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Recent developments on Oka manifolds

Franc Forstnerič

Universität Bern, 22 May 2023
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Flexibility versus rigidity in complex geometry

A central question of complex geometry is to understand the space of
holomorphic maps X → Y between a pair of complex manifolds. Are there
many maps, or few maps? Which properties can such maps have?

There are many holomorphic maps C → C and C → C∗ = C \ {0}, but there
are no nonconstant algebraic maps C → C∗ or holomorphic maps
C → C \ {0, 1}. Manifolds with the latter property are called hyperbolic.

*** HYPERBOLICITY IS AN OBSTRUCTION THEORY ***

On the opposite side, Oka theory studies complex manifolds Y which admit
many holomorphic maps X → Y from complex Euclidean spaces X = CN, and
more generally from any Stein manifold X. It developed from works of Oka,
Grauert, Gromov, and others.

*** OKA THEORY IS AN EXISTENCE THEORY ***

It provides solutions to a wide variety of complex analytic problems in the
absence of topological obstructions.
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The Oka principle for line bundles

Source: Wikipedia

Kiyoshi Oka, 1939:

Every complex line bundle E → X over
a domain of holomorphy X ⊂ Cn

admits a compatible structure of a
holomorphic line bundle, and any two
holomorphic line bundles which are
topologically equivalent are also
holomorphically equivalent.

In cohomological language:

Pic(X) = H 1(X,O∗) ∼= H 2(X,Z).
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Stein manifolds were introduced in 1951

Source: Wikipedia

Karl Stein, 1951:
A complex manifold X is said to be
holomorphically complete (Stein) if

(i) holomorphic functions on X
separate points, and

(ii) for every discrete sequence
pj ∈ X there is a holomorphic
function f ∈ O(X) with
limj→∞ |f (pj)| = +∞.

Equivalently, for every compact
subset K ⊂ X its holomorphic
hull K̂O(X) is also compact.
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Examples and characterizations of Stein manifolds

Cartan and Thullen, 1932: A domain in Cn is Stein iff it is a
domain of holomorphy.
Behnke and Stein, 1949: Every open Riemann surface is Stein.
Remmert, Bishop, Narasimhan, 1956–61: A complex manifold X
is Stein iff it embeds as a closed complex submanifolds of some CN.
Can take N = 2 dimX + 1.
Grauert, 1958: A complex manifold X is Stein iff it admits a strictly
plurisubharmonic exhaustion function ρ : X → R, ddcρ = i∂∂̄ρ > 0.
Siu, 1976: Every Stein subvariety of a complex space admits an
open Stein neighbourhood

A Stein space is a complex space with singularities having similar
function theoretic properties.
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The Oka–Grauert Principle, 1958

Source: Wikipedia

Hans Grauert, 1958: Let G be a
complex Lie group. For principal
G-bundles on a Stein space, the
holomorphic classification coincides
with the topological classification.
This holds in particular for complex
vector bundles on Stein spaces.

Equivalently, we have an isomorphism

H 1(X,OG
X)

∼=−→ H 1(X, CG
X )

induced by the inclusion OG
X ↪→ CG

X of
the sheaf of holomorphic maps X → G
into the sheaf of continuous maps.
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Oka manifolds

Grauert’s theorem follows from the following result of his.

Theorem (Grauert 1958)
Let X be a Stein space and Y be a complex homogeneous manifold. Then:

Every continuous map f0 : X → Y is homotopic to a holomorphic map
f1 : X → Y.
If in addition f0 is holomorphic on a compact O(X)-convex subset K ⊂ X
and on a closed complex subvariety X′ ⊂ X, then the homotopy
ft : X → Y (t ∈ [0, 1]) from f0 to f1 can be chosen to be holomorphic and
uniformly close to f0 on K, and to agree with f0 on X′.
The analogous result holds for continuous families of maps X → Y.
These results also hold for sections of any holomorphic fibre bundle
h : Z → X whose fibre is a complex homogeneous manifold.

In the special case Y = C, this combines the Oka–Weil approximation
theorem and the Oka–Cartan extension theorem.

A complex manifold Y satisfying this theorem is called an OKA MANIFOLD.
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Basic properties of Oka manifolds

Oka manifolds are in a precise sense dual to Stein manifolds:
the former are the most natural sources of holomorphic maps, while
Oka manifolds are the most natural targets.

On any Oka manifold Y, the Kobayashi infinitesimal metric and the
Eisenmann volume forms vanish identically, and every negative
plurisubharmonic function on Y is constant.
Thus, Oka manifolds are completely anti-hyperbolic.

F., 2017: Every Oka manifold Y admits a strongly dominating
holomorphic map f : Cn → Y with n = dimY; i.e., f (Cn \ br f ) = Y.

Kobayashi and Ochiai, 1975: A compact complex manifold of
general Kodaira type is not dominable by Cn, so it is not Oka.
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Gromov’s ellipticity

The goal: Find verifiable necessary and sufficient conditions characterizing Oka
manifolds.

Observation: If Y is an Oka manifold, then for every point y ∈ Y there is a
dominating holomorphic map sy : Cn → Y such that

sy(0) = y and dsy(0) : T0Cn = Cn → TyY is surjective.

Gromov, 1989: A complex manifold Y is called elliptic if it admits a
dominating spray: A holomorphic map s : E → Y, defined on the total space
of a holomorphic vector bundle E over Y, such that s(0y) = y and s : Ey → Y is
a submersion at 0y for all y ∈ Y.

b

b

b
e s

Y
y

Ey
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First examples of dominating sprays

(a) Let G be a complex Lie group and g = T1G ∼= Cp (p = dimG) be its Lie
algebra. Then the map

s : G × Cp → G, s(g, v) = exp(v)g

is a dominating spray on G.
(b) More generally, if Y is a G-homogeneous manifold, then the map

s : Y × Cp → Y, s(y, v) = exp(v)y

is a dominating spray on Y.
(c) Assume that a complex manifold Y is holomorphically flexible, in the

sense that it admits finitely many C-complete holomorphic vector fields
V1, . . . ,Vm which span the tangent space of Y at every point. Denote by
ϕt

j the flow of Vj for time t ∈ C. Then, the map s : Y × Cm → Y given by

s(y, t1, . . . , tm) = ϕt1
1 ◦ ϕt2

2 ◦ · · · ◦ ϕtmm (y),

is a dominating spray on Y.
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Gromov’s Oka principle

Source: Wikipedia

Gromov 1989: Every elliptic
manifold is an Oka manifold.

Furthermore, the Oka principle
holds for sections of elliptic
submersions h : Z → X over a
Stein base X.

F. 2002: A complex manifold Y is
subelliptic if there exist finitely
many sprays sj : Ej → Y such that
∑j dsj(Ej,y) = TyY for all y ∈ Y.

Every subelliptic manifold is Oka.
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Gromov’s theorem generalizes the Oka–Grauert principle

A detailed proof of Gromov’s Oka
principle was given by Jasna Prezelj
and myself during 2000–2002. It is
presented in my book (2011, 2017).

Lárusson, 2004: Construction of a
model category for Oka theory.

F., 2010 Oka principle for sections of
stratified subelliptic submersions
Z → X over a Stein space.

Equivariant Oka theory: Heinzner
and Kutzschebauch, 1995;
Kutzschebauch, Lárusson &
Schwarz, 2017–
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Algebraically (sub-) elliptic manifolds

An algebraic manifold Y is called algebraically (sub-) elliptic if it admits a
dominating algebraic spray (resp. a finite dominating family of algebraic sprays).

Gromov, 1989: If Y is covered by finitely many Zariski open charts which
are algebraically subelliptic, then Y is algebraically subelliptic.

The complement of an algebraic subvariety A of codimension at least two
in Cn, CPn, or in a complex Grassmanian is algebraically subelliptic.

Kaliman and Zaidenberg, 2022: Every algebraically subelliptic manifold
is algebraically elliptic.

Arzhantsev, Kaliman, and Zaidenberg, 2023: If Y is compact of
dimension n > 1 covered by Zariski open sets isomorphic to domains in
Cn, then Y is algebraically elliptic.
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The relative algebraic Oka principle

Let X be an affine algebraic variety and Y be an algebraically subelliptic
manifold.

F., 2006: Every holomorphic map X → Y that is homotopic to an
algebraic map is a limit of algebraic maps, uniformly on compacts in X.

F., 2017 If Y is compact, it admits a surjective strongly dominating
morphism Cn → Y with n = dimY.

Kusakabe, 2022 The same holds if Y is not compact and n = dimY+ 1.

Lárusson and Truong, 2019:
The Oka principle fails for maps from affine algebraic manifolds X to any
algebraic manifold Y which is compact or contains a rational curve:
for some such X there is a continuous map X → Y which is not
homotopic to an algebraic map.
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Characterization of Oka manifolds by CAP

Gromov’s ellipticity conditions do not seem to satisfy interesting functorial
properties. They are sufficient but not necessary for the Oka principle.

In his 1989 paper, Gromov asked whether Oka manifolds can be characterized
by the Runge approximation property from a class of simple domains in
Euclidean spaces. This question was answered affirmatively during 2005–2009,
which led to the first unification of Oka theory.

F. 2005–2009:
A complex manifold Y is an Oka manifold if and only if it enjoys the
Convex approximation property (CAP):
Every holomorphic map K → Y from a compact convex set K in Cn is a
limit of entire maps Cn → Y.
All natural Oka properties are pairwise equivalent.
Theorem ”up-down”: If Y → Z is a holomorphic fibre bundle with Oka
fibre, then Y is an Oka manifold iff Z is an Oka manifold.

*** MSC 2020: New subfield 32Q56 Oka principle and Oka manifolds ***
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Kusakabe’s characterization of Oka manifolds

Gromov, 1986: A complex manifold Y enjoys condition Ell1 if every
holomorphic map X → Y from a Stein manifold is the core of a
dominating spray X × CN → Y.
It is easily seen that OKA =⇒ Ell1. Does the converse hold?
Kusakabe, 2021 A complex manifold Y enjoys condition C-Ell1 if the
above holds for every (bounded) convex domain X ⊂ Cn.

Theorem (Kusakabe 2021)
A complex manifold which satisfies condition C-Ell1 is an Oka manifold.
Hence, the following conditions on a complex manifold are equivalent:

Oka ⇐⇒ Ell1 ⇐⇒ C-Ell1.

The new implication is C-Ell1 =⇒ CAP.
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A localization theorem for Oka manifolds

The following is an interesting application.

Theorem (Kusakabe, 2021)
If Y is a complex manifold which is a union of Zariski open Oka domains, then
Y is an Oka manifold.

This is a wonderful tool for constructing new examples of Oka manifolds.
Previously, a localization theorem was known only for algebraically subelliptic
manifolds.

The proof uses characterization of Oka manifolds by C-Ell1 and the following
result, which follows easily from Theorems 7.2.1 and 8.6.1 in my book.

Lemma
Let Ω be a Zariski open Oka domain in a complex manifold Y. Given a Stein
manifold X and a holomorphic map f : X → Y, there is a holomorphic spray
F : X × CN → Y over f which is dominating on f−1(Ω).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stein manifolds with Varolin’s density property

Definition (Varolin 2000)
A complex manifold X has the density property if every holomorphic vector field
on X can be approximated, uniformly on compacts in X, by Lie combinations
(sums and Lie backets) of complete holomorphic vector fields on X.

Andersén and Lempert, 1992: Cn for n > 1 has the density property.

Remark: Every Stein manifold with the density property is an Oka manifold.

F. and Rosay, 1993: Let X be a Stein manifold with the density property.
If Ω0 ⊂ X is a pseudoconvex Runge domain and Ft : Ω0 → Ωt ⊂ X (t ∈ [0, 1])
is a smooth isotopy of biholomorphic maps such that F0 = IdΩ0 and the
domain Ωt = Ft(Ω0) is Runge in X for all t, then F1 can be approximated
uniformly on compacts in Ω0 by holomorphic automorphisms of X.

After the initial work of Varolin, the theory of such manifolds was mainly
developed by Kaliman & Kutzschebauch and their collaborators.
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Complements of polynomially convex sets are Oka

Kusakabe, preprint 2020; F. and Wold, 2020
If K is a compact polynomially convex set in Cn (n > 1) then Cn \ K is
Oka. The same holds in any Stein manifold with the density property.

To see this, we verify condition C-Ell1. Let L ⊂ CN be a compact convex
set and f : U → Cn \ K be a holomorphic map from a Runge open
neighbourhood U ⊂ CN of L. Let Γ = {(ζ, f (ζ)) : ζ ∈ L}. The set

(L × K) ∪ Γ

is then polynomialy convex in CN × Cn.
Let G(ζ, z) = (ζ,ψ(ζ, z)) be the identity on a neighborhood of U × K,
and the contraction

ψ(ζ, z) = 1
2z + 1

2 f (ζ)

to the point f (ζ) for each (ζ, z) in a neighbourhood of Γ.
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Complements of polynomially convex sets are Oka, 2

By the parametric version of the Forstnerič–Rosay theorem, we can
approximate G uniformly on a neighbourhood of (L × K) ∪ Γ by a
holomorphic automorphism Φ ∈ Aut(U × Cn) of the form

Φ(ζ, z) = (ζ, ϕ(ζ, z)), ζ ∈ U, z ∈ Cn.

Iteration of this procedure leads to a holomorphic maps F : U× Cn → Cn

such that for all ζ ∈ U we have F(ζ, 0) = f (ζ) and

F(ζ, · ) : Cn → Cn \ K is a Fatou–Bieberbach map.

Hence, F is a dominating holomorphic spray with the core f and taking
values in Cn \ K.
Thus, Cn \ K satisfies condition C-Ell1, so it is Oka by Kusakabe’s
theorem.
Furthermore, CPn \ K is Oka for every such K.
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Oka complements of unbounded convex sets in Cn

F. & Wold, 2022 Complements of most closed convex sets E ⊂ Cn for n > 1
are Oka. In particular:

(a) If E has C1 boundary and E ∩ TC
p bE for p ∈ bE does not contain any real

halfline, then Cn \ E is Oka.
(b) If E is a closed convex set in Cn which does not contain any affine real

line, then Cn \ E is Oka.

Let K = E ⊂ CPn and H = CPn \ Cn. Condition (a) implies that CPn \ K is
the union of a connected family of complex hyperplanes. For any such
hyperplane Λ, K is polynomially convex in CPn \ Λ ∼= Cn. Choose affine
coordinates z = (z1, . . . , zn) on CPn \ Λ such that H \ Λ = {zn = 0}. The
conclusion now follows from the following result and the localization theorem.

Theorem (F. and Wold, 2022)
If K is a compact polynomially convex set in Cn (n > 1) then

Ω = (Cn−1 × C∗) \ K is an Oka domain.
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Selected applications of the Oka principle

Sections avoiding analytic subvarieties: Let E → X be a holomorphic
vector bundle, and let Σ ⊂ E be a tame complex subvariety with fibres
Σx ⊂ Ex of codimension ≥ 2. Then, E \ Σ → X is an elliptic submersion.
Hence, sections X → E avoiding Σ satisfy the Oka principle.
We also have the Oka principle for removal of intersections with Σ.

Eliashberg and Gromov, 1992; Schürmann, 1997: Existence of proper
holomorphic embeddings Xn ↪→ C[ 3n

2 ]+1 and of proper holomorphic
immersions Xn ↪→ C[ 3n+1

2 ] when Xn is Stein (with n > 1 for embeddings).

Eliashberg and Gromov, 1986: h-principle for holomorphic immersions
Xn → CN, N > n.

F, 2003: h-principle for holomorphic submersions Xn → Cq, n > q.

Open problem: Does every Stein manifold X of dimension n > 1 with
trivial tangent bundle TX admits a holomorphic immersion Xn → Cn?
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Holomorphic factorization problems

Ivarsson and Kutzschebauch, Annals of Math. 2013
(Solution of the Gromov–Vaserstein Problem):
Let X be a Stein space and f : X → SLm(C) be a null-homotopic
holomorphic map. There exist finitely many holomorphic maps
G1, . . . ,Gk : X → Cm(m−1)/2 such that

f(x) =
(

1 0
G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 Gk(x)
0 1

)
.

Their proof uses a theorem of Vaserstein (1988) on factorization of
continuous maps, together with the Oka principle for sections of stratified
elliptic submersions over Stein spaces.

Ivarsson, Kutzschebauch & Løw, 2019; Schott, 2022
Factorization of holomorphic symplectic matrices into elementary factors.

Ionita and Kutzschebauch, 2023: Decomposition of null-homotopic
holomorphic vector bundle automorphisms of a rank 2 vector bundle over
a Stein space into products of unipotent automorphisms.
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Proper holomorphic maps avoiding closed convex sets

The following result shows that proper holomorphic maps from Stein
manifolds to Euclidean spaces can omit suprisingly big sets.

Drinovec Drnovšek & F., 2023
Let E be a closed convex set in Cn (n > 1) contained in a closed
halfspace H such that E ∩ bH is nonempty and bounded. Then:

Every Stein manifold X of dimension < n admits a proper
holomorphic map f : X → Cn with f(X) ⊂ Ω = Cn \ E.

If in addition 2 dimX + 1 ≤ n then f can be chosen an embedding,
and if 2 dimX = n then it can be chosen an immersion.

If in addition E is strictly convex, we also obtain the interpolation
property for such maps on closed complex subvarieties.
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Applications to minimal surfaces (2021)

A minimal surface in Rn, n ≥ 3, is
given by a conformal harmonic

immersion F : R → Rn from an open
Riemann surface R.

Let θ be a nonvanishing holomorphic
1-form on R.
The map f = 2∂F/θ : R → Cn is
holomorphic and takes values in

A∗ = {z2
1 + z2

2 + · · ·+ z2
n = 0} \ {0}.

Conversely, every holomorphic
f : R → A∗ having vanishing real
periods integrates to a conformal
minimal surface F = ℜ

∫
f θ : R → Rn.

A∗ is an algebraically elliptic
manifold. Applications of the Oka
principle yield a variety of new results
on minimal surfaces in Euclidean
spaces.
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