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Oka manifolds

A complex manifold Y is called an Oka manifold1 if maps X → Y from
any Stein manifold (or a reduced Stein space) X satisfy the following
conditions:

every continuous map f : X → Y can be homotopically deformed to
a holomorphic map f̃ : X → Y .

If the map f : X → Y is holomorphic on a compact O(X )-convex
set K and on a closed complex subvariety X ′ of X , then there is a
homotopy from f to f̃ consisting of maps which are holomorphic
near K and close to f on K , and which agree with f on X ′.

The analogous approximation and (jet) interpolation properties hold
for families of maps X → Y depending continuously on a parameter.

Observation: The Kobayashi–Royden pseudometric vanishes identically
on an Oka manifold.

1F. Forstnerič, Oka manifolds, C. R. Acad. Sci. Paris 347:17-18 (2009)
MSC 2020: 32Q56 Oka principle and Oka manifolds



Oka manifolds are like bitcoins — precious but hard to
discover

Oka 1939, Grauert 1958 Complex Lie groups and their homogeneous
manifolds are Oka.

Gromov 1989 Every elliptic complex manifold is an Oka manifold.

A complex manifold Y is said to be elliptic if it admits a holomorphic
vector bundle π : E → Y and a dominating holomorphic spray
F : E → Y such that for every point y ∈ Y we have that F (0y ) = y and

dF0y
: T0y

E → TyY maps the fibre Ey onto the tangent space TyY .

In particular, if Y admits complete holomorphic vector fields which span
the tangent space at every point, then Y is elliptic and hence Oka.

F. 2006 A complex manifold Y is Oka iff it satisfies the following

Convex approximation property: Every holomorphic map K → Y from a
(neighbourhood of a) compact convex set K in a Euclidean space Cn is a
limit of entire maps Cn → Y .



Kusakabe’s characterization of Oka manifolds

Y. Kusakabe 2021 A complex manifold Y is an Oka manifold if and only if
every holomorphic map f : K → Y from (a neighbourhood of) a compact
convex set K ⊂ CN is the core map of a dominating holomorphic spray
F : K ×Cn → Y for some n ≥ dimY :

F (· , 0) = f and
∂

∂z

∣∣∣
z=0

F (ζ, z) : Cn → Tf (ζ)Y is surjective for every ζ ∈ K .

This is a restricted version of condition Ell1 studied by Gromov in 1989.
Kusakabe gave a short but ingenious proof that

Ell1 =⇒ CAP;

the rest was known before. However, Ell1 is often easier to verify than CAP.
As an application, Kusakabe proved

The localization theorem for Oka manifolds:
If a complex manifold Y is a union of Zariski-open Oka domains Y \ Ai , with
Ai a closed complex subvariety of Y , then Y is Oka.



Which domains in Cn and CPn are Oka?

Until Kusakabe’s work the only known examples of Oka domains in Cn

were FB-domains, complements of complex hyperplanes, and complements
of closed tame (in particular, algebraic) subvarieties of dimension ≤ n− 2.

Kusakabe 2021 For every compact polynomially convex set K ⊂ Cn for
n > 1, the complement Cn \K is Oka.

F. 2022 If K ⊂ Cn is as above then CPn \K is Oka.

Furthermore, if Γ is a compact union of curves such that the complex

curve K̂ ∪ Γ \K ∪ Γ has at most finitely many irreducible components,
then Cn \K ∪ Γ and CPn \K ∪ Γ are Oka.

In a recent joint work with E.F. Wold, we found surprisingly small Oka
domains in Cn (n > 1) at the limit of what is possible.

F. F. and E. F. Wold 2022 Oka domains in Euclidean spaces.
https://arxiv.org/abs/2203.12883

https://arxiv.org/abs/2203.12883


Oka complements of closed convex sets

Theorem (1)

If E is a closed convex set with C 1 boundary in Cn for n > 1 such that
E ∩TC

p bE does not contain an affine real halfline for any p ∈ bE, then Cn \ E
is an Oka domain. This holds in particular if E is strictly convex, i.e., bE does
not contain any straight line segments.

There are many such examples of the form

E = {(z ′, zn) ∈ Cn : =zn ≥ φ(z ′,<zn)},

where φ is a convex function of class C 1. If t > 0, the convex domain

Ω+
t = {=zn > tφ(z ′,<zn)}

does not contain any affine complex line, so it is hyperbolic (Barth 1980, Harris
1979, Bracci and Saracco 2009), while the domain

Ω−t = {=zn < tφ(z ′,<zn)}

is Oka. For t < 0 the picture is reversed, while at t = 0 the hyperplane
{=zn = 0} splits Cn in a pair of halfspaces which are neither Oka nor
hyperbolic.



Oka domains below convex graphs

A convex function φ : Rn → R is irreducible if it is not of the form
φ = ψ ◦ P + l where P : Rn → Rm is a linear projection with m < n, ψ is a
convex function on Rm, and l is a linear function on Rn.

Corollary

If φ is an irreducible convex function on Cn−1 ×R, then the domain

Ωφ = {(z ′, zn) ∈ Cn : =zn < φ(z ′,<zn)}

is Oka. The same holds for domains Ωφ = {(z ′, zn) ∈ Cn : =zn < φ(z ′)}.

Proof By Azagra (2013) the condition on φ implies that for every ε > 0 there
is a smooth strictly convex function ψ : Cn−1 ×R→ R such that
φ− ε < ψ < φ. Hence, the domain Ωψ = {=zn < ψ(z ′,<zn)} is Oka.

This gives an increasing sequence φ1 < φ2 < φ3 < · · · of smooth strictly
convex functions on Cn−1 ×R converging uniformly to φ such that the
sequence of Oka domains Ωφj increases to Ωφ as j → ∞. Hence, Ωφ is Oka.

A similar argument applies in the second case.



Complements of convex domains containing no lines

Example

Every concave wedge in Cn for n > 1 of the form

=zn < c |<zn|+
n−1

∑
j=1

(
aj |<zj |+ bj |=zj |

)
for c ≥ 0 and positive numbers a1, . . . , an−1, b1, . . . , bn−1 is Oka.

Corollary

If E is a closed convex set in Cn for n > 1 which does not contain any affine
real line, then Cn \ E is an Oka domain.

Proof There is a decreasing sequence E1 ⊃ E2 ⊃ E3 ⊃ · · · of smoothly
bounded strongly convex sets in Cn such that E =

⋂∞
j=1 Ej .

By Theorem 1, the domain Ωj = Cn \ Ej is Oka for every j ∈N.

Hence, Cn \ E =
⋃∞
j=1 Ωj is an increasing union of Oka domains, so it is Oka.



The main theorem

Theorem 1 follows from our main result, Theorem 2. Given a closed set
E ⊂ Cn, we denote by E ⊂ CPn its projective closure.

Theorem (2)

If E is a closed subset of Cn for n > 1 and Λ ⊂ CPn is a hyperplane such that
E ∩Λ = ∅ and E is polynomially convex in CPn \Λ ∼= Cn, then Cn \ E and
CPn \ E are Oka domains.

This holds in particular if CPn \ E is a union of a connected family of
projective hyperplanes. (Such a set is called projectively convex.)

The second part follows from the first one by observing that if K is a compact
set in CPn and Λt ⊂ CPn (t ∈ [0, 1]) is a path of hyperplanes not intersecting
K , then

⋃
t∈(0,1] Λt does not intersect the polynomial hull of K in CPn \Λ0.

Fact: Every convex set E ⊂ Cn in Theorem 1 has projectively convex closure.
In fact, CPn \ E is a union of hyperplanes parallel to the complex tangent
spaces TC

p bE for p ∈ bE . Hence, Theorem 2 implies Theorem 1.



Proof of Theorem 2

Let H = CPn \Cn denote the hyperplane at infinity. Set K = E . Choose a
projective hyperplane Λ ⊂ CPn with K ∩Λ = ∅.

Let z = (z1, . . . , zn) be affine coordinates on CPn \Λ ∼= Cn in which
H \Λ = {zn = 0}. By the hypothesis, K is polynomially convex in these
coordinates. It now suffices to prove the following result.

Theorem (3)

If K is a compact polynomially convex set in Cn then (Cn−1 ×C∗) \K is Oka.

Assume that Theorem 3 holds. Then,

Cn \ (E ∪Λ) = CPn \ (H ∪ E ∪Λ) = (CPn \Λ) \ (H ∪ E )

is Oka. Choose hyperplanes Λ0 = Λ, Λ1, . . . , Λn in CPn \K close to Λ such
that

⋂n
i=0 Λi = ∅. Then, Cn \ (E ∪Λi ) is Oka for every i and

Ω = Cn \ E =
n⋃

i=0

(Cn \ E ) \Λi

is a union of Zariski open Oka domains, so it is Oka.



Proof of Theorem 3

In view of Kusakabe’s characterisation of Oka manifolds by Condition Ell1, it
suffices to prove the following.

Theorem (4)

Assume that

K is a compact polynomially convex set in Cn for some n > 1,

L is a compact (polynomially) convex set in CN for some N ∈N, and

f : L→ Cn is a holomorphic map such that

f (ζ) ∈ (Cn−1 ×C∗) \K holds for all ζ ∈ L.

Then there is a holomorphic map F : L×Cn → Cn such that for every ζ ∈ L,

F (ζ, 0) = f (ζ) and the map F (ζ, · ) : Cn → (Cn−1 ×C∗) \K is injective.

It follows that

Ωζ = {F (ζ, z) : z ∈ Cn} ⊂ (Cn−1 ×C∗) \K

is a family of Fatou–Bieberbach domains depending holomorphically on ζ ∈ L.



Proof of Theorem 4

Since the set L ⊂ CN is polynomially convex, we may assume that the map f is
defined on a Stein neighbourhood U of L which is a Runge in CN .

The graph
Γ = {(ζ, f (ζ)) : ζ ∈ U}

is a closed Stein submanifold of the Stein domain X = U ×Cn which is a
Runge in CN+n. The restricted graph

ΓL = {(ζ, f (ζ)) ∈ X : ζ ∈ L} ⊂ L×
(
(Cn−1 ×C∗) \K

)
is then polynomially convex in CN ×Cn.

It follows that (L×K ) ∪ ΓL is O(X )-convex and hence polynomially convex.



Proof of Theorem 4, part 2

Let π : CN ×Cn → CN denote the projection. Consider the injective π-fibre
preserving holomorphic map Φ = (Id, φ) of the form

Φ(ζ, z) = (ζ, φ(ζ, z)) for (ζ, z) ∈ Ω

on a small Runge Stein neighbourhood Ω = Ω′ ∪Ω′′ of (L×K ) ∪ ΓL in
CN ×Cn which equals the identity map on a neighbourhood Ω′ of L×K and

φ(ζ, z) = f (ζ) +
1

2
(z − f (ζ)) =

1

2
f (ζ) +

1

2
z

for (ζ, z) in a neighbourhood Ω′′ of ΓL. Thus, φ(ζ, · ) is a contraction by the
factor 1/2 around the point f (ζ) ∈ Cn for every ζ ∈ L.

On a suitable neighbourhood Ω′′ of ΓL the map φ = φ1/2 is connected to
φ0(ζ, z) = z by the isotopy φt : Ω′′ → Ω′′ (t ∈ [0, 1/2]) given by

φt (ζ, z) = tf (ζ) + (1− t)z .

On Ω′ ⊃ L×K we take the constant isotopy φt (ζ, z) = φ0(ζ, z) = z for all t.
Clearly, the trace of the isotopy Φt = (Id, φt ) for t ∈ [0, 1/2] consists of
Runge domains Φt (Ω) ⊂ Ω.



Proof of Theorem 4, part 3

Varolin 2001 The Lie algebra of holomorphic (algebraic) vector fields on Cn

vanishing on Cn−1 × {0} has the (algebraic) density property.

Hence, we can approximate Φ on (L×K ) ∪ ΓL by a holomorphic map

Ψ : V ×Cn → V ×Cn, Ψ(ζ, z) = (ζ, ψ(ζ, z)),

where V ⊂ U is a neighbourhood of L, such that for every ζ ∈ V we have that

ψ(ζ, · ) ∈ Aut(Cn),

ψ(ζ, z) = z for every z = (z ′, 0) ∈ Cn−1 × {0}, and

ψ(ζ, f (ζ)) = f (ζ).

Choose a, b ∈ R such that

0 < a < 1/2 < b < 1 and b2 < a.

If the approximation of φ by ψ is close enough then the estimate

a|z − f (ζ)| ≤ |ψ(ζ, z)− f (ζ)| ≤ b|z − f (ζ)| (1)

holds in a neighbourhood of the graph ΓL of f , and ψ is arbitrarily close to the
map (ζ, z) 7→ z on a neighbourhood of L×K .



Proof of Theorem 4, part 4

This gives a sequence of holomorphic maps ψk of the same kind as ψ such that
the estimate (1) holds for all of them on the same neighbourhood of ΓL, and
ψk converges to the map (ζ, z) 7→ z on a neighbourhood of L×K as k → ∞.

Consider the sequence of random iterations

θk (ζ, · ) = ψk (ζ, · ) ◦ ψk−1(ζ, · ) ◦ · · · ◦ ψ1(ζ, · ) ∈ Aut(Cn).

Due to the condition b2 < a in the estimate (1) the attracting basin Bζ ⊂ Cn

of the sequence θk at the fixed point f (ζ) is biholomorphic to Cn (Wold 2005).

If the convergence of the sequence ψk to the map (ζ, z) 7→ z is fast enough on
a neighbourhood of L×K , then none of the basins Bζ intersect K .

Furthermore, the condition ψk (ζ, (z ′, 0)) = (z ′, 0) for all ζ ∈ L, z ′ ∈ Cn−1,
and k ∈N ensures that the basin Bζ does not intersect Cn−1 × {0}.

This gives a holomorphic map F : V ×Cn → Cn such that the image Bζ of

F (ζ, · ) is a Fatou–Bieberbach domain in (Cn−1 ×C∗) \K centred at f (ζ) for
every ζ ∈ V . Hence, Theorem 4 is proved.



Compact sets in CPn avoided by more general
hypersurfaces

Theorem

Let K be a compact set in CPn (n > 1) and Λ ⊂ CPn be a closed complex
hypersurface with K ∩Λ = ∅ such that K is holomorphically convex in the
Stein domain Ω = CPn \Λ. If Ω has the density property then CPn \K is an
Oka domain.

This follows by a similar argument as above:

the complement of K in CPn \Λ is Oka by Kusakabe’s theorem,

by moving Λ with automorphisms of CPn we find finitely many
hypersurfaces Λ0 = Λ, Λ1, · · · , Λm not intersecting K such that⋂m
i=0 Λi = ∅ and (CPn \Λi ) \K is Oka for all i , and hence

CPn \K =
m⋃
i=0

(CPn \Λi ) \K

is Oka by the localization theorem.



A corollary

Denote by

Vk (CPn) ∼= CPN with N =

(
n+ k

k

)
− 1

the space of degree k complex hypersurfaces in CPn. For any Λ ∈ Vk (CPn)
the complement CPn \Λ is a closed affine manifold, hence a Stein manifold.

Corollary

Let B be an open connected set in Vk (CPn) (k ≥ 1, n ≥ 2). If for some
Λ0 ∈ B the domain CPn \Λ0 has the density property, then

Ω(B) =
⋃

Λ∈B
Λ ⊂ CPn

is Oka. In particular, Λ0 has a basis of open Oka neighbourhoods in CPn.

Problem
Which complex hypersurfaces in CPn have complements having the density
property?



Examples and a conjecture

Example

If Λ1, . . . , Λk ⊂ CPn (n > 1, 1 ≤ k ≤ n) are hyperplanes in general
position then

⋃k
i=1 Λk has a basis of Oka neighbourhoods in CPn.

Indeed, CPn \⋃k
i=1 Λk is isomorphic to Cn−k+1 × (C∗)k−1 with

n− k + 1 ≥ 1. This domain has the density property (Varolin 2001), so
the result follows from the previous corollary.

The proof fails for more than n hyperplanes. In particular, it is not known
whether (C∗)n for n > 1 has the density property.

If Λ is a quadric hypersurface in CPn (n > 1) then CPn \Λ has the
density property.

Conjecture

For a generic hypersurface Λ ⊂ CPn (n > 1) of degree at most n the
complement CPn \Λ has the density property.
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