&/(q) of L(g) throughqg the analytic disqz + g4(2); z €
N(q) N (¢ + 0B)} intersectd(q + rB) transversely and the intersection
{z+g4(2); 2 € N(q)N(q+6B)}N(g+rB) is biholomorphically equivalent
to adisc. Sincé€) is compact, @ > 0 can be chosen that works for alE Q.

SinceE(q) is orthogonal tq it follows that the spheres ifi(¢) centered
atq are the level sets of the functien— |z|? restricted taF(q). In particular
p(w) = lgI* +7% = p(g) +7° (w € {2 + gq(2); 2 € L(q) N (¢ + 6B)} N
b(q +rB)).

By transversality everything varies smoothly withe M andr, 0 <
r < 4.

Lemma 4.1 Given a compact se€p) C M of regular points ofp| M there
is a up > 0 such that for every positive continuous functon bA that
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satisfiesu(¢) < uo (¢ € bA) and for every continuous maf: bA — Q
there is a continuous map : bA x A — M such that

(i) foreach(¢ € bA the functiony — F(¢, n) is holomorphic onA
(i) F(¢,0) = f(C) (CebA) )

(i) p(F(C,m) > p(f(C)) (¢ €bA,ne A\{0})

V) p(F(C.m) = p(F(O) +(Q) (C€bAmebA).

Proof. Letd, L(q) andg, be as in the preceding discussion andipuit= 62.
Sincef : bA — Qs continuous, the setycpa {¢} x L(f(¢)) is a complex
vector bundle of dimensiom — 1 and there exists an one dimensional
subbundleJscpa{¢} x N(f(¢)). The preceding discussion shows that for

each( € bA the sphereé(f(¢) + u(()%B) intersects{z + g4(2);z €
N(q) N (¢ + 0B)} transversely and(¢) = {z + g4(2);z € N(gq) N
(¢ + 6B)} N (f(¢) + u(¢)2B) is biholomorphically equivalent to a disc.
If w belongs to the boundary of this disc, that iswife {z + g4(2); 2 €
N(q) N (q+0B)} Nb(f(Q) + (¢)2 B) thenp(w) = p(f(C)) + (). By
the transversality and by the continuity pfand . the discsD(¢) change
continuously with(.

The rest of the proof is the same as the proof of Lemma 4.1 in [G1].

5 Construction of a disc through a given point

In this section we show how to construct a disc through a prescribed point
tangent to a given submanifold i1 at this point. In the proof of Theorem
1.2 we shall glue these discs together.

Lemma 5.1 Let V be a local one dimensional complex submanifold4n
p apointinN such thafp(p) is a regular value op| M, X atangent vector
to N atpand K € NU {0}. Givennp > 0,6 > 0 and a regular value:
of p|M such thata > p(p) there exists a continuous map: A — M,
holomorphic onA, such that

() f(0) =p, f/(0) = XX for someX > 0 and there is a neighborhood
W of 0 such thatf (V) and N have contact of at least ordédt at p.

(i) a—n<p(f(Q)<a (Ce€bA)

(i) p(f(¢)) = p(p) =6 (C€A).

Proof. SinceN is a one dimensional complex submanifoldidfthrough

p, nearp, N is a graph over its (complex) tangent spacg. & this way we
obtain a small holomorphic disgc: A — M such that

(i) ¢(0) =p, ¢ (0) = AX for some) > 0 and there is a neighborhodg
of 0 such thayy(&/) and N have contact of at least ordéf atp
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(i) p(g(Q))is aregular value 0p|M (¢ € bA)

(i) p(9(Q) = p(p) =5 (C€ D).

We now use Lemma 3.1 to obtain a continuous rfiapg\ — M, holomor-
phic on/\, such that

@) f90) =490 (0<j<K)
(i) a—n<p(f(¢)<a (Cebr)
(i) p(£(C) > p(9(C)—3 (Ced).

This f meets all the conditions in the lemma. The proof is complete.

6 Perturbing f to get a regular map

Recall thatF is a neighborhood a¥/ in CV andr : E — M is a holomor-
phic retraction.

As described in the outline we shall prove Theorem 1.2 inductively. At
each inductive step our map will be regular on a certain compact subset of
A. To get such a map we perform a small perturbation.

Lemma 6.1 Let f : A — M be a nonconstant continuous map, holomor-
phic on A. Suppose thaf;,...,{, € A are regular points off. Given

U cc A, K € Nande > 0 there is a continuous map : A — CV,
holomorphic onA, such that

) o)l <e (C€D)

(i) (f+9(p)cM

(i) f + gisregular onU

iv) (f+9)0() =FI(¢) (1<i<K 1<j<n).

Proof. Since f is nonconstant there are only finitely many pointdjirat
which f’vanishes. Lef¢ € U; f'(¢) = 0} = {1, ...,ns}andz; = f(n;),
1<j<s.

Choosej, 1 < j < s. Sincef is nonconstant there are; € N and a
holomorphic magh; : A — C¥ such thatf’(¢) = (¢ —n;)™h;(¢) (¢ €
A)andh;(n;) # 0. Sincedim M > 2 there is a vectoB(j) € T, M such
thath;(n;) andB(j) are linearly independent. Sinee, M NT. ;7 (z;) =
{0} there are a neighborhood (in a Grassmann manitgd)f 7., 7 (z;)
andv; > 0 such that

it A,B€CY, |A—hj(n)| <vj, |B=B(j)| <vj, Ul
then U N Span{A, B} = {0}. (1)
As the mapr : E — M is a holomorphic retraction the rank ofon M is

maximal and constant. Therefore the rankra$ constant in the neighbor-
hood of M and the rank theorem implies that locally in the neighborhood
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of each point € M in C" the mapr is a holomorphic projection. So there
is ; > 0 such that

2 € CV, |z — zj| < §; implies that T,w ! (7(2)) € U; . 2

Choose a holomorphic polynomi#&l : C — CV such thatP’(n;) =
B(j) (1 <j<s)andPP(G) =0(0<k <K, 1<i<n).

Choose) > 0 so small that forj, 1 < j < s, and for¢, [ — n;| < A,
we have

|h;(¢) = hj(n;)| < vjand |[P'(¢) — B(j)| < vj. (3)

Taking smaller) if necessary, there is amy; > 0 such that for eacl,
1 <j <s,foreache, |¢ —n;| < Aand for eachy, 0 < a < o, we have

1£(C) + aP(¢) — 2| < j. (4)

Sincef is regular onU \ U;_,{n;} there ise;, 0 < €1 < ¢, such that
for any holomorphic mag : A — CV with [g(¢)] < €1 (¢ € A) the map
f+gisregular onV \ Uj_,{¢;[¢ — n;| < A}. One can choose, €2 > 0,
such that for a map : A — C¥, with |h(¢)| < e2 (¢ € A) we have
F(Q) +h(C) € Eand|a(f(C) +h(Q) — FOl <er (C€ D).

Takea, 0 < a < ap, so small thataP(¢)| < e (¢ € A) and let
9(¢) = 7(f(¢) + aP(¢)) — f(¢). Then (ii) is satisfied. According to the
choice ofes, we haveg(¢)| < €1 (¢ € A), which proves (i), and proves that
f+gisregularonU \ Ui_,{(;|¢ — n;] < A}. Further, letl < j < sand
¢ ;] < A We have(f +9)'(¢) = Dr(f(C) +aP(O))(f'(C) +aP'(C)).
Sinceker Drr(z) = T,7 (w(2)) (= € E) it follows by (4), (2), (3) and
(1) thatf(¢) + aP'(¢) ¢ ker Dr(f(¢) + aP(¢)). This proves (ii). (iv)
follows from the fact tha?®)(¢;) = 0 (0 < k < K, 1 < i < n) and that
m|M = id. This completes the proof.

7 Removing the selfintersection points of properly immersed discs

Lemma 7.1 Let P be a domain irCY andm = dim M > 3. Letf : A —
M be a continuous map, holomorphic @k, andi/ cc A conformally
equivalent to the disc, such thall/ : «/ — P is a proper map, regular on
U CC U and a normalization map for the varieff{t/) C P.LetW cCc U
be a domain and suppose th@at ..., (, € A, f(G) # f(¢)E # 5,1 <

i <mn,1 <j<n) GivenK € Nande > 0 there is a continuous map
g : A — CY, holomorphic inA, such that

) 19(Q)l<e (C€D)
(i) (f+g9)(A)cM
(iii) f + g is regular and one to one oW
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) (f+9) () =FIG) 1<i<K 1<j<n).

In the proof of Lemma 7.1 we need the following lemma

Lemma7.2Lletf,g: A — M,m = dim M > 2, be holomorphic maps
such thatf (0) = ¢(0), f'(0) # 0, ¢'(0) # 0. LetP; : CN - CN (1< j <
m—1) be holomorphic polynomial maps suchtiat £ (0)), . .. P,,—1(f(0))
are linearly independentP;(f(0)) € TyoyM (1 < j < m — 1) and
17(0),4'(0) ¢ Span{P;(f(0)),...Pn_1(f(0))}. Assume thap and are
holomorphic functions o\ such that)(0) # «(0). There arex > 0 and
7 > 0 with the following property: The setof al = (\1,..., A\u—1) €
C™=1, |\ < p, such that

{m(£(Q) + () S NP (F(0)))s [¢] < 7}
N{m(g(¢) + ¥ (¢) Zm Y iPi(g(O))): ¢l <7 #0

has three dimensional Hausdorff measure zero.

Proof. Choosea > 0 so small that for each\, |\| < «, and for each

¢ € Awehavef (¢)+(¢) YT A Pi(f(€) € Eandg(¢)+6(¢) S0,
AiPi(9(C)) € E. Let

= {(C,n,/\) e AxAx{zeC" |z <al};

m—1 m—1
€)D" APIFO)) = 7 (gm) + () Aij(g(n)))}.

j=1 j=1

The setA is analytic setinA x A x {z € C™1;|z| < a}. We will show
that0 € C™*! is an isolated point oft N {(¢,0,\)}.

Let
m—1
H( N = (O ) NP(f
7j=1
m—1
—m | g(0 \jPj(g (I<| <1, Al < ).
]:1
For¢ € Awrite P(f(¢)) = Q;(¢) + R;(€),1 < j <m—1,whereQ; is
orthogonal projection oP;(f(¢)) onton M. The functions)); and R;
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are smooth on\. Then

H(GA) =m (f(() +¢(¢) Z AiQ5(¢) +(0) /\JRj(C))

-7 (9( ) +9(0)

As f(0) = g(0), Dr(f(O)|TpyM = I, and7(f(¢) + h) = f(C) +
Dr(f(C))h + O(|h[2) we have

m—1 m—1
H((,N) (©) D" NQi(Q) + Dr(£(Q)) (¢>(<) AjRj(o)
Jj=1 j=1
—1 2 m—1
( Z A Pi(f ) — F(0)=(0) Y~ X\ P5(£(0)))
Jj=1 J=1
m—1 2
O(MO)ZAJPJ- 0))) )
j=1

By rearranging we get

H(C,A) = {f(C) = F(0) + (2(Q) = ¢(0)) p_ A;Q;(C)

-1

m—1
+ 0(0) p_ Ai(Qi(¢) — Q4(0)) + D (£(C)) (cb(C) AJ'Rj(C))

j=1
m—1
)‘]QJ
j=1

It is easy to see that

3

f(C) £(0) =¢f'(0) +¢*0(1) (¢ —0),
Z AiQ;(¢) = CIAO(1) ((¢,A) — 0),
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m—1
$(0) Y Ai(Q5(¢) — Q;(0)) = ¢IAO(1) ((¢, ) —0),
j=1
m—1
Dﬂﬂm(MOEZM%@ = ¢IAO(1) ((¢,A) = 0),
j=1

2
m—1
0 (tb(() NP (fO) | =IAPO@) (¢, ) = 0),

2
m—1
O(w@ NPi(f(0)| | =[APO(1) (A—0).

This implies that

H(¢,A) = ¢ [f'(0) +CO(1) + [AO(1)]
m—1
+Akd®WW§:MA1EU®D+AmU (¢, A) = 0).
j=1

Since f/(0) ¢ Span{P;(f(0)),...Pn-1(f(0))}, there is§ > 0 small
enough such that for eaach [(| < J, and for each\, 0 < |A| < 9,
the vectors in the brackets are linearly independent. Therefore for each
¢, |¢] < 4, and for each\, 0 < |A\| < 0 we haveH((,\) # 0. This,
together with the fact that/ ({,0) # 0 for 0 < [¢| < ¢, implies that
AN {(¢0,)) € C*LCl < 6, |N < 6} = {0}, that is,0 is an
isolated point ofA N {(¢,0,\) € C™"4|¢| < 6, |A| < &}. There-
fore by [C, page 34Himg A < 1. So there is a neighborhodd of 0 in
C™*! such thatdim(A N U) < 1. Then the three dimensional Hausdorff
measure ofA N U is zero. LetIl : C™*t! — C™ ! be the projection
(21,29,2") — 2. So the seflI(A N U) has three dimensional Hausdorff
measure zero as well. Choose> 0 andyx > 0 small enough such that
{(¢,n, A\); <] <7, |n| <7, |A\| <u} CU andthe lemma follows.

Proof of Lemma 7.1 The proof of the lemma is similar to the proof of
Lemma 6.1 in [G2]. LetS be the set of singular points & = f(i/) and
T = f~1(S). Sincef is a normalization map fov" and sincef is regular
onU the mapf|[(U\T)U{C}] — (V' \S)U{f(¢)} is regular and one to
one for¢ € U NT (see Appendix).
LetUNT = {m,...,nstandf(UNT) = {z1,..., zj} wherez, ..., z;
are distinct. With no loss of generality we may assume that there are integers
m; (1 <4 < j 4 1) such thatf(n) = z (m; <1< mip1, 1 <@ <)
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andif§; € {Nm;, Mm;+15 - - - Mmiy,—1} then = n,,,. Choose holomorphic
polynomial maps?, ..., P,_1 : CN¥ — C¥ such that for, 1 < i < j,

(i) Pi(z),-.., Pn_1(z;) are linearly independent and
Span{P;(z;), ..., Pm-1(z)} C T., M,
(i) f'(m) & Span{P1(2),..., Pn-1(z)} (mi <1 <miy1).

Let ¢ be a polynomial such tha(1,,,, ;) =1 (0 <1 < m;y; —m;, 1 <
i <), W (G)=00<k<K,1<i<n).

By Lemma 7.2 there arg > 0 and7 > 0 with the following prop-
erty: The set of allA € C™ ! |A\] < g, such that{n(f(¢) + ¢(¢)
S PO 1= mel < 73N (F(Q) + 6(0) T NP (f(Q));
| —m| < 7} # 0 for atleastone paik, I, k # 1, 1 <k, | < s has three
dimensional Hausdorff measure zero.

With no loss of generality assume thais so small that); + 7A C U,
1 <1 < s, are pairwise disjoint and thdt" is so large that; + 7A C W,
1 <4 < s. Sincem > 3 it follows that for eache > 0 one can choose
A€ C™ 1 |)\| < e, such that

m—1
{W(f(() + Q) D AP —mil < T} n {W(f(C)

=1
m—1
+6(Q) D NB(F(O))); I —m| < T} =0 1<k 1<s, k#1)(5)
=1

Fixi, 1 < i < s. fisonetoone and regular di\ {n;1 < k <
s,k # i}. By Lemma 2.1 it follows that there is an, 0 < ¢; < ¢, such
that for each holomorphic map: A — CV with [g(¢)| < e (¢ € A)
and for each, 1 < ¢ < s, the mapf + ¢ is regular and one to one on
W\ Ui} (e +72). One can choosk € C™ ! such that (5) holds and
suchthay = 7(f + ¢ 7" N Pi(f)) — f satisfiedg(¢)| < e1 (¢ € A),
which proves (i). (ii) is satisfied by definition of the mgpIn the same
way as in the proof of Lemma 6.1 in [G2] we see tlfiat g is regular and
injective onl¥/, which gives (iii). (iv) follows from the fact that*) (¢;) = 0
(0 <k < K,1<i<n)andthatr|M = id. This completes the proof.

8 Proof of Theorem 1.2

We prove Theorem 1.2 in the cadam M > 3 and postpone the simpler
proof of the casélim M = 2 until the end of this section.

Part 1. We shall rearrange the sequenfcg,}. We may assume that the
sequencd p(z,)} is nondecreasing. Sindd is connected one can choose
an increasing sequen¢e,, } of regular values 0| M converging to infinity
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with the property that ifU,, is the component of the sublevel set €
M; p(z) < ayn} containingz; then for eachn € N, U,,;1 contains the first
term in the sequende, } that is not contained it,, and that the boundary
of U,, does not contain any point of the sequefieg}. Leta_; = —oc.

LetS = {z,;n € N}. For eactn, let S,, = S N U,. Since the sequence
{a,} is increasing and converges to infinity and sipcis an exhaustion
function for the connected manifolt it follows that.S,, is an increasing
sequence of finite sets whose unionSisThus, if m(n) is the number of
points inS,,, n € N, one can renumber the sequerdeg} so thatS, =
{21, Zm(n)} andp(zm(n)—‘rl) = min{p(zm(n)+1)v e vp(zm(n-i-l)—l)}'
Let zp be a minimum ofp on Uy and letm(0) = 0, ky = 0.

Part 2. We shall obtain a regular and injective holomorphic mgpto
begin the construction. Lek, be the unit disc centered @t Sincep|M is
a Morse function and ag is a minimum ofp, z is an isolated singular
point of p| M. Locally nearzy, M is a graph over its tangent spacezgt
Therefore there is a regular, one to one holomorphic ghap”A — M
such thatp(0) = zp andp(¢(C)) > p(¢(0)) (¢ € A\ {0}). There is a
regular valuei, of p|M, such thap(zp) < ap < p(z1) and such thaf{ €
N p(9(€)) < ap} is relatively compact im\. By the maximum principle
applied to the subharmonic functipng, each connected componentgfe
N p(9(€)) < ap}is simply connected, therefore conformally equivalent to
the disc. Therefore there are a continuous rfigp/\y — M, holomorphic
on /g, and~v > 0 such that

(i) fo(0) = 2o
(i) p(fo(C)) = ao (¢ € bAo)

(iii) fo is one to one and regular @k,
(iv) p(z0) < ag — 4.
By Lemma 2.1 there is afy > 0 such that
if g : Ag — CVisaholomorphic map with | fo(¢) — g(¢)| < 2o

(C e {€ € No; p(fo(§)) < ap —~}) then g is regular and one to one
on{& € Ao; p(fo(§)) < ao — 27} (6)

Taking smalleky > 0 we may assume that

if z,w e M, p(z) < ap and |z — w| < 2¢g then |p(z) — p(w)| < v.(7)

Part 3. Now we shall construct a sequence of holomorphic maps whose
limit will satisfy the conditions of the Theorem 1.2.

Choose a decreasing sequeng®f positive numbers converging
do < %, suchthap|M has no critical value on the interv@l; —30;, a; +9;)
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(7 e NU{0}), p(z) € (a;—30;,a;+9;) (j, k € NU{0}) and the intervals
(a; —30j,a; + ;) ( € NU{0}) are pairwise disjoint.
We will construct

(A) asequencgy, 0 < (B < 1, and a sequence of domaing C C such
that if Dy, is the open disc of radius centered a8k then for given
Jj € Nthe setA; will be the union ofm(j) discsDy, ..., Dy, and
m(j) — 1 strips(3k, 3(k + 1)) x (=B, Bk), 1 <k < m(j) — 1,

(B) an increasing sequend@; of connected domaing?_, = 2_3 =
29 = 21 = 0 suchthat{¢ € Ao;p(fo(§)) < ap — v} C 2,
-ijl CcC Qj (] > 1), Qj CcC Aj (] > O) and

&Gﬁﬁ®M&MW>E}C%‘UGMa

(C) asequencg; of maps such that for eaghe N U {0}
() f;: A; — M is continuous, holomorphic oA ; and such that
p(fi(Q)) € (a; — 265, a5] (¢ € bA;)
(i) fjisregular onf2;_; and one to one ofY;_3
(i) p(£;(0) < aj—1+6j-1 (C € 2j-1)
(V) p(fi+1(¢)) = min{p(zm(j)+1), a;} =7 (C € Ljpr \ £25)
V) fi41(G) = i, fi41(G) = wiX; for somep; > 0 and there is
a neighborhood’; of 3i in D; such thatf;,(V;) and NV; have
contact of at least orddf; atz; (m(j) + 1 <i <m(j+ 1)) and
ﬁ&«»—ﬁ%cwo<w<mo<igmo»
Vi) [f5+1(¢) = f5 (O] < 55 (€ € £29),
(D) adecreasing sequengeof positive numbers converging osuch that
foreachj € N
(@) if g : 2;_3 — C¥ is a holomorphic map such that(¢)| < e;
(¢ € 2j_3) thenf; + g is regular and one to one d®;_4
(b) if z,w € M, min{p(zpmj—1)+1);@-1} —7 < p(z) < a; and
|2 — w| < it thenp(w) > min{p(z(—1y41) aj—1} — 27,
(E) a sequence of positive numberg a decreasmg sequence of positive
numbers); converging to0, A\; = 1, and a decreasing sequence of
positive numbers); converging to0, such that for each € N, 0 <

Aj <min{; %, 510 <n; < jand

z,w € M, p(z) < aji1, |z —w| < Aj implies that

)
Ip(=) = plw)] < 2% (®)
z€ M, p(z) < ajr1, we CN and |w — 2| < n; implies that
)\.
we B, |r(w) —w| < 2L 9)

2
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Now we shall briefly explain the inductive construction. In (A) we de-
scribe domains where the mafysare defined. In (B) we define subdomains
£2; C Aj where we approximatg; 1 by f;. In (C) we describe the proper-
ties of the mapg;: (iv) and (vi) together with (D) will be necessary to get
a proper holomorphic map in the limit. (i) and (vi) together with (D) will
guarantee that the limit map is regular and one to one, (v) will imply that the
range of the limit map hits the prescribed points in the prescribed directions
and has given finite order contacts with the prescribed submanifoltls in
(iii) together with (D) will be used in the inductive construction ff.; to
obtain an one to one map on a subsetf ; in Step 1. (E) will imply
that at each step of the inductive construction the constructed disc remains
belowa; level of the exhaustion function and that it does not fall out of
the retraction neighborhoaf.

Part 4. Assume for a moment that we have finished the construction in part
3. To prove the theorem we proceed in a way similar to the one in [G2]. Let
2 =U2, A,.ltiseasy to see that is simply connected. Therefore there is

a biholomorphic mag : A — {2 such that?(0) = 0 and®’(0) > 0. Since

{2 is symmetric with respect to the real axis we ha(@® N A) = RN {2
and®’(¢) >0 (¢ e RNA).

By (B) 2 = U2, 2, which, by (vi), implies that for eacly € {2,
f(€) = limy0 fn(¢) exists and that the map is holomorphic onf?.
Sincef,(A,) € M andM is closed inC" we havef(£2) c M. We show
that f is regular and one to one @b. Fix n € N. By (Vi), |f»({) — f({)] <
1Fn(Q) = Fart (O + 1 fas1(Q) = Fara (O] + -+ < S+ S+ < 6
(¢ € £2,). Sinces2,,_3 C (2, it follows by (a) thatf is regular and one to
one onf2,_4. So for each € N, f is regular and one to one ag, 4 and
this implies thatf is regular and one to one d@i.

Next we show thatf : 2 — M is a proper map. Fix € N and let
¢ € Quyr \ 2. It follows by (vi) that|f1(C) — (O] < |fur1(C) —
Far2(O + [Far2(C) = Fars(Q) + - < obb 4 &2 4 <
By (iv) we havep(fn+1(¢)) > min{p(2p(n)41); an} — v and (b) implies
that p(f(C)) > min{p(zm(n)+1)> an} —2v7. As min{p(zm(n)-i-l)v an} >
p(zm(n—l)-i-l) we Obtamp(f(C)) > p(zm(n—l)-i-l) —27. Since
P(Zm(n—1)+1) — 27 is nondecreasing an@ = U2, (2 it follows that
p(f(Q) = p(zmn—1)41) —2yfor ¢ € 2\ 2, and ap(z(n—1)41) —27 —

oo (n — oo) it follows that f : 2 — M is a proper map.

Thus, f is one to one, regular and proper, i.e. an embedding.

We have to show that the range pthits the prescribed points in the
prescribed directions and has given finite order contacts with the prescribed
submanifolds inM. Fix n € N andi, m(n —1) +1 < i < m(n). By
(v) we havef,(f)(@) = T(Ll}rl(g) for0 <1 < k;, I € N and this implies

that /1 (¢;) = fO(¢) for 0 < I < k;. Since by (v) we have,(¢i) = 2,
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(&) = wX; and f,,(V;) and N; have contact of at least order at z;, it
follows thatf(¢;) = z; and f'({;) = p; X; and that there is a neighborhood
of W; C V; of ¢; such thatf(W;) and N; have contact of at least order
at z;.

Since?’(¢) > 0 (¢ e RN A), f o @ is a map which has all required
properties of Theorem 1.2.

Part 5. fy, g and ey constructed in part 2 satisfy (A), (C)(i)-(iii) and
(D). Suppose that € N U {0} and that we have constructgg, A, ;,
ﬁm(j—l)v e ,ﬂm(j)—l 0<5<n, ande, Qaj, )\j andnj, 0<j3j<n—-1,
such that (A), (C)(i)-(iii) and (D) hold fof < j < n and (B), (C)(iv)-(vi)
and (E) hold for0 < j <n — 1.

Step 1 We shall perturb the maf), slightly to getamap; : /A, — M that
is one to one in a neighborhood &, 5. As? o= 1 =0,forn=0,1
we defingy; = f,, andU = (). We now assume that> 2. LetU be an open
setsuchthaf, o C U C §2,,_;. Choose € (a1 + 0n—1, an —24,). By
(i) there isa componerdf of the se{ ¢ € A; p(f.(¢)) < ¢} which contains
2,,_1. Itfollows by (i) thati/ cc /. By the maximum principle applied to
the subharmonic functiopo f,, the set/ is conformally equivalent to the
disc.

Takek, 1 < k < n,and( € 2 \ 2. It follows by (i) and (iv)
thatmin{p(zm(k_1)+1), ar—1} —v < p(fr(€)) < a and it follows by (vi)
that|fi(¢) — fu(Q)] < |fk( ) = Jerr (O] + |fk+1( ) Srr2(Q) + -+ +
ot () — Fu(Q)] < %4 S 4 ey & By (o) this implies
thatp(f,,(¢)) > mln{p( Zm(k—1)41)s Gk—1} — 27 > ag — 2~. This together
with (iv) implies thatp(f,,(¢)) > ap — 27 (C e Ap\ ).

By (vi), 1/o(¢) — fa(Q)] < 170(C) = A(Q) + 11(0) = (Ol + - +
|fn71(o - fn(o‘ < €+ % +ot gn r < 2€ (C € QO) By (B) and
(6) this implies thatf,, is regular and one to one di € Ag; p(fo(€)) <
ap — 2} and it follows by (7) thaf¢ € Q2; p(fn(§)) < ap—37} C{{ €
Do; p(fo(€)) < an—27}. ASp(£a(C)) > an—27 (C € L\ o), itfollows
that f,, is regular and one to one on the nonempty{§et A,.; p(fn(£)) <
ap — 37} and therefore by Lemma A.Z,|U : U — {z € M;p(z) < ¢}
is a normalization map. By Lemma 7.1 we obtain a continuous gmap
A, — M, holomorphic or/\,,, such that

(1) 191(0) = fu(Q)] < min{3%w, A1} (C € D)
(2ii) 91 is regular and one to one M

(1”|)g (z)—f (C)(O<]<k170<2<m( )

Step 2 We shall push the boundary of the digc: A,, — M to higher
levels ofp| M.

Let o, > 0 be so small that for a holomorphic map U — CV such
that|g1(¢) — h(¢)| < an, (¢ € U) it follows thath is regular and one to one
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oNn {2, o. Choose\, < min{\,_1, %, ;5= } such that (8) holds fof = n.
Letn, < AQ" be small enough that (9) holds fgr= n.

Sincelg1(¢) — fu(C)] < An-1 (¢ € An)andp(fu(€)) € (an — 264, an)
(¢ € bA,) itfollows by (8) thatp(g1(¢)) € (an — 36n, an + %) (¢ € bA)
andthereforépog; ) (bA) contains only regular values pfM . Let K C A,
be a compact set such that_; U{z; dist(z,bA,) > 1} € K.ByLemma
3.1 there are a continuous map: A,, — M, holomorphic on/\,, and an
open set?,, K C {2, CcC /A\,, such that

(2)  ant1 — Gns1 < p(g2(C)) < ant1 — 5L (C € bA,)
(2“) p(g2(g)) > an — 46, (C (SIVANS \ Qn)
(2ii rgz ¢) - gl<<>\ < min{\,, 51} (¢ € 2)

2v) 65(G) = 9t (¢) (0 < j < ki, 0<i < m(n)).

Step 3 For eachj, m(n) + 1 < j < m(n + 1), we construct an analytic
disc that hits the point; in the prescribed direction, which haszata given
finite order contact with the given submanifold &f and its boundary is
close to thes,, ;1 level of the exhaustion functios M. Then we glue these
discs and the mag, together.

By Lemma 5.1 we obtain the continuous mags D; — M (m(n) +
1 < j < m(n+ 1)) holomorphic onD; such that

(hi) h;(3j) = z;, b, 5(3j) = p; X, for somey; > 0 and there is a neigh-
borhoodV 0f3] in D; such thatf (V;) andV; have contact of at least
orderk; at z;

(i) p(R;5(O))) € (@it — nst, angr — 22
(hiii) p(k;(C)) > p(z) — 2 (C € Dy).

A consequence of [GR, pp. 227, Theorem 2] is the fact that the bound-
ary of any connected component of the sublevel set df is connected.
Therefore one can conneft(3m(n) + 1) with
Pn(ny+1(3(m(n) + 1) — 1) by a path contained iV, 1 N p~" ((ant1 —

Ont1, Ant+1 — 5"2“) and similarly, for eachi, m(n)+1 < j < m(n+1)—1
one can connect the poimg (35 + 1) andh;1(3(j + 1) — 1), by a path
contained iV, .1 N p~ ((ant1 — Onst, Gnet — 5"2“)).

Thus, if L1 is the union ofA,,, the discsD, ()41, - - - , Din(ns1) @nd
the segment$; = [3j +1,3(j+ 1) — 1], m(n) <j <m(n+1)—1,it
follows that there is a continuous map : En+1 — U,+1 Which extends

5) (€ € bDj)

all the mapsfy,, ()41, - - - » o (n41) @nd such that
5n+1
93|bLn+1 - <an+1 — Ont1, Qng1 — B ) . (10)

The mapys is continuous orl,,+; and holomorphic in the interior df,, ;.
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Step 4 We use a version of Mergelyan’s theorem to approximate the map
g3 by a polynomial in the ambient space. In this way we obtain a map
from a neighborhood of.,,;; to the retraction neighborhoall and then
we compose this map with the holomorphic retraction

By Proposition A.3 there is a holomorphic polynomial: C — CV
such that

@) |P(¢) —gs(¢ )\ <N (€ € Lny)
(%)Pﬁ@Q—% (¢)(0<j <k 0<i<m(n+1)).

Take¢ € Ly+1. By (9) we haveP(¢) € E and|x(P(¢)) — P(¢)| < A
and therefore by (3i)

7(P(C)) = 95(O) <t 2 < M (C € L)

and by (8) we havép(m(P(())) — p(gs(C))| < 2 (¢ € Lysa). This,
together with (10), implies tha(x(P(¢))) € (a1 — 2224 a4 q — 2
(¢ € bL,y+1). The last condition is fullfilled for¢ in the neighborhood
of bL,+1 in C as well. Thus we can choosefa 0 < 3 < 1, such that
p(r(P(Q))) € (ans1— 25 angr —222) (C € ([34,3(5+1)]x (=3, 8))\
(Dj UDjy1), m(n) < j <m(n+1)—1). Putg; = g (m(n) < j <
m(n+ 1) — 1). This defines\ ;1 as described in (A).

Let g4(¢) = 7(P(¢)) for ¢ € Apy1. The mapgy : Apyy — M is
continuous, holomorphic on,, 11, and

() p(0(Q)) € (antr — 25 anir — 242 (C € bA)

)€
(@) p(93(0)) € (aner = 5 anr = 5 ) (€€ (B35 + )

(— 7@) \( JsaveUDJ-H) m() J< (n+1) 1)
(4iii) 194( ) — 3( N < An (€€ Lny1)
@iv) g5(C) = 65 () (0 <j < ki, 0 <i <mln+1)).

Step 5 We perturb the map, to get a regular map of?,,.
By Lemma 6.1 we get a continuous map: A, 1 — M, holomorphic
in A,,41, such that

(5i) g5 isregularing2, B
(5ii) |95( ) — ( )| <A (€€ Anta)

i) g () = 97(¢) (0 < j < ki 0< i < mln+1)),
It follows by (8), (4i) and (5ii) that

(5V) p(g5(0)) € (ans1 = 252, ani1) (¢ € bAL).
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Step 6 Put f,,+1 = g5. Choosec,, 11 < min{%,en} so small that (D)
holds forj = n + 1. We shall prove that the mafy, .1 has all the required
properties.

By (5iv), (i) is satisfied forj = n + 1. Let{ € U. By (5ii), (4iii) and
(2iii) we get| fr+1(¢) — 91(¢)| < an. The mapy; is regular and one to one
on U and from definition ofv,, we get thatf,, 1 is regular and one to one
on (2,,_o. By (5i) f,.+1 is regular onf2,,, so (ii) follows forj = n + 1.

Take ¢ € £2,. By (i),(8) and (1i) we getp(g1(¢)) < an + 2. By
(2iii),(4iii),(5ii) and (8) we getp(fr+1(€)) < p(91(€)) + 367%1. Therefore
p(fn+1(Q)) < an + %” + M’j% and since the sequen¢é, } is decreasing
(iii) follows for j = n + 1.

Recall that the sequenégis decreasing withy < T andthap(2,,(n)+1)
= min{p(zm(n)+1)> p(zm(n)+2)> s 7:0(Zm(n+1)—1)}- For¢ € A, \ 2 by
(5ii), (4i), (8), (4iii) and (2ii) it follows thatp(f,+1(¢)) > a, — 7. Take
¢ € Apy1 \ Ay By (hiii), (4iii), (4i), (8) and (4ii) we havep(g4(¢)) >
min{p(2,,(n)+1)— 3, an— 5 } and by (5ii), (4i), (8) it follows thap (g5 (¢)) >
p(94(C)) — 3 > min{p(z,n(m)41), an} — 7. Therefore (iv) is satisfied for
J=n.

Let¢ € £2,. By (5ii), (4iii), (2iii), (1i) and (E) we get f,, 11 (C) — fn ()] <
195(¢) = 9a ()| + 194(C) — 92(O) + [92(¢) = 91 (O + 91 (¢) — fn(Q)| < 52
therefore (vi) is satisfied fof = n.

By the construction of the mag and by (1iii), (2iv), (3ii), (4iv), (5iii)
we get (v) forj = n.

The proof is complete fadim M > 3.

In the caselim M = 2 omit one to one everywhere and put= f, in
step 1. The rest of the proof remains unchanged. This completes the proof
of Theorem 1.2.

A Appendix
A.1l. Normalization maps

Let P be a domain inCV, N > 2, and let¢ : A — P be a proper
holomorphic map. Thelv = &(A) is a variety inP [C]. Let S be the
singular set ofo(A ). We say that the mag is a normalization mayfor the
variety ®(A) if @|(A\ @71(S)) — &(A) \ S is biholomorphic. Assume
that® is regular at a point € #~1(S). Then®|(A \ ¢71(9)) U {¢} —
(&(A)\ S)UP(C) is regular and one to one.

We shall need the following result on normalization maps proved in [S].

Lemma A.1 Let P be a domain inC¥, N > 2, and let® : A — P be
a proper holomorphic map. Theh = ¥ o B whereB is a finite Blaschke
product and? is a normalization map fo®(A).
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Let M(a) = {z € M;p(z) < a} be a sublevel set of| M.

LemmaA.2 Leta < A andlet® : A — M(A) be a proper holomorphic
map. Suppose that the set= {¢ € A; p(?({)) < a} is nonempty and that
& is one to one ow. Thend is a normalization map for the variety(A).

Proof. Sincep(z) = |z|? the map® is a proper holomorphic map df to
{z € CN; |22 < A} and the lemma is a consequence of Lemma 3.2 in
[G2].

A.2. Mergelyan’s theorem

In the proof of Theorem 1.2 we need approximation by polynomials and
interpolation of values and finitely many derivatives at a finite set of points.
We use the following consequence of Mergelyan’s theorem

Proposition A.3 Letk € N U {0}. Let K be a compact set it whose
complement is connected. Suppose that. ., (, are in the interior of K
and letf be a continuous complex function &hwhich is holomorphic in the
interior of K. Givene > OthereisapolynomiaPsuch thatf({)—P({)| <
eforall ¢ € K andPYW(¢) = f9(G) (0 < j < k,1<i<n).

: GV TTs 1 (C—C)I Y .
Proof. Put@?(¢) = (Cj!cl%?gl:il(@l—(iz)gfl (j e NU{0}, 1 <i<mn).
Then ’

@)V =00<i<j-Dand (@)V() =dis  (11)

PutM; =sup{Q!(¢); 1 <i<n, € K} (j e NU{0}).

We proceed by induction ok. Fork = 0 putn = min{g, 53—} By
Mergelyan’s theorem there is a polynomia) such that f({) — Py(¢)| <
n (¢ € K). PutPi(¢) = Y0, (f(&) — Po(¢:)QY(¢). It follows that
1£(C) = Po(¢) = Pi(Q)] < 1F(C) = PolQ)] + [PL(C)] < m+ Monn < e and
by (11) it follows thatf (¢;) — Po(¢;) — Pi(¢;) = 0 (1 < i < n). Therefore
P = Py + P, satisfies the conditions in the proposition

Suppose the proposition holds farLetn = min{, de —}.Sincethe
proposition holds fok there is a polynomiaP;, such thatf(c) P.(Q)] <n
(¢ € K)andPY () = f9(G) (0 < j < k,1 < < n). PUtPy1(C) =
S (FEG) = P(G))QEF (). It follows that | £(C) — Py(¢) —
Pt (O < [£(¢) — ( )! + [Pes1(Q)] <+ Myann < eand by (11) it
follows thatf @) (¢;) — P (¢i)— PY), (G) = 0(0 < j < k+1,1 < < ).
ThereforeP = P, + Pk+1 satisfies the conditions in the proposition and
this finishes the proof.
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