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Abstract

Let Ω be a domain in Rn, n ≥ 3. We introduce a Kobayashi-type Finsler
pseudometric gΩ : TΩ = Ω×Rn → R+ defined in terms of conformal
harmonic discs. Such discs parameterize minimal surfaces in Rn.

The integrated form of this pseudometric is the minimal pseudodistance
ρΩ : Ω×Ω→ R+, which is also defined by chains of conformal harmonic discs.

On the unit ball Bn, gBn coincides with the Cayley–Klein metric, one of the
classical models of hyperbolic geometry.

We obtain several sufficient conditions for a domain Ω to be (complete)
hyperbolic, meaning that gΩ is a (complete) metric; equivalently, ρΩ is a
(complete) distance function. In particular, we show that a convex domain is
complete hyperbolic iff it does not contain any affine 2-plane.
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Barbara Drinovec Drnovšek and F. F., Hyperbolic domains in real
Euclidean spaces. https://arxiv.org/abs/2109.06943, Sept 2021

https://arxiv.org/abs/2102.12403
https://arxiv.org/abs/2109.06943


The minimal pseudodistance on a domain in Rn

Let D = {z ∈ C : |z | < 1} denote the unit disc, and let Ω be a domain in Rn.

Denote by CH(D, Ω) the space of all harmonic discs f : D→ Ω (every
component of f is a harmonic function) which are conformal:

fx · fy = 0, |fx | = |fy |; z = x + iy ∈ D.

Fix a pair of points x, y ∈ Ω and consider finite chains of conformal harmonic
discs fi ∈ CH(D, Ω) and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk (ak ) = y.

To any such chain we associate the number

k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

≥ 0.

The pseudodistance ρΩ : Ω×Ω→ R+ is the infimum of the numbers
obtained in this way. Clearly it satisfies the triangle inequality.

If Ω ⊂ Cn and we use only holomorphic discs, we get the Kobayashi
pseudodistance KΩ. Hence, ρΩ ≤ KΩ. These pseudodistances agree on
domains in R2 = C, but strict inequality holds if n > 1.



The minimal pseudometric

Define a Finsler pseudometric gΩ : Ω×Rn → R+ on (x, u) ∈ Ω×Rn by

gΩ(x, v) = inf
{

1/r > 0 : ∃f ∈ CH(D, Ω), f (0) = x, fx (0) = rv
}

.

Clearly, gΩ is upper-semicontinuous and absolutely homogeneous:

gΩ(x, tv) = |t| gΩ(x, v) for t ∈ R.

If Ω ⊂ Cn and using only holomorphic disc gives the Kobayashi pseudometric.

Theorem

The minimal pseudodistance ρΩ is obtained by integrating the pseudometric
gΩ:

ρΩ(x, y) = inf
γ

∫ 1

0
gΩ(γ(t), γ̇(t)) dt, x, y ∈ Ω,

where the infimum is over all piecewise smooth paths γ : [0, 1]→ Ω with
γ(0) = x and γ(1) = y.

The proof is similar to the one for the Kobayashi pseudometric.



Metric decreasing properties

A conformal (or Riemann) surface M is hyperbolic if its universal covering
space is the disc D. Such a surface carries the Poincaré metric, PM , the
unique Riemannian metric such that any conformal covering map h : D→ M is
an isometry from (D,PD) onto (M,PM ). The Poincaré metric on D is

PD(z , ξ) =
|ξ|

1− |z |2 , z ∈ D, ξ ∈ C.

It follows from the definition of gΩ that for any conformal harmonic map
f : D→ Ω we have that

gΩ(f (z), dfz (ξ)) ≤ PD(z , ξ), z ∈ D, ξ ∈ C,

and gΩ is the largest pseudometric on Ω with this property.

The same holds for conformal harmonic maps (M,PM )→ (Ω, gΩ).

Any rigid map R : Rn → Rm (n ≤ m) with R(Ω) ⊂ Ω′ is metric-decreasing:

gΩ′ (R(x),R(v)) ≤ gΩ(x, v), x ∈ Ω, v ∈ Rn.



A Finsler pseudometric on the Grassmanian of 2-planes

We also introduce a Finsler pseudometric on Ω×G2(R
n), where G2(R

n)
denotes the Grassmann manifold of 2-planes in Rn, by

MΩ(x, Λ) = inf
{

1/‖df0‖ : f ∈ CH(D, Ω), f (0) = x, df0(R
2) = Λ

}
.

Here, ‖df0‖ denotes the operator norm of the differential df0 : R2 → Rn.

It clearly follows that for any vector v ∈ Rn, |v| = 1 we have

gΩ(x, v) = inf
{
MΩ(x, Λ) : Λ ∈ G2(R

n), v ∈ Λ}.

Note that the set of 2-planes Λ ⊂ Rn containing v is parameterized by the unit
sphere Sn−2 in the normal space v⊥ ∼= Rn−1.

This illuminates the main difference between the minimal metric and the
Kobayashi metric on a domain in Cn: a given nonzero vector v ∈ Cn

determines a unique complex line Cv, and for the Kobayashi metric we only
consider complex discs tangent to that line.



The Cayley–Klein metric on the ball

Theorem (F.–Kalaj 2021)

The minimal metric g2
Bn on the unit ball Bn equals the Cayley–Klein metric:

CK(x, v)2 =
(1− |x|2)|v|2 + |x · v|2

(1− |x|2)2 =
|v|2

1− |x|2 +
|x · v|2

(1− |x|2)2 .

We also have

CK(x, v) =

√
1− |x|2 sin2 φ

1− |x|2 |v|, x ∈ Bn, v ∈ Rn,

where φ ∈ [0, π/2] is the angle between the vector v and the line Rx ⊂ Rn.

The Beltrami–Cayley–Klein model of hyperbolic geometry was introduced by Arthur

Cayley (1859), Eugenio Beltrami (1868), and Felix Klein (1871–73). The underlying

space is the unit ball, geodesics are straight line segments with endpoints on the

boundary sphere, and the distance between points on a geodesic is given by cross

ratio. This metric is the restriction of the Kobayashi metric on the complex ball

Bn
C ⊂ Cn to points in Bn = Bn

C ∩Rn and vectors in Rn. It is a special case of the

metric on convex domains in Rn introduced by David Hilbert in 1895.



Schwarz–Pick lemma for conformal harmonic discs in the ball

This theorem is a corollary to the following Schwarz–Pick lemma.

Theorem (F.–Kalaj 2021)

Let f : D→ Bn is a harmonic map for some n ≥ 2 which is conformal at a
point z ∈ D. Denote by θ ∈ [0, π/2] the angle between the vector f (z) and
the plane dfz (R2). Then at this point we have that

(∗) ‖dfz‖ ≤
1− |f (z)|2

1− |z |2
1√

1− |f (z)|2 sin2 θ
.

Equality holds if and only if f is a conformal diffeomorphism onto the affine disc

Σ = (f (z) + dfz (R
2)) ∩Bn.

The number R =
√

1− |f (z)|2 sin2 θ is the radius of the affine disc Σ.



The Schwarz–Pick lemma implies the theorem

Let us see how this Schwarz–Pick lemma implies the theorem. Take z = 0 and

x = f (0) ∈ Bn, fx (0) = rv ∈ Rn, df0(R
2) = Λ,

where v is a unit vector contained in Λ. Let θ denote the angle between x and
Λ. The inequality (*) is equivalent to√

1− |x|2 sin2 θ

1− |x|2 ≤ 1

‖df0‖
.

The infimum of the right over all discs f with the given data equals
MBn (x, Λ), so we obtain

MBn (x, Λ) =

√
1− |x|2 sin2 θ

1− |x|2 .

Note that 0 ≤ θ ≤ φ ≤ π/2 where φ is the angle between x and the line
Rv ⊂ Λ. Taking the infimum over all Λ containing v gives

gBn (x, v) =

√
1− |x|2 sin2 φ

1− |x|2 = CK(x, v).



Schwarz–Pick Lemma for harmonic self-map maps of the disc which are
conformal at a point

If n = 2 then θ = 0, R = 1, so the theorem implies the following corollary
generalizing the classical Schwarz–Pick lemma for holomorphic maps D→ D

due to Karl Hermann Amandus Schwarz (1869), Henri Poincaré (1884),
and Georg Alexander Pick (1915).

Corollary

Let f : D→ D be a harmonic map. If f is conformal at a point z ∈ D, then at
this point we have that

|f ′(z)| = ‖dfz‖ ≤
1− |f (z)|2

1− |z |2 ,

with equality if and only if f is a conformal diffeomorphism of the disc D.

Precomposing f by an automorphism of D we may assume that z = 0. On the
other hand, postcompositions of harmonic maps D→ D by automorphism of
D are not harmonic in general, so we cannot interchange f (0) and 0. Also,
f (z)/z need not be harmonic. Hence, the standard proof of the classical
Schwarz–Pick lemma breaks down. The estimate fails for some nonconformal
harmonic diffeomorphisms of D.



Proof of the Schwarz–Pick lemma, 1

Precomposing by an automorphism of D, we may assume that z = 0.

Fix a point x ∈ Bn and a 2-plane 0 ∈ Λ ⊂ Rn, and consider the affine disc
Σ = (x + Λ) ∩Bn. Let p ∈ Σ be the closest point to the origin.

If n = 2 then p = 0 and Σ = D. Suppose now that n = 3; the case n > 3 will
be the same. By an orthogonal rotation on R3 we may assume that

p = (0, 0, p) and Σ =
{
(x , y , p) : x2 + y2 < 1− p2

}
.

Let x = (b1, b2, p) ∈ Σ, and let θ denote the angle between Rx and Σ. Set

R =
√

1− p2 =
√

1− |x|2 sin2 θ, a =
b1 + ib2

R
∈ D, |a| = |x| cos θ

R
.



Proof, 2

The map f : D→ Σ given by

f (z) =

(
R · < z + a

1 + āz
,R · = z + a

1 + āz
, p

)
=

(
R

z + a

1 + āz
, p

)
is a conformal parameterization of Σ with f (0) = x. We have that

‖df0‖ = R (1− |a|2) = R2 − R2|a|2
R

=
1− |x|2 sin2 θ − |x|2 cos2 θ

R

=
1− |x|2√

1− |x|2 sin2 θ
.

This shows that the conformal parameterizations of the proper affine discs in
the ball satisfy the equality in the theorem at every point.



Proof, 3

Suppose that g : D→ B3 is a harmonic map such that

g(0) = f (0) = x, g is conformal at 0, and dg0(R
2) = df0(R

2).

Up to replacing g by g(eitz) or g(eit z̄) for some t ∈ R, we may assume that

dg0 = r df0 for some r > 0.

We must prove that r ≤ 1, and that r = 1 if and only if g = f .

Consider the holomorphic map F : D→ Ω = B3 × iR3 with f = <F , given by

F (z) =

(
R · z + a

1 + āz
,−R · i z + a

1 + āz
, p

)
, z ∈ D.

Let G : D→ Ω be the holomorphic map with <G = g and G (0) = F (0).

By the Cauchy–Riemann equations, the condition dg0 = r df0 implies

G ′(0) = r F ′(0).



Proof, 4

It follows that the map (F (z)− G (z))/z is holomorphic on D and

lim
z→0

F (z)− G (z)

z
= F ′(0)− G ′(0) = (1− r)F ′(0).

Since g : D→ B3 is a bounded harmonic map, it has a nontangential
boundary value at almost every point of the circle T = bD. Since the Hilbert
transform is an isometry on the Hilbert space L2(T), the same is true for G .

Denote by 〈·, ·〉 the complex bilinear form on Cn given by

〈z, w〉 =
n

∑
i=1

ziwi , z, w ∈ Cn.

For each z ∈ bD the vector f (z) ∈ bB3 is the unit normal vector to the sphere
bB3 at the point f (z). Since B3 is strongly convex, we have that

<
〈
F (z)− G (z), f (z)

〉
=
〈
f (z)− g(z), f (z)

〉
≥ 0 a.e. z ∈ bD,

and the value is positive for almost every z ∈ bD if and only if g 6= f .



Proof, 5

Consider the following function on the circle bD:

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

A calculation, taking into account zz̄ = 1, shows that

f̃ (z) =


c
2

(
1 + a2 + 4(<a)z + (1 + ā2)z2

)
c
2

(
i(1− a2) + 4(=a)z + i(ā2 − 1)z2

)
p (z + a)(1 + āz)

 , |z | = 1.

We extend f̃ to all z ∈ C by letting it equal the holomorphic polynomial map
on the right hand side above. Since |1 + āz |2 > 0 for z ∈ D, we have

h(z) := <
〈
F (z)− G (z), |1 + āz |2f (z)

〉
=

〈
f (z)− g(z), |1 + āz |2f (z)

〉
≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g 6= f .



Conclusion of the proof

From the definition of f̃ we see that

h(z) = <
〈
F (z)− G (z)

z
, f̃ (z)

〉
a.e. z ∈ bD

Since the maps (F (z)− G (z))/z and f̃ (z) are holomorphic on D, h extends
to a nonnegative harmonic function on D which is positive on D unless f = g .

At z = 0 we have

h(0) = <
〈
F ′(0)− G ′(0), f̃ (0)

〉
= (1− r)<

〈
F ′(0), f̃ (0)

〉
≥ 0,

with equality if and only if g = f .

Applying this to the constant map g(z) ≡ f (0) gives

< 〈F ′(0), f̃ (0)〉 > 0.

Hence r ≤ 1, with equality if and only if g = f . This completes the proof.



Hyperbolic domains

Definition

Let Ω be a domain in Rn, n ≥ 3.

(a) Ω is hyperbolic if the pseudodistance ρΩ is a distance function, and is
complete hyperbolic if (Ω, ρΩ) is a complete metric space.

(b) Ω is hyperbolic at a point p ∈ Ω if there are a neighbourhood U ⊂ Ω of p
and a constant c > 0 such that

gΩ(x, u) ≥ c |u|, x ∈ U, u ∈ Rn.

Example

(A) The ball Bn ⊂ Rn, n ≥ 3, is complete hyperbolic since the Cayley–Klein
metric is complete.

(B) Every bounded domain Ω ⊂ Rn is hyperbolic since it is contained in a ball.
However, it need not be complete hyperbolic.

(C) Every bounded strongly convex domain in Rn is complete hyperbolic.

(D) The half-space Hn = {x = (x1, . . . , xn) ∈ Rn : xn > 0} is not hyperbolic
since the pseudodistance ρHn vanishes on planes xn = const.



Basic properties of hyperbolic domains

By following the proofs for the Kobayashi metric, one obtains the following.

Theorem

The following conditions are equivalent for a domain Ω ⊂ Rn, n ≥ 3.

(i) The family CH(D, Ω) of conformal harmonic discs D→ Ω is pointwise
equicontinuous for some metric ρ on Ω inducing its natural topology.

(ii) Ω is hyperbolic at every point.

(iii) Ω is hyperbolic.

(iv) The minimal distance ρΩ induces the topology of Ω.

A domain Ω ⊂ Rn is called taut if CH(D, Ω) is a normal family.

Theorem

The following hold for any domain Ω in Rn, n ≥ 3:

(i) If Ω is complete hyperbolic, then it is taut.

(ii) If Ω is taut, then it is hyperbolic.

complete hyperbolic =⇒ taut =⇒ hyperbolic



Strongly minimally convex domains are complete hyperbolic

A domain Ω ⊂ Rn, n ≥ 3 with smooth boundary is said to be strongly
minimally convex if at every point p ∈ bΩ the principal normal curvatures
ν1 ≤ ν2 ≤ · · · ≤ νn−1 of bΩ satisfy

ν1 + ν2 > 0.

Theorem (B. Drinovec Drnovšek & F. F.)

Every bounded strongly minimally convex domain is complete hyperbolic.
If ν1 + ν2 < 0 at some p ∈ bΩ then p is at finite distance from the interior.

This can be seen as an analogue of Graham’s theorem that bounded strongly
pseudoconvex domains in Cn are complete Kobayashi hyperbolic.

For bounded strongly convex domains this follows easily from the comparison
principle with the minimal metric on the ball.

The proof for non-convex domains is considerably more involved. It uses the
existence of a strongly minimally plurisubharmonic defining function and an
analogue of the Sibony metric in this category.



Minimal plurisubharmonic functions . . .

Let Ω be a domain in Rn. An upper-semicontinuous function
u : Ω→ [−∞,+∞) is said to be minimal plurisubharmonic, MPSH, if for
every affine 2-plane L ⊂ Rn the restriction u : L∩Ω→ [−∞,+∞) is
subharmonic (in any conformal affine coordinates on L). This class of functions
was studied by Harvey and Lawson in a series of papers.

Note that every MPSH function on a domain Ω ⊂ R2n = Cn is also
plurisubharmonic in the usual sense.

A function u ∈ C 2(Ω) is MPSH if and only if

trΛHessu(x) ≥ 0 holds for every (x, Λ) ∈ Ω×G2(R
n),

and this holds if and only if

(∗) λ1(x) + λ2(x) ≥ 0 for all x ∈ Ω,

where λ1(x), λ2(x) denote the smallest eigenvalues of the Hessian Hessu(x).

We say that u ∈ C 2(Ω) is strongly minimally plurisubharmonic if strong
inequality holds in (*). Every bounded strongly minimally convex domain in Rn

admits a strongly MPSH defining function.



. . . and their relevance to minimal surfaces

Here is the key property of MPSH functions pertaining to minimal surfaces.

Proposition

An upper-semicontinuous function u : Ω→ [−∞,+∞) is MPSH if and only if
for each conformal harmonic map f : M → Ω from a conformal surface the
function u ◦ f : M → R is subharmonic. If u ∈ C 2(Ω) is strongly MPSH and f
is an immersion, then u ◦ f is strongly subharmonic on M.

For functions u ∈ C 2(Ω) this follows from the following formula, which holds
for every conformal harmonic map f : D→ Ω:

∆(u ◦ f )(z) = trdfz (R2)Hessu(f (z)) · ‖dfz‖2, z ∈ D.

Lemma

Let x be the Euclidean coordinate on Rn, n ≥ 3.

(a) The function log |x| is MPSH on Rn.

(b) If u is MPSH on Ω ⊂ Rn then for any p ∈ Ω the function
x 7→ |x− p|2eu(x) and its logarithm are MPSH on Ω.



A pseudometric defined by MPSH functions

We define the pseudometric FΩ : Ω×G2(R
n)→ R+ by

FΩ(x, Λ) =
1

2
sup
u

√
trΛHessu(x), x ∈ Ω, Λ ∈ G2(R

n),

where the supremum is over all MPSH functions u : Ω→ [0, 1] which are of
class C 2 near x such that u(x) = 0 and log u is MPSH on Ω. (If there are no
such functions, we take FΩ(x, Λ) = 0.)

FΩ is an analogue of the Sibony metric (1981), the latter being defined in
terms of the usual log-psh functions on domains in Cn.

The main point is that FΩ gives a lower bound for the minimal pseudometric:

Proposition

For any domain Ω ⊂ Rn, n ≥ 3, we have that

FΩ(x, Λ) ≤MΩ(x, Λ) for all (x, Λ) ∈ Ω×G2(R
n).

If for any point p ∈ Ω there is a neighbourhood p ∈ U ⊂ Ω such that
FΩ(x, Λ) ≥ c > 0 for every x ∈ U and Λ ∈ G2(R

n), then Ω is hyperbolic.



Proof of the proposition

Fix (x, Λ) ∈ Ω×G2(R
n). Let f ∈ CH(D, Ω) be such that f (0) = x and

df0(R
2) = Λ. Let u : Ω→ [0, 1] be as in the definition of FΩ. The function

v = u ◦ f : D→ [0, 1] is then subharmonic, of class C 2 near the origin,
v(0) = 0, and log v = log u ◦ f : D→ [−∞, 0) is also subharmonic.

By Sibony (1981) we have that

∆v(0) ≤ 4.

(The unique extremal function with ∆v(0) = 4 is v(x + iy) = x2 + y2.) Hence,

trΛHessu(x) · ‖df0‖2 = ∆v(0) ≤ 4.

Equivalently,
1

2

√
trΛHessu(x) ≤

1

‖df0‖
.

The supremum of the left hand side over all admissible functions u equals
FΩ(x, Λ), while the infimum of the right hand side over all conformal harmonic
discs f as above equals MΩ(x, Λ). Hence, FΩ ≤MΩ.



Sketch of proof of the theorem on complete hyperbolicity

We use the above proposition with MPSH function

Ψ(y) = θ
(
r−2|y− x|2

)
eλu(y), y ∈ Ω,

where θ : [0, ∞)→ [0, 1] is a smooth increasing function such that

θ(t) = t for 0 ≤ t ≤ 1

2
, θ(t) = 1 for t ≥ 1,

u is a strongly MPSH defining functions for Ω, x ∈ Ω, and r > 0 and λ > 0
are suitably chosen constants.
In this way, we show that for some c > 0 and every f ∈ CH(D, Ω) we have

|∇f (z)| ≤ c
√
|u(f (0))|, |z | ≤ 1

2
(1)

provided that the centre f (0) is close enough to bΩ. At z = 0 this gives the
asymptotic estimate

gΩ(x, v) ≥ C
|v|√

dist(x, bΩ)
, x ∈ Ω, v ∈ Rn,

which is the best possible for all vectors v ∈ Rn.



Sketch of proof

However, to show completeness we need the stronger estimate

gΩ(x, v) ≥ C
|v|

dist(x, bΩ)
(2)

for vectors v which are normal to bΩ at the closest point p ∈ bΩ to x.

We follow Ivashkovich and Rosay (2004). The inequality (1) gives

|∆(u ◦ f )(z)| = |trdfz (R2)Hessu(f (z))| · ‖dfz‖2

≤ c1|∇f (z)|2 ≤ C1|u(f (0))|, |z | ≤ 1

2

for some constant c1 > 0 and C1 = c1c
2 > 0. We claim that this gives

|∇(u ◦ f )(0)| ≤ C2|u(f (0))|, f ∈ CH(D, Ω), (3)

which implies (2) and complete hyperbolicity of Ω.



Proof of (3)

By rescaling we may assume that (1) holds for all z ∈ D.
Set v = u ◦ f : D→ (−∞, 0), so

|∆v(z)| ≤ C1|v(0)| = −C1v(0), z ∈ D.

We extend ∆v to C by setting it equal to 0 on C \D. The function

g(z) = v(z)−
( 1

2π
log | · | ∗ ∆v

)
(z)− C1|v(0)|, z ∈ D

is then harmonic on D. Note that∣∣∣∣ 1

2π
log | · | ∗ ∆v

∣∣∣∣ ≤ C1|v(0)|.

Hence, g ≤ v < 0 on D and |g(0)| < (2C1 + 1)|v(0)|. The Schwarz lemma
for negative harmonic functions gives |∇g(0)| ≤ 2|g(0)|, and hence

|∇v(0)| ≤ |∇g(0)|+ sup
D

|∆v | ≤ 2|g(0)|+ C1|v(0)| ≤ (5C1 + 2)|v(0)|.

This is the desired estimate (+) with the constant C2 = 5C1 + 2.



Hyperbolicity of convex domains

We have the following characterization of hyperbolic convex domains in Rn,
showing in particular that every such domain is also complete hyperbolic.

Theorem (B. Drinovec Drnovšek & F. F.)

The following are equivalent for a (not necessarily bounded) convex domain
Ω ⊂ Rn, n ≥ 3.

(i) Ω is complete hyperbolic.

(ii) For any open Riemann surface, M, the family CH(M, Ω) of conformal
harmonic maps M → Ω is a normal family.

(iii) Ω is hyperbolic.

(iv) Ω does not contain any 2-dimensional affine subspaces.

(v) Ω has n− 1 linearly independent separating hyperplanes.

A hyperplane Σ ⊂ Rn is called separating for a domain Ω ⊂ Rn if Ω lies in one
of the two half-spaces in Rn \ Σ.

The corresponding result for Kobayashi hyperbolicity of convex domains in Cn

is due to Barth (1980), Harris (1979), and Bracci and Saracco (2009). Our
proof is rather different from theirs.
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