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Oka manifolds

Franc Forstnerič

Masaryk University, Brno
Lecture 2, April 5, 2023
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Contents of Lecture 2

In the first lecture, we introduced the convex approximation property, CAP,
and stated that it characterizes Oka manifolds.

We also introduced the notion of an elliptic manifold and stated that

C-homogeneous =⇒ elliptic =⇒ CAP ⇐⇒ OKA.

The first two implications cannot be reversed. In this lecture we shall:
Prove that elliptic =⇒ CAP (Gromov 1989).
Sketch the proof of CAP ⇐⇒ OKA (F. 2005–9).
Introduce Condition Ell1 and prove Kusakabe’s theorem (2021):

Ell1 ⇐⇒ CAP.

Indicate the proof of Kusakabe’s localization theorem.
Recent applications of these new results.
Survey of the known examples of Oka manifolds.
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An h-Runge approximation theorem

Theorem (Gromov 1989; Theorem 6.6.1 in my book)
Let K ⊂ L be Stein compacts in a complex manifold X, and assume that K is
O(L)-convex. Let Y be an elliptic or a subelliptic complex manifold.

Given a holomorphic map f0 : L → Y and a homotopy of holomorphic maps
ft : K → Y (t ∈ [0, 1]), we can approximate {ft} uniformly on K by a homotopy
f̃t : L → Y (t ∈ [0, 1]) of holomorphic maps with f̃0 = f0.

A parametric version of this result holds as well.
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Sketch of proof of the h-Runge theorem

Assume that Y is elliptic. (A similar proof applies to subelliptic manifolds.)
Let π : E → Y be a holomorphic vector bundle and s : E → Y be a dominating
spray:

s(0y) = y and ds0y (Ey) = TyY for every y ∈ Y.
Given a holomorphic map f0 : L → Y from a Stein compact L ⊂ X, consider the
pullback bundle π0 : E0 = f0∗E → L:

E0 = {(x, e) : x ∈ L, e ∈ E, f0(x) = π(e)}, π0(x, e) = x.

We have a natural map ι : E0 → E given by ι(x, e) = e such that

f0 ◦ π0 = π ◦ ι holds on E0,

and a holomorphic map s0 = s ◦ ι : E0 → Y given by

s0(x, e) = s(e), (x, e) ∈ E0.

Note that s0(x, 0) = s(0f0(x)) = f0(x) and (ds0)(x,0)(E0,x) = Tf0(x)Y.
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The diagram of maps

E0

π0
��

ι //

s0=s◦ι

��
E

π

��

s // Y

L f0 // Y

E0 = f0∗E, s0 = s ◦ ι : E0 → Y,

s0(x, 0) = s(0f0(x)) = f0(x), (ds0)(x,0)(E0,x) = Tf0(x)Y.
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Sketch of proof, 2

The domination property of s0 implies that for some t0 ∈ (0, 1] we can lift the
homotopy ft : K → Y for t ∈ [0, t0] to a homotopy of holomorphic sections
gt : K → E0|K (t ∈ [0, t0]):

(∗) s0(x, gt(x)) = ft(x) for x ∈ K and t ∈ [0, t0], with g0 the zero section.

In fact, splitting E0 = E ′
0 ⊕ E ′′

0 where E ′′
0 = ker ds0|L×{0}, the restriction of

ds0 to the zero section of E ′
0 gives for every x ∈ L a C-linear isomorphism

(ds0)0x : (E ′
0)x

∼=−→ Tf0(x)Y.

Hence, for t ∈ [0, t0] there is a unique section gt of E ′
0|K satisfying (∗).

The parametric version of the Oka–Weil theorem shows that {gt}t∈[0,t0] can be
approximated uniformly on K × [0, t0] by a homotopy of holomorphic sections
g̃t : L → E0 (t ∈ [0, t0]), with g̃0 the zero section. Taking

f̃t(x) = s0(x, g̃t(x)) ∈ Y for x ∈ L and t ∈ [0, t0]

solves the problem on this subinterval. We now apply the same argument to
the map f̃t0 : L → Y. We are done in finitely many steps.
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Ellipticity implies CAP

Corollary
A (sub-)elliptic manifold Y satisfies CAP, and hence is an Oka manifold.
A Stein Oka manifold is elliptic.

For the first item, let K ⊂ Cn be convex. Then, any map f1 : K → Y can be
inserted in a homotopy ft : K → Y (t ∈ [0, 1]) with f0 a constant map
Cn 7→ y0 ∈ Y. (Take ft = f1 ◦ τt where the homotopy τt : Cn → Cn contracts
the identity map τ1 on Cn to the constant map τ0 : Cn → p ∈ K.) Hence, the
theorem shows that ellipticity of Y implies CAP.

For the converse part, assume that Y is Stein and Oka. Using the composition
of local flows of finitely many (say, N) holomorphic vector fields on Y spanning
TY, we can find a neighbourhood U ⊂ Y × CN of Y × {0} and a holomorphic
map s0 : U → Y having the properties of a dominating spray.

Since Y satisfies CAP and hence is OKA, we can find a holomorphic map
s : Y × CN → Y which agrees with s0 to the second order along the zero
section Y × {0}. Clearly, such s is a dominating spray on Y.
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An h-Runge approximation theorem for algebraic maps
There is a version of this result for algebraically (sub-) elliptic manifolds.

Theorem (F., 2006; Theorem 6.15.1 in my book)
Let X be an affine algebraic manifold, Y be an algebraically subelliptic
manifold, K ⊂ X be a compact O(X)-convex set, f0 : X → Y be an algebraic
map, and ft : K → Y (t ∈ [0, 1]) be a homotopy of holomorphic maps.

Then, we can approximate {ft} uniformly on K by a homotopy Ft : X → Y
(t ∈ [0, 1]) of algebraic maps with F0 = f0.

If in addition the homotopy ft is fixed on a closed algebraic subvariety X ′ ⊂ X
then F can be chosen such that F(x, t) = f(x) for all x ∈ X ′ and t ∈ C.

In particular, a holomorphic map X → Y that is homotopic to an algebraic map
is a limit of algebraic maps uniformly on compacts in X.

In general there exist homotopy classes of maps X → Y (even for simple
manifolds like Y = CP1) which cannot be represented by algebraic maps. In
particular, there exist algebraically nontrivial line bundles on affine algebraic
curves. However every holomorphic vector bundle on an open Riemann surface
X is holomorphically trivial since H 2(X;Z) = 0.
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Failure of the basic algebraic basic Oka principle

Example
(Loday) Let Σn denote the complex n-sphere, i.e., the affine variety

Σn =
{
(z0, . . . , zn) ∈ Cn+1 : z2

0 + · · ·+ z2
n = 1

}
.

Then Σn retracts onto the real n-sphere Sn. Also, Σn is algebraically
elliptic for n ≥ 2. This can either be seen directly (in my book in minimal
surfaces with Alarcón and López, Section 1.15), and it also follows from
the fact that Σn is homogeneous for the complex Lie group
SO(n + 1,C), and Hom(SO(n + 1,C),C∗) = 1 for n ≥ 2.
Loday showed that every algebraic map Σp × Σq → Σp+q is
null-homotopic when p and q are odd, but there always exists a
homotopically nontrivial continuous (hence also holomorphic) map
Σp × Σq → Σp+q.
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Failure of the algebraic Oka principle

Theorem (Lárusson and Truong, 2019)
If Y is an algebraic manifold which contains a rational curve CP1 or is
compact, then Y does not have any of the algebraic Oka properties.

We explain the basic idea for the case when Y is a projective manifold.

It is easily seen that the algebraic interpolation property (aIP), or the basic
algebraic Oka property (aBOP), implies the existence of a nontrivial rational
curve g : CP1 → Y. Assuming now Y that admits such a curve, we will show
that Y does not satisfy aIP; a similar argument excludes the other properties.

The basic case to consider is Y = CP1. Let X ⊂ C2 be an affine algebraic
curve whose projective closure is not rational. Then, X admits an algebraic line
bundle L → X all of whose nonzero tensor powers are algebraically nontrivial,
and every such bundle is the pullback of the universal bundle U → CP1 by an
algebraic map f : X → CP1.

Since X is an open Riemann surface, f is null-homotopic, and hence it extends
to a continuous map C2 → CP1.
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Failure of the algebraic Oka principle, 2

If CP1 satisfies the algebraic interpolation property, aIP, then f also
extends to a regular map C2 → CP1. By the Quillen–Suslin theorem, it
follows that the line bundle f ∗U → C2 is algebraically trivial.

This contradicts the assumption that the restriction L = f ∗U|X → X is
algebraically nontrivial, so CP1 does not satisfy the algebraic
interpolation property.

In the general case when Y is a projective manifold and g : CP1 → Y is a
nontrivial rational curve, taking an ample line bundle E → Y, the
pullback g∗E → CP1 is algebraically nontrivial. With f : X → CP1 as
above, we see as before that the map g ◦ f : X → Y does not extend to
an algebraic map C2 → Y. Hence, Y does not satisfy aIP.

For a general compact algebraic manifold Y, one uses finitely many
blowups in order to obtain a projective manifold.
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CAP =⇒ OKA (Theorem 5.4.4 in my book)

We shall now outline the proof of the basic Oka principle with approximation
for maps X → Y, where X is a Stein manifold and Y satisfies CAP.

We are given a continuous map f = f0 : X → Y which is holomorphic on a
neighbourhood of a compact O(X)-convex set K ⊂ X. The goal is to construct
a sequence of continuous maps fj : X → Y (j = 1, 2, . . .) and a normal
exhaustion of X by compact O(X)-convex sets

K = K0 ⊂ K1 ⊂ · · · ⊂
∞⋃

j=0
Kj = X

such that the following hold for every j = 1, 2, . . .:
fj is holomorphic on a neighborhood of Kj,
fj approximates fj−1 on Kj−1, and
there is a homotopy of maps fj−1,t : X → Y (t ∈ [0, 1]), with fj−1 = fj−1,0
and fj = fj−1,1, which are holomorphic and close to fj−1 on Kj−1.

If the approximations are close enough then the sequence fj converges
uniformly on compact in X to a holomorphic map F = limj→∞ fj : X → Y, and
the homotopies fj−1,t also converge to a homotopy from f to F.
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Strongly plurisubharmonic (SPSH) exhaustion functions

Given a neighbourhood U0 of K = K0, we choose a SPSH Morse exhaustion
function ρ : X → R such that K0 ⊂ {ρ ≤ 0} ⊂ U0. The exhaustion Kj is built
by using ρ. Set Xt = {ρ ≤ t} for t ∈ R. The proof combines two basic cases:

1 The noncritical case: Let a < b be such that ρ has no critical values on
[a, b]. There is no change of topology from Xa to Xb.

2 The critical case: Let c ∈ R be a critical value of ρ. These values are
isolated since ρ is Morse. Choose a < c < b such that c is the only critical
value on [a, b]. The topology of Xt changes when t crosses the critical
value c. We must explain how to approximately extend f from Xa to Xb.

The CAP condition on the manifold Y is only used in the noncritical case (to
fatten the region of holomorphicity of the map). This gives rise to

F. & Slapar (2007), The soft Oka principle: Every continuous map
f : (X, J0) → Y from a Stein manifold (X, J0) to an arbitrary complex manifold
Y is homotopic to a holomorphic map F : (X, J1) → Y with respect to a Stein
structure J1 on X which is homotopic to J0.
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The noncritical case: Cartan pairs
A pair (A,B) of compact subsets in a complex manifold X is a Cartan pair if it
satisfies the following two conditions:

(i) The sets D = A ∪ B and C = A ∩ B are Stein compacts (i.e., they have
bases of open Stein neighbourhoods), and

(ii) A and B are separated in the sense that A \ B ∩ B \ A = ∅.

(iii) A Cartan pair (A,B) is special if the sets C ⊂ B are convex in some
holomorphic coordinates on a neighbourhood of B. In such case, B is
called a convex bump on A.
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Extending the map across a convex bump

Fact: If ρ has no critical points on [a, b] then Xb = {ρ ≤ b} is obtained from
Xa = {ρ ≤ a} by successively attaching convex bumps finitely many times.
The reason is that every strongly pseudoconvex domain is locally at any
boundary point strongly convex in suitable local coordinates.

This reduces our problem to the following:

Lemma
Assume that the complex manifold Y enjoys CAP. Let (A,B) be a special
Cartan pair in X. Given a holomorphic map f0 : A → Y, we can approximate it
on A by a holomorphic map F : A ∪ B → Y.

The existence of a homotopy is immediate from the construction. A finite
application of this lemma extends the map from Xa to Xb, with approximation
on Xa.
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Extending the map across a convex bump, 2
We may assume that A and B are compact strongly pseudoconvex domains.
Here are the steps in the proof of the extension lemma:

The graph of f0 over A in X × Y = Z is a Stein compact, and hence it has
a Stein neighbourhood. This allows us to construct a holomorphic spray
f : A × U → Y, where 0 ∈ U ⊂ CN is a ball, such that f (· , 0) = f0 and

∂

∂z

∣∣∣
z=0

f (x, z) : CN → Tf0(x)Y is surjective for every x ∈ A.

Let C = A ∩ B. Since C ⊂ B are convex sets in some local holomorphic
coordinates on X and the set C × U is also convex, we can apply CAP to
approximate f (shrinkig U slightly) by a holomorphic map g : B × U → Y.
If the approximation of f by g is close enough on C × U, we can find a
smaller ball 0 ∈ U ′ ⊂ U and a holomorphic transition map

γ : C × U ′ → C × U, γ(x, z) = (x, c(x, z))

close to the identity map γ0(x, z) = (x, z) such that

f = g ◦ γ holds on C × U ′.
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A gluing lemma

Lemma (Proposition 5.8.1 in my book)
Let (A,B,C = A ∩ B) be a Cartan pair in X. Given a holomorphic map

γ : C × U ′ → C × U

as above, close to the identity map, and a slightly smaller ball 0 ⊂ V ⊂ U ′,
there are holomorphic maps

α(x, z) = (x, a(x, z)), x ∈ A, z ∈ V,
β(x, z) = (x, b(x, z)), x ∈ B, z ∈ V

close to the identity on their respective domains (depending on how close γ is
to the identity) such that

γ ◦ α = β holds on C × V.

This is a nonlinear version of Cousin-I problem, generalizing Cartan’s lemma. It
is proved by using the solution to the ∂̄-equation with bounds on strongly
pseudoconvex domains and the implicit function theorem in Banach spaces.
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Conclusion of the noncritical case

Recall that
f = g ◦ γ holds on C × U ′

and
γ ◦ α = β holds on C × V.

It follows that
f ◦ α = g ◦ γ ◦ α = g ◦ β holds on C × V.

Hence, f ◦ α and g ◦ β amalgamate into a holomorphic map

F : (A ∪ B)× V → Y

approximating f on A × V. The map

F0 = F(· , 0) : A ∪ B → Y

then provides the desired holomorphic approximation of f0 : A → Y.

This lemma has been used in numerous constructions of holomorphic maps,
both in Oka theory and wider. It was used in the construction of proper
holomorphic maps of Stein manifolds into more general complex manifolds.
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The critical case

Suppose that p ∈ X is a critical point of a Morse SPSH function ρ : X → R

with Morse index k. Then, k ∈ {0, 1, . . . , n = dimC X}.

By a small change of ρ at p, we have in local holomorphic coordinates
z = (z ′, z ′′) = (x ′ + iy ′, x ′′ + iy ′′) ∈ Ck ⊕ Cn−k on X at p, with z(p) = 0,
that

ρ(z) = ρ(0)− |x ′|2 + |x ′′|2 +
n
∑
j=1

λjy2
j

where λj > 1 for j ∈ {1, . . . , k} and λj ≥ 1 for j ∈ {k + 1, . . . , n}.

Assume ρ(0) = 0. Fix c0 > 0 such that ρ has no critical values in
[−c0, c0] \ {0}. When t ∈ R passes the value 0, the change of topology of
Xt = {ρ ≤ t} at p = 0 is described by attaching to X−c0 the totally real disc
handle

E = {(x ′ + i0′, 0′′) : |x ′|2 ≤ c0}
and thickening the union X−c0 ∪ E to a strongly pseudoconvex handlebody.
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The SPSH function τ

More precisely, we choose a SPSH function τ of the form

τ(z) = −h(|x ′|2) + |x ′′|2 +
n
∑
j=1

λjy2
j (1)

where h : R → [0,+∞) is a smooth convex increasing function as in the
following illustration, with h(t) = t − t1 for t ≥ c0. Here,

1 < µ < min{λ1, . . . ,λk} and t0 = c0
(
1 − 1

µ

)2 ∈ (0, c0).

b b bb
t0 t1 c0

t
(0, 0)

h

t − t0
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A strongly pseudoconvex handlebody
The function τ satisfies the following conditions:

(a) {ρ ≤ −c0} ∪ E ⊂ {τ ≤ 0} ⊂ {ρ ≤ −t0} ∪ E,
(b) {ρ ≤ c0} ⊂ {τ ≤ 2c0} ⊂ {ρ < 3c0},
(c) τ = ρ + t1 on {|x ′|2 ≥ c0} for some t1 ∈ (t0, c0), and
(d) τ has no critical values in (0,+∞).

The details can be found in Section 3.11 of my book. The illustration shows
the strongly pseudoconvex handlebody Ωc = {τ < c} for c ∈ (0, c0).

{ρ = −t0}

Ωc

E

b

p = 0

{ρ < c − t1}{ρ < c − t1}
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Extending the map across the handle

By the noncritical case, we may assume that our map f : X → Y is
holomorphic on X−t0 = {ρ ≤ −t0}, where 0 < t0 < c0 was defined above.
We make f smooth on the totally real disc E.

The graph of f over the handlebody Ht0 := X−t0 ∪ E has a basis of Stein
neighbourhoods in X × Y. Hence, we can use the Mergelyan theorem to
approximate f on Ht0 by a holomorphic map on a neighbourhood U ⊃ Ht0 .
(See Theorem 3.8.1 in my book.)

For small enough c > 0 we have that {τ ≤ c} ⊂ U (see condition (a) in
the list of properties of τ).

By the noncritical case of the proof, applied with the function τ, we can
approximate f on Ht0 by a map f̃ : X → Y that is holomorphic on
{τ ≤ 2c0}. By Condition (b), this set contains Xc0 = {ρ ≤ c0}, so we
have crossed the critical level of ρ at p. We now revert back to ρ and
apply the noncritical case up to the next critical level of ρ.

This completes the induction and hence the proof of CAP =⇒ OKA.
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How to deal with interpolation on a subvariety of X
A possible way is illustrated in the following figure. This is also used in the case
of stratified fibre bundles with Oka fibres. Another one is to follow the
standard approach but using the lemma for gluing sections of coherent analytic
sheaves, obtained by Luca Studer (2021).

M M

bDs = {ρs = 0}

K

{ρ = 1}

bD0 bL = {ρ = 0}
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Examples of Oka manifolds known up to 2017

Cn,CPn, complex Lie groups and their homogeneous spaces

Cn \ A where A is a tame analytic subvariety of codimension > 1

CPn \ A where A is a subvariety of codimension > 1

Hirzebruch surfaces (CP1 bundles over CP1)

Hopf manifolds (quotients of Cn \ {0} by cyclic groups)

Algebraic manifolds that are locally Zariski affine (∼= Cn);

certain modifications of such (blowing up points, removing subvarieties of
codimension ≥ 2)

Cn blown up at all points of a tame discrete sequence

complex tori of dimension > 1 with finitely many points removed, or
blown up at finitely many points

toric varieties X = (Cm \ Z)/G, where Z is a union of coordinate
subspaces of Cm and G is a subgroup of (C∗)m acting on Cm \ Z by
diagonal matrices.
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Compact complex surfaces
Surfaces of general type (κ = 2) are not dominable, and hence not Oka.
A complete list of compact complex surfaces, classified according to the value
of their Kodaira dimension κ < 2, can be found in the book by Barth et al.
(Table 10 on p. 244). The following information is based on the article F. and
Lárusson, IMRN 2014.

κ = −∞:
1 Rational surfaces are Oka. Every nonsingular rational surface is

obtained by repeatedly blowing up a minimal rational surface. The
minimal rational surfaces are CP2 and the Hirzebruch surfaces Σr for
r ∈ Z+; these are holomorphic CP1-bundles over CP1. Repeated
blowups preserve the Oka property for surfaces in this class, so
non-minimal rational surfaces are also Oka.

2 A ruled surface is Oka if and only if its base is Oka. In fact, a
ruled surface is the total space X of a holomorphic fibre bundle with
fibre CP1 over a compact curve C. Such X is Oka if and only if the
base C is Oka, which is so if and only if C is either CP1 or a torus.

3 Surfaces of class VII: Minimal Hopf surfaces and minimal Enoki
surfaces are Oka. Inoue surfaces, Inoue-Hirzebruch surfaces, and
intermediate surfaces, minimal or blown up, are not strongly
Liouville, and hence not Oka.
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Compact complex surfaces, 2

κ = 0: Bielliptic surfaces, Kodaira surfaces, and tori are Oka. It is
unknown whether any or all K3 surfaces or Enriques surfaces are Oka.

1 Tori are complex homogeneous and hence Oka.
2 Every bielliptic surface, and also every primary Kodaira surface, is

the total space of a holomorphic fibre bundle with torus fibre over a
torus, so it is Oka by the Up-Down Theorem.

3 Secondary Kodaira surfaces are proper unramified holomorphic
quotients of primary Kodaira surfaces, so they are Oka. They are
elliptic fibrations over CP1 with b1(X) = 1 and with nontrivial
canonical bundle.

4 A K3 surface is a surface X with trivial canonical bundle and
b1(X) = 0. Examples include Kummer surfaces and most elliptic
surfaces, i.e., surfaces admitting a fibration onto a torus with a torus
as generic fibre. All elliptic fibrations in the K3 class are ramified,
and we do not know whether any or all of them are Oka.

κ = 1: These are properly elliptic surfaces. Buzzard and Lu (2000)
determined which of them are dominable by C2. Nothing further is known
about the Oka property for these surfaces.


