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Flexibility versus rigidity in complex geometry

A central question in complex geometry is to understand the space of
holomorphic maps X → Y between a pair of complex manifolds. Are there
many maps, or few maps? Which properties can such maps have?

There are many maps C→ C, but there are no nonconstant holomorphic maps
C→ C \ {0, 1} = Y . Such manifolds Y are called (Brody) hyperbolic.

*** HYPERBOLICITY IS AN OBSTRUCTION THEORY ***

On the opposite side, Oka theory is about complex manifolds Y which admit
many holomorphic maps X → Y from any affine complex (Stein) manifold X .
It developed from works of Oka, Grauert, Gromov, and others.

*** OKA THEORY IS AN EXISTENCE THEORY ***

It provides solutions to a wide variety of analytic problems in the absence of
topological obstructions.



Oka manifolds

A complex manifold Y is called an Oka manifold if maps X → Y from
any Stein manifold (or a reduced Stein space) X satisfy the following
conditions:

every continuous map f : X → Y can be homotopically deformed to
a holomorphic map f̃ : X → Y .

If the map f : X → Y is holomorphic on a compact O(X )-convex
set K and on a closed complex subvariety X ′ of X , then there is a
homotopy from f to f̃ consisting of maps which are holomorphic
near K and close to f on K , and which agree with f on X ′.

The analogous approximation and (jet) interpolation properties hold
for families of maps X → Y depending continuously on a parameter.



Oka manifolds are like bitcoins — precious but hard to
discover

Oka 1939, Grauert 1958 Complex Lie groups and their homogeneous
manifolds are Oka.

Gromov 1989 Every elliptic complex manifold is an Oka manifold.

A complex manifold Y is said to be elliptic if it admits a holomorphic
vector bundle π : E → Y and a dominating holomorphic spray
F : E → Y such that for every point y ∈ Y we have that F (0y ) = y and

dF0y : T0yE → TyY maps the fibre Ey onto the tangent space TyY .

In particular, if Y admits complete holomorphic vector fields which span
the tangent space at every point, then Y is elliptic and hence Oka.

F. 2006 A complex manifold Y is Oka iff it satisfies the following

Convex approximation property: Every holomorphic map K → Y from a
compact convex set in a Euclidean space Cn is a limit of entire maps
Cn → Y .



Kusakabe’s characterization of Oka manifolds

Y. Kusakabe 2021 A complex manifold Y is an Oka manifold if and only if
every holomorphic map f : L→ Y from (a neighbourhood of) a compact
convex set L ⊂ CN is the core map of a dominating holomorphic spray
F : L×Cn → Y for some n ≥ dimY , i.e., such that

F (· , 0) = f and
∂

∂z

∣∣∣
z=0

F (ζ, z) : Cn → Tf (ζ)Y is surjective for every ζ ∈ L.

This is a restricted version (to compact convex sets) of condition Ell1 studied
by Gromov in 1989. Kusakabe gave a short but ingenious proof that Ell1
implies CAP; the rest was known before. However, Ell1 is often easier to verify.
As an application of this and an old result of mine, Kusakabe proved

The localization theorem for Oka manifolds:
If a complex manifold Y =

⋃
i Y \ Ai is a union of Zariski-open Oka domains

Y \ Ai , with Ai a closed complex subvariety of Y , then Y is Oka.

These results furnished many new examples of Oka manifolds. In this talk we
shall describe some further ones among domains in Euclidean and projective
spaces.



Which domains in Cn are Oka?

Until Kusakabe’s work the only known examples of Oka domains in Cn

were FB-domains, complements of complex hyperplanes, and complements
of closed tame (in particular, algebraic) subvarieties of dimension ≤ n− 2.

Kusakabe 2021 For every compact polynomially convex set K ⊂ Cn for
n > 1, the complement Cn \K is Oka.

F. 2022 If K ⊂ Cn is a compact polynomially convex set then CPn \K is
Oka. (This follows from the previous theorem and localization.)

Furthermore, if Γ is a compact union of curves such that the complex

curve K̂ ∪ Γ \K ∪ Γ has at most finitely many irreducible components,
then Cn \K ∪ Γ and CPn \K ∪ Γ are Oka manifolds.

In a recent joint work with E.F. Wold, we found surprisingly small Oka
domains in Cn (n > 1) at the limit of what is possible.

F. F. and E. F. Wold 2022 Oka domains in Euclidean spaces.
https://arxiv.org/abs/2203.12883

https://arxiv.org/abs/2203.12883


Oka complements of closed convex sets

Theorem (1)

If E is a closed convex set with C 1 boundary in Cn for n > 1 such that
E ∩TC

p bE does not contain an affine real halfline for any p ∈ bE, then Cn \ E
is an Oka domain. This holds in particular if bE is strictly convex.

There are many such examples of the form

E = {(z ′, zn) ∈ Cn : =zn ≥ φ(z ′,<zn)},

where φ is a convex function of class C 1. If t > 0, the convex domain

Ω+
t = {=zn > tφ(z ′,<zn)}

does not contain any affine complex line, so it is hyperbolic (Barth 1980, Harris
1979, Bracci and Saracco 2009), while the domain

Ω−t = {=zn < tφ(z ′,<zn)}

is Oka. For t < 0 the picture is reversed, while at t = 0 the hyperplane
{=zn = 0} splits Cn in a pair of halfspaces which are neither Oka nor
hyperbolic.



Oka domains below convex graphs

A convex function φ : Rn → R is irreducible if it is not of the form
φ = ψ ◦ P + l where P : Rn → Rm is a linear projection with m < n, ψ is a
convex function on Rm, and l is a linear function on Rn. (This means that φ is
not a convex function of a smaller number of variables which is linear in the
remaining variables.)

Corollary

If φ is an irreducible convex function on Cn−1 ×R, then the domain

Ωφ = {(z ′, zn) ∈ Cn : =zn < φ(z ′,<zn)}

is Oka. The same holds for domains Ωφ = {(z ′, zn) ∈ Cn : =zn < φ(z ′)}.

Proof By Azagra (2013) the condition on φ implies that for every ε > 0 there
is a smooth strictly convex function ψ : Cn−1 ×R→ R such that
φ− ε < ψ < φ. Hence, the domain Ωψ = {=zn < ψ(z ′,<zn)} is Oka.

This gives an increasing sequence φ1 < φ2 < φ3 < · · · of smooth strictly
convex functions on Cn−1 ×R converging uniformly to φ such that the
sequence of Oka domains Ωφj increases to Ωφ as j → ∞. Hence, Ωφ is Oka.



Complements of convex domains containing no lines

Example Every open set in Cn for n > 1 of the form

=zn < c |<zn|+
n−1
∑
j=1

(
aj |<zj |+ bj |=zj |

)
for c ≥ 0 and positive numbers a1, . . . , an−1, b1, . . . , bn−1 is Oka.

Corollary

If E is a closed convex set in Cn for n > 1 which does not contain any affine
real line, then Cn \ E is an Oka domain.

Proof There is a decreasing sequence E1 ⊃ E2 ⊃ E3 ⊃ · · · of smoothly
bounded strongly convex sets in Cn such that E =

⋂∞
j=1 Ej .

By Theorem 1, the domain Ωj = Cn \ Ej is Oka for every j ∈N.

Hence, Cn \ E =
⋃∞
j=1 Ωj is an increasing union of Oka domains, so it is Oka.



The main theorem

Theorem 1 follows from our main result, Theorem 2. Given a closed set
E ⊂ Cn, we denote by E ⊂ CPn its projective closure.

Theorem (2)

If E is a closed subset of Cn for n > 1 and Λ ⊂ CPn is a hyperplane such that
E ∩Λ = ∅ and E is polynomially convex in CPn \Λ ∼= Cn, then Cn \ E is Oka.

In particular, if CPn \ E is a union of projective hyperplanes and the set of
such hyperplanes is connected, then Ω = Cn \ E is Oka.
(We call such E projectively convex.)

The second part follows from the first one by observing that if K is a compact
set in CPn and Λt ⊂ CPn (t ∈ [0, 1]) is a path of hyperplanes not intersecting
K , then

⋃
t∈(0,1] Λt does not belong to the polynomial hull of K in CPn \Λ0.

We showed that every convex set E ⊂ Cn in Theorem 1 has projectively convex
closure. In fact, CPn \ E is a union of hyperplanes parallel to the complex
tangent spaces TC

p bE for p ∈ bE . Hence, Theorem 2 implies Theorem 1.



Example: an Oka tube

Another example of a small Oka domain is a tube in Cn of the form

Ω = {z = (z ′, zn) ∈ Cn : |zn| ≤ f (|z ′|)},

where f ≥ 1 is an increasing, strongly convex function on R+ satisfying
f (0) = 1 and f (t) ≈ ct for some c > 0 as t → +∞ such that for every a > 0
the linear function

x 7→ g(x) = f (a) + f ′(a)(x − a)

(the tangent line to the graph of f at the point (a, f (a))) satisfies

g(0) = f (a)− af ′(a) > 0.

This implies that Ω is a union of a connected family of affine complex
hyperplanes whose closures in CPn do not intersect Cn \Ω, so Theorem 2
shows that Ω is Oka.

Such tubes are small neighbourhoods of the tube Cn−1 × {|zn| < 1}, and their
complement is not convex.



Proof of Theorem 2

Let H = CPn \Cn denote the hyperplane at infinity. Set K = E . Choose a
projective hyperplane Λ ⊂ CPn with K ∩Λ = ∅.

Let z = (z1, . . . , zn) be affine coordinates on CPn \Λ ∼= Cn in which
H \Λ = {zn = 0}. By the hypothesis, K is polynomially convex in these
coordinates. It now suffices to prove the following result.

Theorem (3)

If K is a compact polynomially convex set in Cn then (Cn−1 ×C∗) \K is Oka.

Assume that Theorem 3 holds. Then,

Cn \ (E ∪Λ) = CPn \ (H ∪ E ∪Λ) = (CPn \Λ) \ (H ∪ E )

is Oka. Choose hyperplanes Λ0 = Λ, Λ1, . . . , Λn in CPn \K close to Λ such
that

⋂n
i=0 Λi = ∅. Then, Cn \ (E ∪Λi ) is Oka for every i and

Ω = Cn \ E =
n⋃

i=0

(Cn \ E ) \Λi

is a union of Zariski open Oka domains, so it is Oka.



Proof of Theorem 3

In view of Kusakabe’s characterisation of Oka manifolds by Condition Ell1, it
suffices to prove the following.

Theorem (4)

Assume that

K is a compact polynomially convex set in Cn for some n > 1,

L is a compact (polynomially) convex set in CN for some N ∈N, and

f : L→ Cn is a holomorphic map such that

f (ζ) ∈ (Cn−1 ×C∗) \K holds for all ζ ∈ L.

Then there is a holomorphic map F : L×Cn → Cn such that for every ζ ∈ L,

F (ζ, 0) = f (ζ) and the map F (ζ, · ) : Cn → (Cn−1 ×C∗) \K is injective.

It follows that

Ωζ = {F (ζ, z) : z ∈ Cn} ⊂ (Cn−1 ×C∗) \K

is a family of Fatou–Bieberbach domains depending holomorphically on ζ ∈ L.



Proof of Theorem 4

Since the set L ⊂ CN is polynomially convex, we may assume that the map f is
defined on a Stein neighbourhood U of L which is a Runge in CN .

The graph Γ = {(ζ, f (ζ)) : ζ ∈ U} is a closed Stein submanifold of the Stein
domain X = U ×Cn which is a Runge in CN+n. The restricted graph

ΓL = {(ζ, f (ζ)) ∈ X : ζ ∈ L} ⊂ L×
(
(Cn−1 ×C∗) \K

)
(1)

is clearly O(Γ)-convex, hence also O(X )-convex and polynomially convex in
CN ×Cn (since X is Runge in CN ×Cn).

It follows that (L×K ) ∪ ΓL is O(X )-convex and hence polynomially convex, so
it has a basis of Runge Stein neighbourhoods.



Proof of Theorem 4, part 2

Let π : CN ×Cn → CN denote the projection. Consider the injective π-fibre
preserving holomorphic map Φ = (Id, φ) of the form

Φ(ζ, z) = (ζ, φ(ζ, z)) for (ζ, z) ∈ Ω

on a small Runge Stein neighbourhood Ω = Ω′ ∪Ω′′ of (L×K ) ∪ ΓL in
CN ×Cn which equals the identity map on a neighbourhood Ω′ of L×K and

φ(ζ, z) = f (ζ) +
1

2
(z − f (ζ)) =

1

2
f (ζ) +

1

2
z

for (ζ, z) in a neighbourhood Ω′′ of the graph ΓL in (1). Thus, φ(ζ, · ) is a
contraction by the factor 1/2 around the point f (ζ) ∈ Cn for every ζ ∈ L.

For a suitable choice of the neighbourhood Ω′′ of ΓL the map φ = φ1/2 is
connected to φ0(ζ, z) = z by the isotopy

φt (ζ, z) = tf (ζ) + (1− t)z for 0 ≤ t ≤ 1

2
.

On Ω′ ⊃ L×K we take the constant isotopy φt (ζ, z) = φ0(ζ, z) = z for all t.
Clearly, the trace of the isotopy Φt = (Id, φt ) for t ∈ [0, 1/2] consists of
Runge domains Φt (Ω) ⊂ Ω.



Proof of Theorem 4, part 3

Varolin 2001 The Lie algebra of holomorphic (algebraic) vector fields on Cn

vanishing on a hyperplane Cn−1 × {0} has the (algebraic) density property.

Hence, by the parametric version of the main result of Andersén–Lempert
theory, we can approximate Φ on (L×K ) ∪ ΓL by a holomorphic map

Ψ : V ×Cn → V ×Cn, Ψ(ζ, z) = (ζ, ψ(ζ, z)),

where V ⊂ U is a neighbourhood of L, such that for every ζ ∈ V we have that

ψ(ζ, · ) ∈ Aut(Cn),

ψ(ζ, z) = z for every z = (z ′, 0) ∈ Cn−1 × {0}, and

ψ(ζ, f (ζ)) = f (ζ).

Choose a, b ∈ R such that

0 < a < 1/2 < b < 1 and b2 < a.

If the approximation of φ by ψ is close enough then the estimate

a|z − f (ζ)| ≤ |ψ(ζ, z)− f (ζ)| ≤ b|z − f (ζ)| (2)

holds in a neighbourhood of the graph ΓL of f , and ψ is arbitrarily close to the
map (ζ, z) 7→ z on a neighbourhood of L×K .



Proof of Theorem 4, part 4

This gives a sequence of holomorphic maps ψk of the same kind as ψ such that
the estimate (2) holds for all of them on the same neighbourhood of ΓL, and
ψk converges to the map (ζ, z) 7→ z on a neighbourhood of L×K as k → ∞.
Consider the sequence of random iterations

θk (ζ, · ) = ψk (ζ, · ) ◦ ψk−1(ζ, · ) ◦ · · · ◦ ψ1(ζ, · ) ∈ Aut(Cn).

Due to the condition b2 < a in the estimate (2) the attracting basin Bζ ⊂ Cn

of the sequence θk at the fixed point f (ζ) is biholomorphic to Cn (Wold 2005).

If the convergence of the sequence ψk to the map (ζ, z) 7→ z is fast enough on
a neighbourhood of L×K , then none of the basins Bζ intersect K .

Furthermore, the condition ψk (ζ, (z ′, 0)) = (z ′, 0) for all ζ ∈ L, z ′ ∈ Cn−1,
and k ∈N ensures that the basin Bζ does not intersect Cn−1 × {0}.

This gives a holomorphic map F : V ×Cn → Cn such that the image Bζ of

F (ζ, · ) is a Fatou–Bieberbach domain in (Cn−1 ×C∗) \K centred at f (ζ) for
every ζ ∈ V , so Theorem 4 is proved.



Open problems

We have seen that complements of most closed convex sets in Cn (n > 1) are
Oka. One expects that Oka property is naturally related to pseudoconcavity.

Problem

(a) Is every domain with a connected strongly Levi pseudoconcave boundary
in Cn for n > 1 an Oka domain?

(b) Is every smoothly bounded Oka domain in Cn Levi pseudoconcave?

(c) Is there a smooth real hypersurface Σ in Cn for n > 1 such that the
connected components of Cn \ Σ are Oka? The same question for CPn.

Note that an Oka manifold does not admit any bounded plurisubharmonic
functions. In particular, an Oka domain has no strongly pseudoconvex
boundary points, so (b) has an affirmative answer for n = 2.

Parts (a) and (b) may be called the dual Levi problem.

In dimension n = 2, part (c) is equivalent to the well-known open problem on
the (non-)existence of a Levi-flat hypersurface in CP2.


