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Abstract

We prove a sharp estimate on the norm of the differential of a harmonic map
from the unit disc D in C into the unit ball Bn of Rn, n ≥ 2, at any point where
the map is conformal.

In dimension n = 2, this generalizes the classical Schwarz–Pick lemma to
harmonic maps D→ D which are conformal (only) at the reference point.

In dimensions n ≥ 3, this gives the optimal Schwarz–Pick lemma for conformal
minimal (= conformal harmonic) discs D→ Bn.

We then give a differential-geometric interpretation, showing that every
conformal harmonic immersion M → Bn from a hyperbolic conformal surface is
distance-decreasing in the Poincaré metric on M and the Cayley–Klein metric CK
on the ball Bn. The extremal maps are precisely the conformal embeddings of
the disc D onto affine discs in Bn.

Using these results, we lay foundations of the hyperbolicity theory for domains in
Rn based on minimal surfaces.

F. F. & David Kalaj, Hyperbolicity theory for conformal minimal surfaces in Rn.
https://arxiv.org/abs/2102.12403
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The classical Schwarz–Pick Lemma

Let D = {z ∈ C : |z | < 1} denote the unit disc.

The following result is due to Karl Hermann Amandus Schwarz (1869),
Henri Poincaré (1884), and Georg Alexander Pick (1915).

Theorem (Schwarz–Pick lemma for holomorphic maps)

If f : D→ D is a holomorphic map, then for every z ∈ D we have that

|f ′(z)| ≤ 1− |f (z)|2
1− |z |2 ,

with equality at one point if and only if f is a biholomorphism of the disc D.

Using pre- and postcompositions by holomorphic automorphisms of D, the
proof reduces to the case z = 0, f (0) = 0. In this case, it follows from the
maximum principle applied to the holomorphic function g(z) = f (z)/z on D.

This is the most fundamental rigidity result in complex analysis which leads to
the theory of Kobayashi hyperbolic manifolds.
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Differential-theoretic interpretation

Let P denote the Poincaré metric on the disc D = {|z | < 1}:

P(z , ξ) =
|ξ|

1− |z |2 , z ∈ D, ξ ∈ TzC ∼= C.

The Schwarz–Pick lemma is equivalent to the statement that for any
holomorphic map f : D→ D we have

P(f (z), dfz (ξ)) ≤ P(z , ξ), z ∈ D, ξ ∈ C,

with equality at one point if and only if f is an automorphism of D,

f (z) = eit
z + a

1 + āz
, z , a ∈ D, t ∈ R.

That is, holomorphic maps D→ D are distance-decreasing in the Poincaré
metric, and orientation-preserving isometries are precisely the elements of
Aut(D). The analogus conclusion holds for the Poincaré distance function

distP (z ,w) =
1

2
log

(
|1− zw |+ |z −w |
|1− zw | − |z −w |

)
, z ,w ∈ D.
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metric, and orientation-preserving isometries are precisely the elements of
Aut(D). The analogus conclusion holds for the Poincaré distance function
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Schwarz–Pick Lemma for harmonic maps which are conformal at a point

The following special case of our main result gives the same conclusion at a
given point for a much bigger class of maps.

Corollary (of our main result)

Let f : D→ D be a harmonic map. If f is conformal at a point z ∈ D, then at
this point we have that

|f ′(z)| = ‖dfz‖ ≤
1− |f (z)|2

1− |z |2 ,

with equality if and only if f is a conformal diffeomorphism of the disc D.

By using precompositions by automorphisms of D, the proof reduces to the
case z = 0. On the other hand, postcompositions of harmonic maps D→ D

by holomorphic automorphism of D need not be harmonic, so we cannot
exchange f (0) and 0. Also, f (z)/z need not be harmonic. The standard proof
of the classical Schwarz–Pick lemma breaks down at this point.

Without conformality, this fails for some harmonic diffeomorphisms of D.
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Schwarz–Pick lemma for harmonic maps into balls

Theorem (1)

Let f : D→ Bn is a harmonic map for some n ≥ 2 which is conformal at a
point z ∈ D. Denote by θ ∈ [0, π/2] the angle between the vector f (z) and
the plane dfz (R2). Then at this point we have that

‖dfz‖ ≤
1− |f (z)|2

1− |z |2
1√

1− |f (z)|2 sin2 θ
,

with equality if and only if f is a conformal diffeomorphism onto the affine disc

Σ = (f (z) + dfz (R
2)) ∩Bn.

The number R =
√

1− |f (z)|2 sin2 θ is the radius of the disc Σ.

If n = 2 then θ = 0, R = 1, so the previous corollary is a special case.

If f (z) = 0 then the angle θ is not defined, but it is irrelevant.
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An estimate without conformality

For a fixed value of |f (z)| ∈ [0, 1), the maximum of the right hand side over angles

θ ∈ [0, π/2] equals

√
1−|f (z)|2
1−|z |2 and is reached at θ = π/2 when f (z) is orthogonal to

the 2-plane Λ = dfz (R2), unless f (z) = 0 in which case it equals 1
1−|z |2 for all θ.

We show that this weaker estimate holds for all harmonic maps D→ Bn.

Theorem (2)

For every harmonic map f : D→ Bn (n ≥ 2) we have that

1√
2
|∇f (z)| ≤

√
1− |f (z)|2
1− |z |2 , z ∈ D.

Equality holds for some z0 ∈ D if f (z0) is orthogonal to the 2-plane Λ = dfz0 (R
2) and

f is a conformal diffeomorphism onto the affine disc (f (z0) + Λ) ∩Bn.

Unlike the main result, this weaker estimate is simple consequence of the assumption
that f (D) ⊂ Bn and hence ∫ 2π

0
|f (eit )|2 dt

2π
≤ 1.
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Discussion

The precise upper bound on the size of the gradient of harmonic maps
f : D→ Bn with a given centre f (0) = x ∈ Bn \ {0} seems unknown, except
for n = 1.

The harmonic Schwarz lemma says that any harmonic function
f : Bm → (−1,+1) for m ≥ 2 satisfies the estimate

|∇f (0)| ≤ 2
Vol(Bm−1)

Vol(Bm)
,

with equality if and only if f is a harmonic function on Bm whose boundary
values equal ±1 on a pair of opposite hemispheres.

For m = 2 the inequality reads

|∇f (0)| ≤ 4

π
.

A simple proof was given by Kalaj and Vuorinen (2012) who obtained it from
the classical Schwarz–Pick lemma applied to the holomorphic function
φ ◦ F : D→ D, where F = f + ig : D→ Ω = (−1,+1)× iR is a holomorphic
extension of f and φ : Ω→ D is a biholomorphism.
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Comparison with the Schwarz lemma in the complex ball

It is well known that the extremal holomorphic discs in the complex ball
Bn

C ⊂ Cn are the holomorphic parameterizations of complex affine discs in Bn
C.

The standard proof strongly uses the fact that the group of holomorphic
automorphisms of Bn

C acts transitively.

Comparison with the new result shows that, up to orientation, the extremal
holomorphic discs are precisely those extremal conformal minimal discs in Bn

C
whose images are complex.

The biggest group preserving the set of all conformal minimal discs in Bn

(under postcomposition) is the orthogonal group, which does not act
transitively. Our proof also gives a new proof of the complex Schwarz lemma
without using the group Aut(Bn

C). As will be shown presently, it is just as
elementary as the standard proof.
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Proof of the main theorem, 1

It suffices to prove Theorem 1 for z = 0. Indeed, with f and z as in the
theorem, let φz ∈ Aut(D) be such that φz (0) = z . The harmonic map
=̃f ◦ φz : D→ Bn is then conformal at the origin. Since |φ′z (0)| = 1− |z |2,
the estimate follows from the same estimate for the map f̃ applied at z = 0.

We find an explicit conformal parameterization of affine discs in Bn.
Fix a point q ∈ Bn and a 2-plane 0 ∈ Λ ⊂ Rn, and consider the affine disc
Σ = (q + Λ) ∩Bn. Let p ∈ Σ be the closest point to the origin.

If n = 2 then p = 0 and Σ = D. Suppose now that n = 3; the case n > 3 will
be the same. By an orthogonal rotation on R3 we may assume that

p = (0, 0, p) and Σ =
{
(x , y , p) : x2 + y2 < 1− p2

}
.

Let q = (b1, b2, p) ∈ Σ, and let θ denote the angle between q and Σ. Set

R =
√

1− p2 =
√

1− |q|2 sin2 θ, a =
b1 + ib2

R
∈ D, |a| = |q| cos θ

R
.

We orient Σ by the pair of tangent vectors ∂x , ∂y .
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Proof, 2

Every orientation preserving conformal parameterization f : D→ Σ with
f (0) = q is then of the form

f (z) =

(
R · < eitz + a

1 + āeitz
,R · = eitz + a

1 + āeitz
, p

)
=

(
R

eitz + a

1 + āeitz
, p

)
for z ∈ D and some t ∈ R. (If n = 2 then p = 0, R = 1, and we drop the last
coordinate.)

We have that

‖df0‖ = R (1− |a|2) = R2 − R2|a|2
R

=
1− |q|2 sin2 θ − |q|2 cos2 θ

R

=
1− |q|2√

1− |q|2 sin2 θ
=

1− |f (0)|2√
1− |f (0)|2 sin2 θ

.

This shows that the conformal parameterizations of the proper affine discs in
the ball satisfy the equality in the theorem at every point.
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This shows that the conformal parameterizations of the proper affine discs in
the ball satisfy the equality in the theorem at every point.



Proof, 3

Let f : D→ B3 be as above, where we may assume that t = 0.

Suppose that g : D→ B3 is a harmonic map such that g(0) = f (0), g is
conformal at 0, and dg0(R

2) = df0(R
2). Up to replacing g by g(eitz) or

g(eit z̄) for some t ∈ R, we may assume that

dg0 = r df0 for some r > 0.

We must prove that r ≤ 1, and that r = 1 if and only if g = f .

Consider the holomorphic map F : D→ Ω = B3 × iR3 with f = <F , given by

F (z) =

(
R · z + a

1 + āz
,−R · i z + a

1 + āz
, p

)
, z ∈ D.

Let G : D→ Ω be the holomorphic map with <G = g and G (0) = F (0).

By the Cauchy–Riemann equations, the condition dg0 = r df0 implies

G ′(0) = r F ′(0).
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, p

)
, z ∈ D.

Let G : D→ Ω be the holomorphic map with <G = g and G (0) = F (0).

By the Cauchy–Riemann equations, the condition dg0 = r df0 implies

G ′(0) = r F ′(0).



Proof, 3

Let f : D→ B3 be as above, where we may assume that t = 0.

Suppose that g : D→ B3 is a harmonic map such that g(0) = f (0), g is
conformal at 0, and dg0(R

2) = df0(R
2). Up to replacing g by g(eitz) or

g(eit z̄) for some t ∈ R, we may assume that

dg0 = r df0 for some r > 0.

We must prove that r ≤ 1, and that r = 1 if and only if g = f .

Consider the holomorphic map F : D→ Ω = B3 × iR3 with f = <F , given by

F (z) =

(
R · z + a

1 + āz
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Proof, 4

It follows that the map (F (z)− G (z))/z is holomorphic on D and

lim
z→0

F (z)− G (z)

z
= F ′(0)− G ′(0) = (1− r)F ′(0).

Since g : D→ B3 is a bounded harmonic map, it has a nontangential
boundary value at almost every point of the circle T = bD. Since the Hilbert
transform is an isometry on the Hilbert space L2(T), the same is true for G .

Denote by 〈·, ·〉 the complex bilinear form on Cn given by

〈z ,w〉 =
n

∑
i=1

ziwi

for z ,w ∈ Cn.
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Proof, 5

For each z = eit ∈ bD the vector f (z) ∈ bB3 is the unit normal vector to the
sphere bB3 at the point f (z). Since B3 is strongly convex, we have that

<
〈
F (z)− G (z), f (z)

〉
=
〈
f (z)− g(z), f (z)

〉
≥ 0 a.e. z ∈ bD,

and the value is positive for almost every z ∈ bD if and only if g 6= f .

Consider the following function on the circle bD:

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

A calculation, taking into account zz̄ = 1, shows that

f̃ (z) =


c
2

(
1 + a2 + 4(<a)z + (1 + ā2)z2

)
c
2

(
i(1− a2) + 4(=a)z + i(ā2 − 1)z2

)
p (z + a)(1 + āz)

 , |z | = 1.
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)
c
2

(
i(1− a2) + 4(=a)z + i(ā2 − 1)z2
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Conclusion of the proof

We extend f̃ to all z ∈ C by letting it equal the holomorphic polynomial map
on the right hand side above. Since |1 + āz |2 > 0 for z ∈ D, we have

h(z) := <
〈
F (z)− G (z), |1 + āz |2f (z)

〉
=

〈
f (z)− g(z), |1 + āz |2f (z)

〉
≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g 6= f .

From the definition of f̃ we see that

h(z) = <
〈
F (z)− G (z)

z
, f̃ (z)

〉
a.e. z ∈ bD

Since the maps (F (z)− G (z))/z and f̃ (z) are holomorphic on D, h extends
to a nonnegative harmonic function on D which is positive on D unless f = g .

At z = 0 we have

h(0) = <
〈
F ′(0)− G ′(0), f̃ (0)

〉
= (1− r)<

〈
F ′(0), f̃ (0)

〉
≥ 0,

with equality if and only if g = f . Applying this to the constant map
g(z) = f (0) gives < 〈F ′(0), f̃ (0)〉 > 0. It follows that r ≤ 1, with equality if
and only if g = f . This completes the proof.
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Discussion

The above proof is motivated by the seminal work of László Lempert (1981)
on Kobayashi extremal holomorphic discs in bounded strongly convex domains
Ω ⊂ Cn with smooth boundaries.

In Lempert’s terminology, a proper holomorphic disc F : D→ Ω extending
continuously to D is a stationary disc if, denoting by ν(z) the unit normal to
bΩ along the circle F (bD), there is a positive function q > 0 on bD such that
the function

z q(z)ν(z)

extends from the circle |z | = 1 to a holomorphic function f̃ (z) on D. The use
of such a function, along with the convexity of the domain, enables the
arguments used above to show that a stationary disc F is the unique Kobayashi
extremal disc in Ω through the point F (a) in the tangent direction F ′(a) for
every a ∈ D.

In our case, ν(z) = f (z) is real-valued, and a suitable function is

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

The fact that Ω = Bn × iRn is unbounded does not matter.
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The Cayley–Klein metric on the ball

We can interpret Theorem 1 as the metric-decreasing property of conformal
harmonic maps D→ Bn with respect to the Cayley–Klein metric on Bn:

CK(x, v) =

√
1− |x|2 sin2 φ

1− |x|2 |v|, x ∈ Bn, v ∈ Rn,

where φ ∈ [0, π/2] is the angle between the vector v and the line Rx ⊂ Rn.

Equivalently,

CK(x, v)2 =
(1− |x|2)|v|2 + |x · v|2

(1− |x|2)2
=

|v|2
1− |x|2 +

|x · v|2
(1− |x|2)2

.

The Cayley–Klein model, also called the Beltrami–Klein model of hyperbolic
geometry was introduced by Arthur Cayley (1859) and Eugenio Beltrami
(1868), and it was developed by Felix Klein (1871, 1873). The underlying
space is the n-dimensional unit ball, geodesics are straight line segments with
endpoints on the boundary sphere, and the distance between points on a
geodesic is given by a cross ratio. This is a special case of the Hilbert metric
on convex domains in Rn, introduced by David Hilbert in 1895.
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Comments on the Cayley–Klein metric

The Cayley–Klein metric CK is the restriction of the Kobayashi metric on the
unit ball Bn

C ⊂ Cn to points x ∈ Bn = Bn
C ∩Rn and vectors in TxRn ∼= Rn.

It also equals 1/
√
n+ 1 times the Bergman metric on Bn

C restricted to Bn and
real tangent vectors. (On the ball of Cn, most holomorphically invariant
metrics coincide up to scalar factors.)

More generally, Lempert (1993) showed that on any convex domain D ⊂ Rn

(or in RPn), the Hilbert metric is the restriction to D of the Kobayashi metric
on the elliptic tube D∗ ⊂ Cn over D.

The metric CK is not conformally equivalent to the Euclidean metric on Bn.

It coincide with the Poincaré metric on Bn, given by
|v|

1−|x|2 , in the radial

direction parallel to the base point x ∈ Bn, but is strictly smaller in the
direction perpendicular to x. We have that

|v|√
1− |x|2

≤ CK(x, v) ≤ |v|
1− |x|2 ,

with the upper bound reached for φ = 0 and the lower bound for φ = π/2.
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Metric decreasing property of conformal harmonic maps

The inequality in Theorem 1 can be rewritten as√
1− |f (z)|2 sin2 θ

1− |f (z)|2 |dfz (ξ)| ≤
|ξ|

1− |z |2 , ξ ∈ TzD = R2,

where θ ∈ [0, π/2] is the angle between f (z) and the plane Λ = dfz (R2).

If φ ∈ [θ, π/2] is the angle between Rf (z) and the vector dfz (ξ) ∈ Λ, then

CK
(
f (z), dfz (ξ)

)
=

√
1− |f (z)|2 sin2 φ

1− |f (z)|2 |dfz (ξ)|

≤

√
1− |f (z)|2 sin2 θ

1− |f (z)|2 |dfz (ξ)|

≤ |ξ|
1− |z |2 = PD(z , ξ).

The first inequality is equality if and only if φ = θ.

The second inequality is equality of and only if f is a conformal diffeomorphism
onto the linear disc (f (z) + dfz (R2)) ∩Bn.
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Conformal harmonic maps are metric-decreasing

Corollary

If f : D→ Bn is a conformal harmonic map then for every z ∈ D, ξ ∈ R2:

CK
(
f (z), dfz (ξ)

)
≤ |ξ|

1− |z |2 = PD(z , ξ), (1)

with equality for some z ∈ D and ξ ∈ R2 \ {0} if and only if f is a conformal
diffeomorphism onto the affine disc

Σ = (f (z) + dfz (R
2)) ∩Bn

and the vector dfz (ξ) is tangent to the diameter of Σ through the point f (z).

The analogous conclusion holds if D is replaced by any hyperbolic conformal
surface M with the Poincaré metric PM . Equality can only occur if M = D.

A conformal surface is hyperbolic if its universal conformal covering is the disc.
One introduces the Poincaré metric on such a surface by asking that the
universal covering projection h : D→ M be a local isometry.



Distance-decreasing property of conformal harmonic maps

It follows that for any r > 0, a conformal harmonic map f : M → Bn maps the
r -ball around a point z ∈ M in the Poincaré metric into the r -ball around the
image point f (z) ∈ Bn in the CK metric, with equality at some point if and
only if M = D and f is a conformal embedding onto an affine disc in Bn.

An explicit formula for the CK distance function is

distCK(x, y) =
1

2
log

(
|1− x · y|+

√
|x− y|2 + |x · y|2 − |x|2|y|2

|1− x · y| −
√
|x− y|2 + |x · y|2 − |x|2|y|2

)
.
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A pseudodistance on a domain in Rn

There is a natural procedure to define a pseudodistance function ρ = ρD on
any domain D ⊂ Rn using conformal minimal discs D→ D. It is motivated by
Kobayashi’s construction of his pseudometric on complex manifolds.

Fix a pair of points x, y ∈ D and consider finite chains of conformal harmonic
discs fi : D→ D and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk (ak ) = y.

To any such chain we associate the number

k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

≥ 0.

The i-th term in the sum is the Poincaré distance from 0 to ai in D.

The pseudodistance ρD : D ×D → R+ is the infimum of the numbers obtained
in this way. Clearly it satisfies the triangle inequality.

If D is a domain in Cn and we use only holomorphic discs, then the
corresponding pseudodistance ρ is precisely the one of Kobayashi.



Distance-decreasing property

Lemma

(A) Conformal harmonic maps M → D from any hyperbolic conformal surface
are distance-decreasing in the Poincaré distance on M and the pseudodistance
ρD on D.

(B) ρD is the largest pseudodistance function on D for which this holds.

Proof of (A) For M = D, this follows from the definition since every
conformal harmonic map f : D→ D is a candidate for computing ρD and we
are taking the infimum. For general M, the result follows by precomposing f
with a universal conformal covering map h : D→ M.

Proof of (B) Suppose that τ is a pseudodistance on D such that every
conformal harmonic map D→ D is distance-decreasing. Let fi : D→ D and
ai ∈ D for i = 1, . . . , k be a chain connecting the points x, y ∈ D. Then,

τ(x, y) ≤
k

∑
i=1

τ(fi (0), fi (ai )) ≤
k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

.

Taking the infimum over all such chains gives τ(x, y) ≤ ρD (x, y).



ρBn = distCK

Theorem

On the ball Bn, we have ρBn = distCK.

Proof Fix a pair of distinct points x, y ∈ Bn. Let p be the point on the affine
line L through x and y which is closest to the origin.

Let Λ ⊂ Rn be the affine 2-plane containing L and such that p is orthogonal to
Λ (such Λ is unique unless p = 0). Then, Σ := Λ ∩Bn is an affine disc, and
the points x and y lie on the diameter L∩Bn of Σ.

These diameters are geodesics for the Cayley–Klein metric on Bn, and
distCK(x, y) equals the Poincaré distance between x and y in the affine disc Σ.

By the previous lemma, distCK(x, y) ≤ ρBn (x, y). Since the affine disc Σ is a
candidate for computing ρBn (x, y), equality follows.



Hyperbolic domains

Definition (Hyperbolic domains in Rn)

A domain D ⊂ Rn (n ≥ 3) is hyperbolic if the pseudodistance ρD is a distance
function on D, and is complete hyperbolic if (D, ρD ) is a complete metric
space (Cauchy sequences converge).

Example

(A) The ball Bn ⊂ Rn (n ≥ 3) is complete hyperbolic since the Cayley–Klein
metric is complete.

(B) Every bounded domain D ⊂ Rn is hyperbolic since it is contained in a ball.
However, it need not be complete hyperbolic.

(C) Every bounded strongly convex domain in Rn is complete hyperbolic.

(D) The half-space Hn = {x = (x1, . . . , xn) ∈ Rn : xn > 0} is not hyperbolic
since the pseudodistance ρHn vanishes on planes xn = const.



Problems

Problem

(A) Is the complement of a catenoid in R3 hyperbolic?

(B) Is every bounded strongly mean-convex domain in R3 complete hyperbolic?

A domain in R3 is (strongly) mean-convex if the mean curvature of its
boundary is nonnegative (positive) at every point. Such domains are natural
domains of existence of proper minimal surfaces conformally parameterized by
any bordered Riemann surface.



∼ Thank you for your attention ∼


