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Oka manifolds

A complex manifold Y is called an Oka manifold! if maps X — Y from
any Stein manifold (or a reduced Stein space) X satisfy the following
conditions:

@ every continuous map f : X — Y can be homotopically deformed to
a holomorphicmap f : X — Y.

@ If the map f : X — Y is holomorphic on a compact &(X)-convex
set K and on a closed complex subvariety X’ of X, then there is a
homotopy from f to f consisting of maps which are holomorphic
near K and close to f on K, and which agree with f on X'.

@ The analogous approximation and (jet) interpolation properties hold
for families of maps X — Y depending continuously on a parameter.

Observation: The Kobayashi—Royden pseudometric vanishes identically
on an Oka manifold.

LF. Forstneri¢, Oka manifolds, C. R. Acad. Sci. Paris 347:17-18 (2009)
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Oka manifolds are like bitcoins — precious but hard to
discover

@ Oka 1939, Grauert 1958 Complex Lie groups and their homogeneous
manifolds are Oka.

@ Gromov 1989 Every elliptic complex manifold is an Oka manifold.

A complex manifold Y is said to be elliptic if it admits a holomorphic
vector bundle 7t : E — Y and a dominating holomorphic spray
F : E — Y such that for every point y € Y we have that F(0,) =y and

dFo, : To,E — T, Y maps the fibre E, onto the tangent space T, Y.

@ In particular, if Y admits complete holomorphic vector fields which span
the tangent space at every point, then Y is elliptic and hence Oka.

@ F. 2006 A complex manifold Y is Oka iff it satisfies the following

Convex approximation property: Every holomorphic map K — Y from a
(neighbourhood of a) compact convex set K in a Euclidean space C" is a
limit of entire maps C" — Y.



Kusakabe's characterization of Oka manifolds

Y. Kusakabe 2021 A complex manifold Y is an Oka manifold if and only if
every holomorphic map f : K — Y from (a neighbourhood of) a compact
convex set K C CN is the core map of a dominating holomorphic spray
F:KxC"— Y forsomen>dimY:

F(-,0) = f and

d n . .
5 Z=0F(g, z) : C" — Tg()Y s surjective for every ¢ € K.
This is a restricted version of condition Ell; studied by Gromov in 1989.

Kusakabe gave a short but ingenious proof that
Ell; = CAP;

the rest was known before. However, Ell; is often easier to verify than CAP.
As an application, Kusakabe proved

The localization theorem for Oka manifolds:
If a complex manifold Y is a union of Zariski-open Oka domains Y \ A;, with
A; a closed complex subvariety of Y, then Y is Oka.



Which domains in C” and CIP” are Oka?

@ Until Kusakabe's work the only known examples of Oka domains in C"
were FB-domains, complements of complex hyperplanes, and complements
of closed tame (in particular, algebraic) subvarieties of dimension < n— 2.

@ Kusakabe 2021 For every compact polynomially convex set K C C" for
n > 1, the complement C" \ K is Oka.

@ F. 2022 If K C C" is as above then CPP" \ K is Oka.

Furthermore, if I' is a compact union of curves such that the complex

curve m\ K UT has at most finitely many irreducible components,
then C"\ KUT and CP"\ KUT are Oka.

@ In a recent joint work with E.F. Wold, we found surprisingly small Oka
domains in C" (n > 1) at the limit of what is possible.
F. F. and E. F. Wold 2022 Oka domains in Euclidean spaces.
https://arxiv.org/abs/2203.12883


https://arxiv.org/abs/2203.12883

Oka complements of closed convex sets

If E is a closed convex set with €1 boundary in C" for n > 1 such that
EN TE bE does not contain an affine real halfline for any p € bE, then C" \ E
is an Oka domain. This holds in particular if E is strictly convex, i.e., bE does
not contain any straight line segments.

There are many such examples of the form
E= {(z/,zn) eC":3z, > 4)(2/, Rzn)},
where ¢ is a convex function of class 1. If t > 0, the convex domain
Qf = {Sz, > to(z/, Rz,)}

does not contain any affine complex line, so it is hyperbolic (Barth 1980, Harris
1979, Bracci and Saracco 2009), while the domain

Op ={Sz, < t(p(z/,%zn)}

is Oka. For t < 0 the picture is reversed, while at t = 0 the hyperplane
{Sz, = 0} splits C" in a pair of halfspaces which are neither Oka nor
hyperbolic.



Oka domains below convex graphs

A convex function ¢ : R" — R is irreducible if it is not of the form
¢ =1 o P+ where P:R" — R" is a linear projection with m < n, ¢ is a
convex function on R™, and / is a linear function on R".

If ¢ is an irreducible convex function on C"~! x R, then the domain

Qp ={(Z,2n) €C": Sz, < ¢(2', Rzp)}

is Oka. The same holds for domains Oy = {(Z,zn) €C": Sz, < ¢p(Z)}.

Proof By Azagra (2013) the condition on ¢ implies that for every € > 0 there
is a smooth strictly convex function ¥ : C"~! x R — R such that
¢ —€ < P < ¢. Hence, the domain Qy = {Sz, < ¢(z/, Rz,)} is Oka.

This gives an increasing sequence ¢1 < ¢ < ¢3 < --- of smooth strictly
convex functions on C"~1 x R converging uniformly to ¢ such that the
sequence of Oka domains (), increases to () as j — co. Hence, ()y is Oka.

A similar argument applies in the second case.



Complements of convex domains containing no lines

Every concave wedge in C" for n > 1 of the form

n—1
Szn < c|Rza| + Y (3j|Rzj| + bj|S7z])
J=1
for ¢ > 0 and positive numbers ay,...,ap—1, b1, ..., by—1 is Oka.

If E is a closed convex set in C" for n > 1 which does not contain any affine
real line, then C" \ E is an Oka domain.

Proof There is a decreasing sequence E; D E; D E3 D --- of smoothly
bounded strongly convex sets in C" such that E = ﬂ}”;l E;.

By Theorem 1, the domain ); = C" \ E; is Oka for every j € IN.

Hence, C"\ E = Uj‘;l Q) is an increasing union of Oka domains, so it is Oka.



The main theorem

Theorem 1 follows from our main result, Theorem 2. Given a closed set
E C C", we denote by E C CIP” its projective closure.

If E is a closed subset of C" for n > 1 and A C CIP" is a hyperplane such that
ENA =2 and E is polynomially convex in CP"\ A =2 C", then C"\ E and
CP" \ E are Oka domains.

This holds in particular if CP" \ E is a union of a connected family of
projective hyperplanes. (Such a set is called projectively convex.)

The second part follows from the first one by observing that if K is a compact
set in CIP” and A C CP" (t € [0,1]) is a path of hyperplanes not intersecting
K, then ;¢ (,1] At does not intersect the polynomial hull of K in CP"\ Ao.

Fact: Every convex set E C C" in Theorem 1 has projectively convex closure.
In fact, CIP" \ E is a union of hyperplanes parallel to the complex tangent
spaces TEbE for p € bE. Hence, Theorem 2 implies Theorem 1.



Proof of Theorem 2

Let H = CIP"\ C" denote the hyperplane at infinity. Set K = E. Choose a
projective hyperplane A C CP" with KNA = &.

Let z = (z1,..., zn) be affine coordinates on CP" \ A = C" in which
H\ A = {z, = 0}. By the hypothesis, K is polynomially convex in these
coordinates. It now suffices to prove the following result.

If K is a compact polynomially convex set in C" then (C"~! x C*) \ K is Oka.

Assume that Theorem 3 holds. Then,
C"\(EUA)=CP"\(HUEUA)=(CP"\A)\ (HUE)

is Oka. Choose hyperplanes Ag = A, A1, ..., A, in CP"\ K close to A such
that N_g Aj = @. Then, C"\ (EUA;) is Oka for every i and

Q=C"\E= U (C"\ E)\

is a union of Zariski open Oka domains, so it is Oka.



Proof of Theorem 3

In view of Kusakabe's characterisation of Oka manifolds by Condition Elly, it
suffices to prove the following.

Theorem (4)

Assume that
@ K is a compact polynomially convex set in C" for some n > 1,
@ L is a compact (polynomially) convex set in CN for some N € N, and

@ f:L— C" is a holomorphic map such that

£(Z) € (C" 1 x C*)\ K holds for all { € L.

Then there is a holomorphic map F : L x C" — C" such that for every { € L,

F(Z,0) = f(¢) and the map F(Z,-):C" — (C"! x C*) \ K is injective.

It follows that
Q;={F(.2):z€eC"}C (C" 1 xC*)\K

is a family of Fatou—Bieberbach domains depending holomorphically on ¢ € L.



Proof of Theorem 4

Since the set L C CN is polynomially convex, we may assume that the map f is
defined on a Stein neighbourhood U of L which is a Runge in CV.

The graph

I=A{(C.f(0):2e U}
is a closed Stein submanifold of the Stein domain X = U x C" which is a
Runge in CNT". The restricted graph

I, ={({fQ)eX:Tel}cCLx ((cnfl XC*)\K)
is then polynomially convex in CV x C".

It follows that (L x K)UT is &(X)-convex and hence polynomially convex.



Proof of Theorem 4, part 2

Let 71 : CNV x C" — CN denote the projection. Consider the injective 7-fibre
preserving holomorphic map ® = (Id, ¢) of the form

D(Z,z) = (0, ¢(Z,2)) for (£,2) €
on a small Runge Stein neighbourhood QO = QY UQ" of (Lx K)UT, in
CN x C" which equals the identity map on a neighbourhood (Y of L x K and

1 1
P(6.2) = F(O) + 3z~ F(D) = 3F(O) + 32
for (,z) in a neighbourhood QY of T;. Thus, ¢({,) is a contraction by the
factor 1/2 around the point f({) € C" for every { € L.

On a suitable neighbourhood () of T, the map ¢ = ¢7 5 is connected to
$0(Z, z) = z by the isotopy ¢ : QO — Q" (t € [0,1/2]) given by

¢e(8,2) = tf(Q) + (1 — 1)z

On Q' D L x K we take the constant isotopy ¢:({,z) = ¢o({,z) = z for all t.
Clearly, the trace of the isotopy ®: = (Id, ¢¢) for t € [0,1/2] consists of
Runge domains ®:(Q)) C Q.



Proof of Theorem 4, part 3
Varolin 2001 The Lie algebra of holomorphic (algebraic) vector fields on C"
vanishing on C"1 x {0} has the (algebraic) density property.
Hence, we can approximate ® on (L x K)UT by a holomorphic map
¥V xC" > VxC" ¥ z2) = (¢ 2),
where V' C U is a neighbourhood of L, such that for every { € V we have that
° P(.-) € Aut(C"),
@ ¥({,z) = z for every z = (z/,0) € C" x {0}, and
o p(Z.f(0)) =f(2).

Choose a, b € R such that
0<a<1l/2<b<1 and b*<a
If the approximation of ¢ by ¢ is close enough then the estimate
alz = f(Q) < [9(,2) = £()] < blz = f({)] (1)

holds in a neighbourhood of the graph I'; of f, and ¥ is arbitrarily close to the
map ({, z) — z on a neighbourhood of L x K.



Proof of Theorem 4, part 4

This gives a sequence of holomorphic maps ¢x of the same kind as ¢ such that
the estimate (1) holds for all of them on the same neighbourhood of I';, and
i converges to the map ({, z) — z on a neighbourhood of L x K as k — co.

Consider the sequence of random iterations

0k(C,-) = ¥i(Z,-) oPp—1(L,-) o+~ 0pr(,-) € Aut(C").

Due to the condition b? < a in the estimate (1) the attracting basin B cc”
of the sequence 0 at the fixed point f({) is biholomorphic to C" (Wold 2005).

If the convergence of the sequence 1 to the map ({, z) — z is fast enough on
a neighbourhood of L X K, then none of the basins B; intersect K.

Furthermore, the condition 1, (Z, (z/,0)) = (2/,0) forall { € L, 2/ € C"7 L,
and k € N ensures that the basin B; does not intersect C"1 x {0}.

This gives a holomorphic map F : V x C" — C" such that the image B; of

F(,-) is a Fatou-Bieberbach domain in (C"~! x C*)\ K centred at f(g) for
every { € V. Hence, Theorem 4 is proved.



Compact sets in CIP” avoided by more general
hypersurfaces

Let K be a compact set in CP" (n > 1) and A C CIP" be a closed complex
hypersurface with K\ A = @ such that K is holomorphically convex in the
Stein domain Q) = CIP" \ A. If Q) has the density property then CP" \ K is an
Oka domain.

This follows by a similar argument as above:
@ the complement of K in CIP" \ A is Oka by Kusakabe's theorem,

@ by moving A with automorphisms of CIP” we find finitely many
hypersurfaces Ag = A, A1, -+, Ap not intersecting K such that
Ny Ai = @ and (CPP"\ Aj) \ K is Oka for all i, and hence

CP"\ K = U CP"\ A))\ K

i=0

is Oka by the localization theorem.



A corollary

Denote by

¥ (CP") = CPN with N = (":k) —1

the space of degree k complex hypersurfaces in CIP". For any A € ¥, (CP")
the complement CIP" \ A is a closed affine manifold, hence a Stein manifold.

Corollary

Let B be an open connected set in ¥ (CPP") (k > 1, n > 2). If for some
Ag € B the domain CIP" \ Ag has the density property, then

QB)=|J A ccp”
AeB

is Oka. In particular, Ao has a basis of open Oka neighbourhoods in CIP".

Problem

| \

Which complex hypersurfaces in CP" have complements having the density
property?




Examples and a conjecture

@ If Ay,...,Ax CCP" (n>1, 1 <k < n) are hyperplanes in general
position then Uf'(=1 Ay has a basis of Oka neighbourhoods in CIP".

Indeed, CIP" \ Uf'(:l Ay is isomorphic to C"~k+1 x (C*)k~1 with
n—k+1> 1. This domain has the density property (Varolin 2001), so
the result follows from the previous corollary.

The proof fails for more than n hyperplanes. In particular, it is not known
whether (C*)" for n > 1 has the density property.

@ If A is a quadric hypersurface in CP" (n > 1) then CIP" \ A has the
density property.

For a generic hypersurface A C CIP" (n > 1) of degree at most n the
complement CIP" \ A has the density property.
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