New developmens on Oka manifolds

Franc Forstnerič

Complex Geometry Workshop Ruhr University Bochum 5 September 2022

イロト 不得 トイヨト イヨト

э

Flexibility versus rigidity in complex geometry

A central question in complex geometry is to understand the space of holomorphic maps $X \rightarrow Y$ between a pair of complex manifolds. Are there many maps, or few maps? Which properties can such maps have?

There are many maps $\mathbb{C} \to \mathbb{C}$, but there are no nonconstant holomorphic maps $\mathbb{C} \to \mathbb{C} \setminus \{0, 1\} = Y$. Such manifolds Y are called **(Brody) hyperbolic**.

*** HYPERBOLICITY IS AN OBSTRUCTION THEORY ***

On the opposite side, **Oka theory** is about complex manifolds Y which admit many holomorphic maps $X \to Y$ from any affine complex (**Stein**) manifold X. It developed from works of **Oka, Grauert, Gromov**, and others.

*** OKA THEORY IS AN EXISTENCE THEORY ***

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It provides solutions to a wide variety of analytic problems in the absence of topological obstructions.

A complex manifold Y is called an **Oka manifold** if maps $X \to Y$ from any Stein manifold (or a reduced Stein space) X satisfy the following conditions:

- every continuous map $f: X \to Y$ can be homotopically deformed to a holomorphic map $\tilde{f}: X \to Y$.
- If the map f: X → Y is holomorphic on a compact O(X)-convex set K and on a closed complex subvariety X' of X, then there is a homotopy from f to f consisting of maps which are holomorphic near K and close to f on K, and which agree with f on X'.
- The analogous approximation and (jet) interpolation properties hold for families of maps X → Y depending continuously on a parameter.

Oka manifolds are like bitcoins — precious but hard to discover

- Oka 1939, Grauert 1958 Complex Lie groups and their homogeneous manifolds are Oka.
- Gromov 1989 Every elliptic complex manifold is an Oka manifold.

A complex manifold Y is said to be elliptic if it admits a holomorphic vector bundle $\pi: E \to Y$ and a **dominating holomorphic spray** $F: E \to Y$ such that for every point $y \in Y$ we have that $F(0_v) = y$ and

 $dF_{0_v}: T_{0_v}E \to T_yY$ maps the fibre E_y onto the tangent space T_yY .

- In particular, if Y admits complete holomorphic vector fields which span the tangent space at every point, then Y is elliptic and hence Oka.
- F. 2006 A complex manifold Y is Oka iff it satisfies the following

Convex approximation property: Every holomorphic map $K \to Y$ from a compact convex set in a Euclidean space \mathbb{C}^n is a limit of entire maps $\mathbb{C}^n \to Y$.

Kusakabe's characterization of Oka manifolds

Y. Kusakabe 2021 A complex manifold Y is an Oka manifold if and only if every holomorphic map $f : L \to Y$ from (a neighbourhood of) a compact convex set $L \subset \mathbb{C}^N$ is the core map of a dominating holomorphic spray $F : L \times \mathbb{C}^n \to Y$ for some $n \ge \dim Y$, i.e., such that

$$F(\cdot,0) = f \text{ and } \quad \frac{\partial}{\partial z}\Big|_{z=0} F(\zeta,z) : \mathbb{C}^n \to T_{f(\zeta)}Y \text{ is surjective for every } \zeta \in L.$$

This is a restricted version (to compact convex sets) of condition Ell_1 studied by Gromov in 1989. Kusakabe gave a short but ingenious proof that Ell_1 implies CAP; the rest was known before. However, Ell_1 is often easier to verify. As an application of this and an old result of mine, Kusakabe proved

The localization theorem for Oka manifolds:

If a complex manifold $Y = \bigcup_i Y \setminus A_i$ is a union of Zariski-open Oka domains $Y \setminus A_i$, with A_i a closed complex subvariety of Y, then Y is Oka.

These results furnished many new examples of Oka manifolds. In this talk we shall describe some further ones among domains in Euclidean and projective spaces.

Which domains in \mathbb{C}^n are Oka?

- Until Kusakabe's work the only known examples of Oka domains in Cⁿ were FB-domains, complements of complex hyperplanes, and complements of closed tame (in particular, algebraic) subvarieties of dimension ≤ n - 2.
- Kusakabe 2021 For every compact polynomially convex set $K \subset \mathbb{C}^n$ for n > 1, the complement $\mathbb{C}^n \setminus K$ is Oka.
- F. 2022 If $K \subset \mathbb{C}^n$ is a compact polynomially convex set then $\mathbb{CP}^n \setminus K$ is Oka. (This follows from the previous theorem and localization.)

Furthermore, if Γ is a compact union of curves such that the complex curve $\widehat{K \cup \Gamma} \setminus K \cup \Gamma$ has at most finitely many irreducible components, then $\mathbb{C}^n \setminus K \cup \Gamma$ and $\mathbb{CP}^n \setminus K \cup \Gamma$ are Oka manifolds.

 In a recent joint work with E.F. Wold, we found surprisingly small Oka domains in Cⁿ (n > 1) at the limit of what is possible.

F. F. and E. F. Wold 2022 Oka domains in Euclidean spaces. https://arxiv.org/abs/2203.12883

Oka complements of closed convex sets

Theorem (1)

If E is a closed convex set with \mathscr{C}^1 boundary in \mathbb{C}^n for n > 1 such that $E \cap T_p^{\mathbb{C}}bE$ does not contain an affine real halfline for any $p \in bE$, then $\mathbb{C}^n \setminus E$ is an Oka domain. This holds in particular if bE is strictly convex.

There are many such examples of the form

$$E = \{(z', z_n) \in \mathbb{C}^n : \Im z_n \ge \phi(z', \Re z_n)\},\$$

where ϕ is a convex function of class \mathscr{C}^1 . If t > 0, the convex domain

$$\Omega_t^+ = \{\Im z_n > t\phi(z', \Re z_n)\}$$

does not contain any affine complex line, so it is hyperbolic (Barth 1980, Harris 1979, Bracci and Saracco 2009), while the domain

$$\Omega_t^- = \{\Im z_n < t\phi(z', \Re z_n)\}$$

is Oka. For t < 0 the picture is reversed, while at t = 0 the hyperplane $\{\Im z_n = 0\}$ splits \mathbb{C}^n in a pair of halfspaces which are neither Oka nor hyperbolic.

Oka domains below convex graphs

A convex function $\phi : \mathbb{R}^n \to \mathbb{R}$ is **irreducible** if it is not of the form $\phi = \psi \circ P + I$ where $P : \mathbb{R}^n \to \mathbb{R}^m$ is a linear projection with m < n, ψ is a convex function on \mathbb{R}^m , and I is a linear function on \mathbb{R}^n . (This means that ϕ is not a convex function of a smaller number of variables which is linear in the remaining variables.)

Corollary

If ϕ is an irreducible convex function on $\mathbb{C}^{n-1} \times \mathbb{R}$, then the domain

$$\Omega_{\phi} = \{ (z', z_n) \in \mathbb{C}^n : \Im z_n < \phi(z', \Re z_n) \}$$

is Oka. The same holds for domains $\Omega_{\phi} = \{(z', z_n) \in \mathbb{C}^n : \Im z_n < \phi(z')\}.$

Proof By Azagra (2013) the condition on ϕ implies that for every $\epsilon > 0$ there is a smooth strictly convex function $\psi : \mathbb{C}^{n-1} \times \mathbb{R} \to \mathbb{R}$ such that $\phi - \epsilon < \psi < \phi$. Hence, the domain $\Omega_{\psi} = \{\Im z_n < \psi(z', \Re z_n)\}$ is Oka.

This gives an increasing sequence $\phi_1 < \phi_2 < \phi_3 < \cdots$ of smooth strictly convex functions on $\mathbb{C}^{n-1} \times \mathbb{R}$ converging uniformly to ϕ such that the sequence of Oka domains Ω_{ϕ_i} increases to Ω_{ϕ} as $j \to \infty$. Hence, Ω_{ϕ} is Oka.

Complements of convex domains containing no lines

Example Every open set in \mathbb{C}^n for n > 1 of the form

$$\Im z_n < c |\Re z_n| + \sum_{j=1}^{n-1} (a_j |\Re z_j| + b_j |\Im z_j|)$$

for $c \ge 0$ and positive numbers $a_1, \ldots, a_{n-1}, b_1, \ldots, b_{n-1}$ is Oka.

Corollary

If E is a closed convex set in \mathbb{C}^n for n > 1 which does not contain any affine real line, then $\mathbb{C}^n \setminus E$ is an Oka domain.

Proof There is a decreasing sequence $E_1 \supset E_2 \supset E_3 \supset \cdots$ of smoothly bounded strongly convex sets in \mathbb{C}^n such that $E = \bigcap_{j=1}^{\infty} E_j$.

By Theorem 1, the domain $\Omega_j = \mathbb{C}^n \setminus E_j$ is Oka for every $j \in \mathbb{N}$.

Hence, $\mathbb{C}^n \setminus E = \bigcup_{i=1}^{\infty} \Omega_i$ is an increasing union of Oka domains, so it is Oka.

The main theorem

Theorem 1 follows from our main result, Theorem 2. Given a closed set $E \subset \mathbb{C}^n$, we denote by $\overline{E} \subset \mathbb{CP}^n$ its projective closure.

Theorem (2)

If E is a closed subset of \mathbb{C}^n for n > 1 and $\Lambda \subset \mathbb{CP}^n$ is a hyperplane such that $\overline{E} \cap \Lambda = \emptyset$ and \overline{E} is polynomially convex in $\mathbb{CP}^n \setminus \Lambda \cong \mathbb{C}^n$, then $\mathbb{C}^n \setminus E$ is Oka.

In particular, if $\mathbb{CP}^n \setminus \overline{E}$ is a union of projective hyperplanes and the set of such hyperplanes is connected, then $\Omega = \mathbb{C}^n \setminus E$ is Oka. (We call such \overline{E} projectively convex.)

The second part follows from the first one by observing that if K is a compact set in \mathbb{CP}^n and $\Lambda_t \subset \mathbb{CP}^n$ $(t \in [0, 1])$ is a path of hyperplanes not intersecting K, then $\bigcup_{t \in (0,1]} \Lambda_t$ does not belong to the polynomial hull of K in $\mathbb{CP}^n \setminus \Lambda_0$.

We showed that every convex set $E \subset \mathbb{C}^n$ in Theorem 1 has projectively convex closure. In fact, $\mathbb{CP}^n \setminus \overline{E}$ is a union of hyperplanes parallel to the complex tangent spaces $T_p^{\mathbb{C}}bE$ for $p \in bE$. Hence, Theorem 2 implies Theorem 1.

Example: an Oka tube

Another example of a small Oka domain is a tube in \mathbb{C}^n of the form

$$\Omega = \{ z = (z', z_n) \in \mathbb{C}^n : |z_n| \le f(|z'|) \},\$$

where $f \ge 1$ is an increasing, strongly convex function on \mathbb{R}_+ satisfying f(0) = 1 and $f(t) \approx ct$ for some c > 0 as $t \to +\infty$ such that for every a > 0 the linear function

$$x \mapsto g(x) = f(a) + f'(a)(x-a)$$

(the tangent line to the graph of f at the point (a, f(a))) satisfies

$$g(0) = f(a) - af'(a) > 0.$$

This implies that Ω is a union of a connected family of affine complex hyperplanes whose closures in \mathbb{CP}^n do not intersect $\overline{\mathbb{C}^n \setminus \Omega}$, so Theorem 2 shows that Ω is Oka.

Such tubes are small neighbourhoods of the tube $\mathbb{C}^{n-1} \times \{|z_n| < 1\}$, and their complement is not convex.

Proof of Theorem 2

Let $H = \mathbb{CP}^n \setminus \mathbb{C}^n$ denote the hyperplane at infinity. Set $K = \overline{E}$. Choose a projective hyperplane $\Lambda \subset \mathbb{CP}^n$ with $K \cap \Lambda = \emptyset$.

Let $z = (z_1, \ldots, z_n)$ be affine coordinates on $\mathbb{CP}^n \setminus \Lambda \cong \mathbb{C}^n$ in which $H \setminus \Lambda = \{z_n = 0\}$. By the hypothesis, K is polynomially convex in these coordinates. It now suffices to prove the following result.

Theorem (3)

If K is a compact polynomially convex set in \mathbb{C}^n then $(\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K$ is Oka.

Assume that Theorem 3 holds. Then,

$$\mathbb{C}^n \setminus (E \cup \Lambda) = \mathbb{C}\mathbb{P}^n \setminus (H \cup E \cup \Lambda) = (\mathbb{C}\mathbb{P}^n \setminus \Lambda) \setminus (H \cup E)$$

is Oka. Choose hyperplanes $\Lambda_0 = \Lambda, \Lambda_1, \dots, \Lambda_n$ in $\mathbb{CP}^n \setminus K$ close to Λ such that $\bigcap_{i=0}^n \Lambda_i = \emptyset$. Then, $\mathbb{C}^n \setminus (E \cup \Lambda_i)$ is Oka for every *i* and

$$\Omega = \mathbb{C}^n \setminus E = \bigcup_{i=0}^n \left(\mathbb{C}^n \setminus E \right) \setminus \Lambda_i$$

(日) (日) (日) (日) (日) (日) (日) (日)

is a union of Zariski open Oka domains, so it is Oka.

Proof of Theorem 3

In view of Kusakabe's characterisation of Oka manifolds by Condition ${\rm Ell}_1,$ it suffices to prove the following.

Theorem (4)

Assume that

- K is a compact polynomially convex set in \mathbb{C}^n for some n > 1,
- L is a compact (polynomially) convex set in \mathbb{C}^N for some $N \in \mathbb{N}$, and
- $f: L \to \mathbb{C}^n$ is a holomorphic map such that

 $f(\zeta) \in (\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K$ holds for all $\zeta \in L$.

Then there is a holomorphic map $F: L \times \mathbb{C}^n \to \mathbb{C}^n$ such that for every $\zeta \in L$,

 $F(\zeta, 0) = f(\zeta)$ and the map $F(\zeta, \cdot) : \mathbb{C}^n \to (\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K$ is injective.

It follows that

$$\Omega_{\zeta} = \{ F(\zeta, z) : z \in \mathbb{C}^n \} \subset (\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K$$

is a family of Fatou–Bieberbach domains depending holomorphically on $\zeta \in L$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Since the set $L \subset \mathbb{C}^N$ is polynomially convex, we may assume that the map f is defined on a Stein neighbourhood U of L which is a Runge in \mathbb{C}^N .

The graph $\Gamma = \{(\zeta, f(\zeta)) : \zeta \in U\}$ is a closed Stein submanifold of the Stein domain $X = U \times \mathbb{C}^n$ which is a Runge in \mathbb{C}^{N+n} . The restricted graph

$$\Gamma_L = \{ (\zeta, f(\zeta)) \in X : \zeta \in L \} \subset L \times \left((\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K \right)$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is clearly $\mathscr{O}(\Gamma)$ -convex, hence also $\mathscr{O}(X)$ -convex and polynomially convex in $\mathbb{C}^N \times \mathbb{C}^n$ (since X is Runge in $\mathbb{C}^N \times \mathbb{C}^n$).

It follows that $(L \times K) \cup \Gamma_L$ is $\mathcal{O}(X)$ -convex and hence polynomially convex, so it has a basis of Runge Stein neighbourhoods.

Proof of Theorem 4, part 2

Let $\pi : \mathbb{C}^N \times \mathbb{C}^n \to \mathbb{C}^N$ denote the projection. Consider the injective π -fibre preserving holomorphic map $\Phi = (\mathrm{Id}, \phi)$ of the form

$$\Phi(\zeta, z) = (\zeta, \phi(\zeta, z)) \text{ for } (\zeta, z) \in \Omega$$

on a small Runge Stein neighbourhood $\Omega = \Omega' \cup \Omega''$ of $(L \times K) \cup \Gamma_L$ in $\mathbb{C}^N \times \mathbb{C}^n$ which equals the identity map on a neighbourhood Ω' of $L \times K$ and

$$\phi(\zeta, z) = f(\zeta) + \frac{1}{2}(z - f(\zeta)) = \frac{1}{2}f(\zeta) + \frac{1}{2}z$$

for (ζ, z) in a neighbourhood Ω'' of the graph Γ_L in (1). Thus, $\phi(\zeta, \cdot)$ is a contraction by the factor 1/2 around the point $f(\zeta) \in \mathbb{C}^n$ for every $\zeta \in L$.

For a suitable choice of the neighbourhood Ω'' of Γ_L the map $\phi = \phi_{1/2}$ is connected to $\phi_0(\zeta, z) = z$ by the isotopy

$$\phi_t(\zeta,z) = tf(\zeta) + (1-t)z \;\; ext{for}\; 0 \leq t \leq rac{1}{2}$$

On $\Omega' \supset L \times K$ we take the constant isotopy $\phi_t(\zeta, z) = \phi_0(\zeta, z) = z$ for all t. Clearly, the trace of the isotopy $\Phi_t = (\mathrm{Id}, \phi_t)$ for $t \in [0, 1/2]$ consists of Runge domains $\Phi_t(\Omega) \subset \Omega$.

Proof of Theorem 4, part 3

Varolin 2001 The Lie algebra of holomorphic (algebraic) vector fields on \mathbb{C}^n vanishing on a hyperplane $\mathbb{C}^{n-1} \times \{0\}$ has the (algebraic) density property.

Hence, by the parametric version of the main result of Andersén–Lempert theory, we can approximate Φ on $(L \times K) \cup \Gamma_L$ by a holomorphic map

$$\Psi: V \times \mathbb{C}^n \to V \times \mathbb{C}^n$$
, $\Psi(\zeta, z) = (\zeta, \psi(\zeta, z))$,

where $V \subset U$ is a neighbourhood of L, such that for every $\zeta \in V$ we have that

- ψ(ζ, ·) ∈ Aut(ℂⁿ),
 ψ(ζ, z) = z for every z = (z', 0) ∈ ℂ^{n−1} × {0}, and
- $\psi(\zeta, f(\zeta)) = f(\zeta).$

Choose a, $b \in \mathbb{R}$ such that

$$0 < a < 1/2 < b < 1$$
 and $b^2 < a$.

If the approximation of ϕ by ψ is close enough then the estimate

$$|a|z - f(\zeta)| \le |\psi(\zeta, z) - f(\zeta)| \le b|z - f(\zeta)|$$
(2)

holds in a neighbourhood of the graph Γ_L of f, and ψ is arbitrarily close to the map $(\zeta, z) \mapsto z$ on a neighbourhood of $L \times K$.

This gives a sequence of holomorphic maps ψ_k of the same kind as ψ such that the estimate (2) holds for all of them on the same neighbourhood of Γ_L , and ψ_k converges to the map $(\zeta, z) \mapsto z$ on a neighbourhood of $L \times K$ as $k \to \infty$. Consider the sequence of random iterations

$$\theta_k(\zeta,\cdot) = \psi_k(\zeta,\cdot) \circ \psi_{k-1}(\zeta,\cdot) \circ \cdots \circ \psi_1(\zeta,\cdot) \in \operatorname{Aut}(\mathbb{C}^n)$$

Due to the condition $b^2 < a$ in the estimate (2) the attracting basin $B_{\zeta} \subset \mathbb{C}^n$ of the sequence θ_k at the fixed point $f(\zeta)$ is biholomorphic to \mathbb{C}^n (Wold 2005).

If the convergence of the sequence ψ_k to the map $(\zeta, z) \mapsto z$ is fast enough on a neighbourhood of $L \times K$, then none of the basins B_{ζ} intersect K.

Furthermore, the condition $\psi_k(\zeta, (z', 0)) = (z', 0)$ for all $\zeta \in L$, $z' \in \mathbb{C}^{n-1}$, and $k \in \mathbb{N}$ ensures that the basin B_{ζ} does not intersect $\mathbb{C}^{n-1} \times \{0\}$.

This gives a holomorphic map $F: V \times \mathbb{C}^n \to \mathbb{C}^n$ such that the image B_{ζ} of $F(\zeta, \cdot)$ is a Fatou–Bieberbach domain in $(\mathbb{C}^{n-1} \times \mathbb{C}^*) \setminus K$ centred at $f(\zeta)$ for every $\zeta \in V$, so Theorem 4 is proved.

Open problems

We have seen that complements of most closed convex sets in \mathbb{C}^n (n > 1) are Oka. One expects that Oka property is naturally related to pseudoconcavity.

Problem

- Is every domain with a connected strongly Levi pseudoconcave boundary in Cⁿ for n > 1 an Oka domain?
- Is every smoothly bounded Oka domain in Cⁿ Levi pseudoconcave?
 - Is there a smooth real hypersurface Σ in Cⁿ for n > 1 such that the connected components of Cⁿ \ Σ are Oka? The same question for CPⁿ.

Note that an Oka manifold does not admit any bounded plurisubharmonic functions. In particular, an Oka domain has no strongly pseudoconvex boundary points, so (b) has an affirmative answer for n = 2.

Parts (a) and (b) may be called the dual Levi problem.

In dimension n = 2, part (c) is equivalent to the well-known open problem on the (non-)existence of a Levi-flat hypersurface in \mathbb{CP}^2 .