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Oka manifolds

Franc Forstnerič

Masaryk University, Brno
Lecture 3, April 6, 2023
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In this lecture. . .

. . . we present some recent developments of Oka theory after 2017. They
are presented in more detail in the open access survey paper

F. Forstnerič: Recent developments on Oka manifolds.
Indag. Math., 34(2) (2023) 367–417.
https://doi.org/10.1016/j.indag.2023.01.005

We begin with Kusakabe’s characterization of the class of Oka manifolds
by condition Ell1, whose main new application is the Zariski localization
theorem for Oka manifolds. This led to many new examples of Oka
manifolds, especially among domains in Euclidean and projective spaces,
which are discussed in the sequel.

We also present a recent application of these newly developed techniques
to proper holomorphic embeddings of Stein manifolds in Euclidean spaces
avoiding certain unbounded closed convex subsets.

https://doi.org/10.1016/j.indag.2023.01.005
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Kusakabe’s characterization of Oka manifolds

Gromov, 1986 Ergebnisse book, p. 72
A complex manifold Y enjoys condition Ell1 if every holomorphic map X → Y
from a Stein manifold is the core of a dominating spray X × CN → Y.
It is easily seen that OKA =⇒ Ell1.

Kusakabe, 2021 A complex manifold Y enjoys condition C-Ell1 if for every
compact convex set K ⊂ Cn (n ∈ N), open set U ⊂ Cn containing K, and
holomorphic map f : U → Y there are an open set V with K ⊂ V ⊂ U and a
dominating spray F : V × CN → Y over f |V.

Theorem (Kusakabe 2021)
A complex manifold which satisfies condition C-Ell1 is an Oka manifold.
Hence, the following conditions on a complex manifold are equivalent:

Oka ⇐⇒ Ell1 ⇐⇒ C-Ell1.

It suffices to prove that C-Ell1 =⇒ CAP; the rest was known before.
Furthermore, it suffices to verify this condition on special pairs of compact
convex polyhedra.
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Proof of Kusakabe’s theorem
Let K ⊂ L be special polyhedral pair in Cn with K = {z ∈ L : λ(z) ≤ 0} for
some linear function λ : Cn → R.

Since K is convex and Y is connected, the space O(K,Y) is connected.
Denote by A the set of all f ∈ O(K,Y) which can be approximated uniformly
on K by maps in O(L,Y). Clearly A is nonempty and closed in O(K,Y).

It remains to show that A is also open in O(K,Y), so A = O(K,Y).

Fix f ∈ A and represent it by a map f ∈ O(U,Y) from an open set U ⊂ Cn

containing K. Condition C-Ell1 gives a convex open set V, with K ⊂ V ⊂ U,
and a dominating holomorphic spray F : V × CN → Y with F(· , 0) = f |V. By
factoring out the kernel of the derivative

∂F(z,w)/∂w|w=0 : CN → Tf (z)Y, z ∈ V

(which is a trivial holomorphic subbundle of V × CN with trivial quotient) we
may assume that N = dimY and the above map is an isomorphism for every
z ∈ V. Hence, up to shrinking V around K, there is an open ball 0 ∈ W ⊂ CN

such that the map F̃ = (Id,F) : V × CN → V × Y given by

F̃(z,w) = (z,F(z,w)), z ∈ V, w ∈ CN

maps V × W biholomorphically onto its image in V × Y.
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Proof of Kusakabe’s theorem, 2
Since f ∈ A is approximable, there are a neighbourhood Ω ⊂ Cn of L
and a map g ∈ O(Ω,Y) such that

{(z, g(z)) : z ∈ K} ⊂ F̃(V × W).

Up to shrinking Ω around L, there is a dominating holomorphic spray

G : Ω × W → Y, G(· , 0) = g.

Replacing G(z,w) by G(z, tw) for some t > 0, there is an open convex
set U1 ⊂ Cn with K ⊂ U1 ⋐ V ∩ Ω such that the map

G̃(z,w) = (z,G(z,w))

satisfies
G̃(U1 × W) ⋐ F̃(V × W) ⊂ V × Y.

Since the map F̃ is biholomorphic on V × W, there is a unique
holomorphic map H : U1 × W → W such that

F(z,H(z,w)) = G(z,w) for all (z,w) ∈ U1 × W.
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Proof of Kusakabe’s theorem, 3
Pick a small ϵ > 0 and set

A = {z ∈ L : λ(z) ≤ 2ϵ} ⊂ U1, B = {z ∈ L : λ(z) ≥ ϵ} ⊂ Ω.

The polyhedra A and B form a Cartan pair with

A ∪ B = L and C := A ∩ B = {z ∈ L : ϵ ≤ λ(z) ≤ 2ϵ}.

Pick a convex open set U0 ⊂ Cn such that K ⊂ U0 ⊂ U1 and U0 ∩ C = ∅.

Choose any holomorphic map ϕ : U0 → CN. Since K and C are disjoint
compact convex sets in Cn, their union is polynomially convex.

The Oka–Weil theorem furnishes a holomorphic map ϕ̃ : A × W → CN which
approximates H on C × W, and it approximates ϕ(z) on (z,w) ∈ K × W.

Hence, the holomorphic map Φ : A × W → Y defined by

Φ(z,w) = F(z, ϕ̃(z,w)) for z ∈ A and w ∈ W

approximates G on C × W, while on K × W it approximates the map

(z,w) 7→ fϕ(z) := F(z, ϕ(z)) for z ∈ K and w ∈ W.
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Proof of Kusakabe’s theorem, 4

Recall that the spray G is dominating over C. Hence, if the
approximations are close enough, we can glue Φ and G into a
holomorphic spray

Θ : L × W ′ → Y, 0 ∈ W ′ ⋐ W.

By the construction, its core map

f̃ := Θ(· , 0) : L → Y

approximates the map fϕ on K, which shows that fϕ ∈ A.

Since the map F̃ is injective holomorphic on V × W, every holomorphic
map K → Y sufficiently uniformly close to f is of the form fϕ for a
suitable choice of ϕ, so it belongs to the set A of approximable maps.

This shows that the set A is open as claimed, and therefore
A = O(K,Y), completing the proof of Kusakabe’s theorem.
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Kusakabe’s localization theorem for Oka manifolds

Theorem (Kusakabe, 2021)
If Y is a complex manifold which is a union of Zariski open Oka domains,
then Y is an Oka manifold.

This is one of the most important new results in Oka theory and a
wonderful tool for constructing new examples of Oka manifolds.
Previously, a localization theorem was known only for algebraically
subelliptic manifolds.

The proof uses the following result, which follows easily from Theorems
7.2.1 and 8.6.1 in my book.

Lemma
Let Ω be a Zariski open Oka domain in a complex manifold Y. Given a
Stein manifold X and a holomorphic map f : X → Y, there is a
holomorphic spray F : X × CN → Y over f which is dominating on
f−1(Ω).
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Proof of the localization theorem
It suffices to show that Y enjoys condition C-Ell1.

Let K be a compact convex set in Cn and f ∈ O(U,Y) be a holomorphic
map on an open neighbourhood U ⊂ Cn of K.

Let Ωi be a collection of Zariski open Oka domains in Y with ⋃
i Ωi = Y.

Since K is compact, f (K) is contained in the union of finitely many Ωi’s;
call them Ω1, . . . ,Ωm.

The lemma furnishes a spray F1 : U × CN1 → Y with the core f which is
dominating on f−1(Ω1).

Applying the same lemma to F1 furnishes a spray

F2 : (U × CN1)× CN2 → Y

with the core F1 which is dominating on F−1
1 (Ω2). Considering F2 as a

spray over f : U → Y, it is dominating on f−1(Ω1 ∪ Ω2).

After m steps of this kind we obtain a spray F : U × CN → Y over f
which is dominating on a neighbourhood of K.
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Stein manifolds with Varolin’s density property

In the sequel, we shall need the following notion which developed from the
seminal work of Andersén and Lempert (1992).

Definition (Varolin 2000)
A complex manifold X has the density property if every holomorphic vector field
on X can be approximated, uniformly on compacts in X, by Lie combinations
(sums and Lie backets) of complete holomorphic vector fields on X.

Andersén and Lempert, 1992: Cn for n > 1 has the density property.

Theorem (Andersén and Lempert, 1992; Forstnerič and Rosay,
1993)
Let X be a Stein manifold with the density property. If Ω0 ⊂ X is a
pseudoconvex Runge domain and Ft : Ω0 → Ωt ⊂ X (t ∈ [0, 1]) is a smooth
isotopy of biholomorphic maps such that F0 = IdΩ0 and the domain
Ωt = Ft(Ω0) is Runge in X for all t, then F1 can be approximated uniformly on
compacts in Ω0 by holomorphic automorphisms of X.
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Complements of polynomially convex sets are Oka

Theorem (Kusakabe, preprint 2020; F. and Wold, 2020)
If K is a compact polynomially convex set in Cn (n > 1) then Cn \ K is
Oka. The same holds if we replace Cn by any Stein manifold with the
density property.

To see this, we verify condition C-Ell1. Let L ⊂ CN be a compact convex
set and f : U → Cn \ K be a holomorphic map from a Runge open
neighbourhood U ⊂ CN of L. Let Γ = {(ζ, f (ζ)) : ζ ∈ L}. The set

(L × K) ∪ Γ

is then polynomialy convex in CN × Cn.
Let G(ζ, z) = (ζ,ψ(ζ, z)) be the identity on a neighborhood of U × K,
and the contraction

ψ(ζ, z) = 1
2z + 1

2 f (ζ)

to the point f (ζ) for each (ζ, z) in a neighbourhood of Γ.
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Complements of polynomially convex sets are Oka, 2

By the parametric version of the Forstnerič–Rosay theorem, we can
approximate G uniformly on a neighbourhood of (L × K) ∪ Γ by a
holomorphic automorphism Φ ∈ Aut(U × Cn) of the form

Φ(ζ, z) = (ζ, ϕ(ζ, z)), ζ ∈ U, z ∈ Cn.

Iteration of this procedure leads to a holomorphic maps F : U× Cn → Cn

such that for all ζ ∈ U we have F(ζ, 0) = f (ζ) and

F(ζ, · ) : Cn → Cn \ K is a Fatou–Bieberbach map.

Hence, F is a dominating holomorphic spray with the core f and taking
values in Cn \ K.
Thus, Cn \ K satisfies condition C-Ell1, so it is Oka by Kusakabe’s
theorem.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Oka domains in CPn

Corollary
If K is a compact polynomially convex set in Cn for n > 1, then CPn \K is Oka.

Proof.
Let H = CPn \ Cn. Let B be a connected open set of complex hyperplanes
Λ ⊂ CPn not intersecting K, with H ∈ B. Then, the compact set
L = CPn \⋃

Λ∈B Λ is polynomially convex in CPn \ Λ0 for any Λ0 ∈ B.

Note that K ⊂ L. Since K is polynomially convex in Cn = CPn \ H, it is also
O(L)-convex, and hence polynomially convex in CPn \ Λ ∼= Cn for any Λ ∈ B.
Hence, CPn \ (K ∪ Λ) is an Oka domain for every Λ ∈ B.

Taking Λ0,Λ1, . . . ,Λn ∈ B with ⋂n
j=0 Λj = ∅, we have that

CPn \ K =
n⋃

j=0
CPn \ (K ∪ Λj).

Since each domain in the union on the right hand side is Oka and Zariski open
in CPn \ K, it follows from the localization theorem that CPn \ K is Oka.
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A generalization

Theorem
If Λ is a closed complex hypersurface in CPn (n > 1) such that the Stein
domain Ω = CPn \ Λ has the density property, then for any compact
O(Ω)-convex set K ⊂ Ω the complement CPn \ K is an Oka domain.

In particular, Λ has a basis of open Oka neighbourhoods in CPn.

This holds if Λ is a quadric, or a union of ≤ n hyperplanes in general position.

The complement of n + 1 hyperplanes in general position is (C∗)n, which is
Oka but it is not known to have the density property. The complement of more
than n + 1 hyperplanes is not Oka.

The proof is similar to that of the corollary. Λ is the zero set of a homogeneous
polynomial P of degree k = deg Λ. With respect to the Veronese embedding
CPn ↪→ CPN (where N = (n+k

k )− 1), whose components are all homogeneous
monomials of degree k in n + 1 variables, Λ is the intersection of the image of
CPn with a hyperplane H ⊂ CPN, so CPn \ Λ is a closed affine submanifold of
CPN \ H = CN. Furthermore, CPn \ (K ∪ Λ) is Oka by Kusakabe’s theorem.
Moving Λ among nearby hypersurfaces we get CPn \K =

⋃m
i=0 CPn \ (K∪ Λi),

so CPn \ K is Oka by the localization theorem.
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Non-polynomially convex sets with Oka complements

Theorem
If C is a closed rectifiable Jordan curve in Cn for n > 1 then Cn \ C and
CPn \ C are Oka.

More generally, if K is a compact polynomially convex set in Cn for n > 1 and
C is a finite union of rectifiable curves such that the complex curve
A = Ĉ ∪ K \ (C ∪ K) has at most finitely any irreducible components, then
Cn \ (C ∪ K) and CPn \ (C ∪ K) are Oka.

To see this, we prove that there are holomorphic coordinates z = (z ′, zn) on Cn

such that the hyperplane H = {zn = 0} intersects every irreducible component
of A but H∩ (C∪K) = ∅. Hence, C∪K is O(Ω)-convex in the Stein manifold
Ω = Cn \ H = Cn−1 × C∗. Since Ω has the density property, the result follows.

Problem
Is the complement of the standard torus in C2 an Oka domain? Is the
complement of R2 in C2 Oka?
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Oka complements of unbounded convex sets in Cn

In a recent work, E. F. Wold and I (2022) proved that complements of most
closed convex sets in Cn for n > 1 are Oka.

Theorem
If E is a closed convex set in Cn for n > 1 with C1 boundary such that
E ∩ TC

p bE does not contain any real halfline, then Cn \ E is an Oka domain.

This result provides many model concave Oka domains of the form

Ω = {z = (z ′, zn) ∈ Cn : =zn < ϕ(z ′,<zn)}, (1)

where ϕ ≥ 0 is a strictly convex function, which are only slightly bigger than a
halfspace, the latter being neither Oka nor hyperbolic.

Let K = E ⊂ CPn and H = CPn \ Cn. The condition in the theorem implies
that there is a complex hyperplane Λ ⊂ CPn such that K ∩ Λ = ∅ and K is
polynomially convex in the affine chart CPn \ Λ ∼= Cn. (Indeed, CPn \ K is the
union of a connected family of complex hyperplanes.) Choose affine
coordinates z = (z1, . . . , zn) on CPn \ Λ such that H \ Λ = {zn = 0}.
The result now follows from the following:
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Oka complements of unbounded convex sets, 2

Theorem (F. and Wold, 2022)
If K is a compact polynomially convex set in Cn (n > 1) then

Ω = (Cn−1 × C∗) \ K is an Oka domain.

The proof is similar to the proof that Cn \ K is Oka. By Varolin (2001), the Lie
algebra of algebraic vector fields on Cn vanishing on the hyperplane
Cn−1 × {0} = {zn = 0} is generated by complex algebraic vector fields. This
allows us to verify condition C-Ell1 for Ω in a similar way as we did for Cn \ K.
Specifically, we get the following result of independent interest.

Theorem
Let L be a Stein compact in CN, and let Ω ⊂ Cn be as in the corollary. Given a
holomorphic map f : L → Ω, there is a holomorphic map F : L × Cn → Ω such
that for every ζ ∈ L, the map F(ζ, · ) : Cn → Ω is injective
(a Fatou–Bieberbach map) with F(ζ, 0) = f (ζ).
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Complements of closed convex sets without affine lines are
Oka

Corollary
If E is a closed convex set in Cn for n > 1 which does not contain any
affine real line, then Cn \ E is an Oka domain.

To see this, we show by tools of convex geometry that for every closed
convex set E which does not contain any affine real line there is a
decreasing sequence of closed strongly convex domains

E1 ⊃ E2 ⊃ · · · ⊃
∞⋂

j=1
Ej = E.

Note that Ωj = Cn \ Ej is Oka by the theorem for every j ∈ N.
Thus, Cn \ E =

⋃∞
j=1 Ωj is an increasing union of Oka domains

Ω1 ⊂ Ω ⊂ · · · , hence it is Oka.
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Lifting boundaries of images of SPSC domains

These results can be combined with another important tool, developed by
several authors (Løw, F., Hakim, Dor) and culminating in the following result.

Lemma (Drinovec Drnovšek & F., Amer. Math. J. 2010)
Let ρ be a strongly plurisubharmonic exhaustion function on a Stein manifold
Y, let X be a Stein manifold with dimY ≥ 2 dimX, D be a smoothly bounded
strongly pseudoconvex domain in X, and f : D → Y be a holomorphic map.
Assume that a < ρ(f (x)) < b for some a < b and for all x ∈ bD.

Given ϵ > 0 and a compact set K ⊂ D, there is a holomorphic immersion
F : D → Y satisfying

(a) ρ(F(x)) > b for all x ∈ bD,
(b) ρ(F(x)) > ρ(f (x))− ϵ for all x ∈ D, and
(c) distY(F(x), f (x)) < ϵ for all x ∈ K.

If dimY > 2 dimX then F can be chosen an embedding.

The conclusion also holds (without demanding that F be an immersion) if
dimY > dimX and ρ has no critical values in [a, b].
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An application to proper holomorphic maps

By using this lemma inductively, we obtain the following result. In the second
part we also use the result of Kusakabe on Oka complements.

Theorem
Let Y be a Stein manifold, and let D be a smoothly bounded strongly
pseudoconvex domain in a Stein manifold X such that dimY ≥ 2 dimX.

Then, every holomorphic map f : D → Y can be approximated uniformly on
compacts in D by proper holomorphic immersions F : D → Y (embeddings if
dimY > 2 dimX).

If in addition Y has the density property then every continuous map f : X → Y
is homotopic to a proper holomorphic immersion F : X → Y (embedding if
dimY > 2 dimX), with approximation on a compact O(X)-convex sets.

To prove the second statement (Andrist, F., Ritter, and Wold, 2014-2019), we
alternate the use of the lifting lemma (to push the boundary of f (D) into
{ρ > b} ⊂ Y for a given number b) with the fact that {ρ > b} is Oka, so f can
be approximated on D by a holomorphic map X → Y sending X \D to {ρ > b}.
An inductive use of these two steps leads to proper holomorphic maps X → Y.
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Proper embeddings in Cn avoiding large convex sets

Here is a recent application of these techniques.

Definition
A closed convex set E in Rn has bounded convex exhaustion hulls (BCEH) if
for every compact convex set K ⊂ Rn,

the set h(E,K) = Conv(E ∪ K) \ E is bounded.

Theorem (B. Drinovec Drnovšek & F., 2023)
Let E be an unbounded closed convex set in Cn (n > 1) having bounded
convex exhaustion hulls.

Given a Stein manifold X with dimX < n, a compact O(X)-convex set K in X,
and a holomorphic map f0 : K → Ω = Cn \ E, we can approximate f0 uniformly
on K by proper holomorphic maps f : X → Cn satisfying f (X) ⊂ Ω.

The map f can be chosen an embedding if 2 dimX < n and an immersion if
2 dimX ≤ n.
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Proper embeddings in Cn avoiding large convex sets

If E has BCEH then the convex hull Conv(E ∪ K) is closed for any compact
convex set K. If E is unbounded, which is the main case of interest, there are
affine coordinates z = (z ′, zn) on Cn such that

E = {z = (z ′, zn) ∈ Cn : =zn ≥ ϕ(z ′,<zn)},

where ϕ is a convex function in (z ′,<zn) which grows to +∞ at least linearly
as |(z ′,<zn)| → +∞. Such a domain does not contain any affine real line, and
hence for n > 1 its complement Ω = Cn \ E is an Oka domain.

For any closed ball B ⊂ Cn, the convex hull Conv(E ∪ B) is of the same form.

The theorem is proved by exhausting Cn by an increasing family of such sets
E0 ⊂ E1 ⊂ E2 ⊂ · · · with Ek+1 = Conv(Ek ∪ rkB), and exhausting X by an
increasing family of strongly pseudoconvex domains D0 ⊂ D1 ⊂ D2 ⊂ · · · .

In the inductive step, we assume that fk(Dk \ Dk−1) ⊂ Ωk := Cn \ Ek. Keeping
this property, we use the lemma to push the image of bDk into Ωk+1, with
approximation on Dk−1. Next, we use the Oka property of Ωk+1 to
approximate fk on Dk by a map fk+1 : X → Cn with fk+1(X \ Dk) ⊂ Ωk+1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of BCEH in the plane

The following lemma characterizes sets with BCEH in the plane R2. For
radially symmetric functions ϕ, the characterization holds in any dimension.

Lemma
Let ϕ : R → R+ be a convex function of class C 1 with at least linear growth.
Then the epigraph E = {(x, y) : y ≥ ϕ(x)} ⊂ R2 has BCEH if and only if

lim
x→+∞

(
x − ϕ(x)

ϕ′(x)

)
= +∞ and lim

x→−∞

(
x − ϕ(x)

ϕ′(x)

)
= −∞.

Example
Let g : R → (−1, 1) be an odd continuous strictly increasing function with
limx→+∞ g(x) = 1 and

∫ ∞
0 (1 − g(x))dx = +∞. Then, ϕ(x) =

∫ x
0 g(t)dt

(x ∈ R) grows linearly and satisfies the condition in the lemma.
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The Oka property for sections of elliptic submersions

Gromov (1989) outlined a proof of the following Oka principle.
Prezelj and I provided complete details (Math. Ann. 2000 & 2002).

Theorem (Gromov 1989; F. and Prezelj, 2002)
If h : Z → X is an elliptic holomorphic submersion onto a Stein base, then
sections X → Z satisfy the parametric Oka principle.

Ellipticity of h means that every point p ∈ X has an open neighbourhood
U ⊂ X such that the restricted submersion h : Z|U → U admits a
fibre-dominating spray: a holomorphic vector bundle π : E → ZU and a
holomorphic map s : E → ZU such that

h ◦ s = h and ds0z : Ez → VTzZ = ker dhz is surjective for every z ∈ ZU.

F., 2002 The same result holds for sections of subelliptic submersions (replace
dominating sprays by finite dominating families of sprays).

F., 2010 The same result holds for sections of a stratified subelliptic
submersion over a reduced Stein space.
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h-Runge theorem for sections of submersions with
dominating sprays

The following result is essential in the proof of Gromov’s Oka principle. The
proof is very similar to the one for maps to elliptic manifolds, given at the
beginning of this lecture.

Theorem (Gromov 1989: HAP)
Let h : Z → X be a holomorphic submersion with a holomorphic vector bundle
π : E → Z and a holomorphic spray s : E → Z such that

h ◦ s = h and ds0z : Ez → VTzZ = ker dhz is surjective for every z ∈ Z.

Let K ⊂ L be Stein compacts in X, and assume that K is O(L)-convex.

Given a holomorphic section f0 : L → Z and a homotopy of holomorphic
sections ft : K → Z (t ∈ [0, 1]), we can approximate {ft} uniformly on K by a
homotopy f̃t : L → Z (t ∈ [0, 1]) of holomorphic sections with f̃0 = f0.

The fully parametric version of HAP holds as well.
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HAP implies the Oka principle for sections

The homotopy approximation property, HAP, is a natural replacement for, and
a generalization of the convex approximation property, CAP, that is used for
sections holomorphic fibre bundles. We have the following analogue of the
main theorem on Oka manifolds.

Theorem (F., Theorem 6.6.6 in my book)
If h : Z → X is a holomorphic submersion onto a Stein space X which satisfies
the parametric version of HAP on small open subsets of X, then sections
X → Z satisfy the parametric Oka principle.

A similar result holds in the stratified case.

The proof uses a considerably more complex inductive procedure than in the
case of locally trivial fibrations. One forms a complex of holomorphic sections
and homotopies between them, parameterized by the nerve of a covering of X,
and inductively assembles the complex of sections into a global section.
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Applications

Sections avoiding analytic subvarieties: Let E → X be a holomorphic
vector bundle with fibre Ex ∼= Ck, and let Σ ⊂ E be a tame complex
subvariety with fibres Σx ⊂ Ex of codimension ≥ 2. (Algebraic
subvarieties are tame.) Then, E \ Σ → X is an elliptic submersion.
Hence, sections X → E avoiding Σ satisfy POP.

Removal of intersections of maps X → Cn and X → CPn with closed
algebraic subvarieties of codimension ≥ 2.
Special case: complete intersections.

Eliashberg and Gromov, 1992; Schürmann, 1997: Existence of proper
holomorphic embeddings Xn ↪→ C[ 3n

2 ]+1 and of proper holomorphic
immersions Xn ↪→ C[ 3n+1

2 ] when Xn is Stein (and n > 1 for embeddings).

h-principle for holomorphic immersions Xn → CN, N > n.
Open problem: Does every Stein manifold X of dimension n with trivial
tangent bundle TX admits a holomorphic immersion Xn → Cn?
This is true for n = 1 by Gunning and Narasimhan (1967).
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Solution of the Gromov–Vaserstein Problem

Theorem (Ivarsson and Kutzschebauch, Annals of Math. 2013)
Let X be a Stein manifold and f : X → SLm(C) be a null-homotopic
holomorphic map. There exist k ∈ N and holomorphic maps
G1, . . . ,Gk : X → Cm(m−1)/2 such that

f (x) =
(

1 0
G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 Gk(x)
0 1

)
.

The proof uses a theorem of Vaserstein (1988) on factorization of continuous
maps and the Oka principle for sections of stratified elliptic submersions.

Ivarsson, Kutzschebauch, Løw, Schott, 2019–2022 Factorization of
holomorphic symplectic matrices into elementary factors.

The algebraic case: Cohn 1966 The matrix(
1 − z1z2 z2

1
−z2

2 1 + z1z2

)
∈ SL2(C[z1, z2])

does not decompose as a finite product of unipotent matrices.

Suslin 1977 For m ≥ 3 (and any n) any matrix in SLm(C[n]) decomposes as a
finite product of unipotent matrices.
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Oka-1 manifolds

The following notion was introduced and studied by Alarón and myself in
a paper posted to arXiv in March 2023.

Definition
A connected complex manifold X with a complete distance function distX
is an Oka-1 manifold if for any open Riemann surface R, Runge
compact set K in R, discrete sequence ai ∈ R without repetitions,
continuous map f : R → X which is holomorphic on a neighbourhood of
K ∪⋃

i{ai}, number ϵ > 0, and integers ki ∈ N = {1, 2, . . .} there is a
holomorphic map F : R → X which is homotopic to f and satisfies

1 supp∈K distX(F(p), f(p)) < ϵ and
2 F agrees with f to order ki at the point ai for every i.

A not necessarily connected manifold X is Oka-1 if every component of X
is such.
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Dominability at most points implies Oka-1

Theorem
Assume that X is a complex manifold of dimension n > 1 such that for
every point x ∈ X \ E in the complement of a closed subset E with
H2n−1(E) = 0 there is a holomorphic map f : Cn → X with f(0) = x and
df0(Cn) = TxX. Then, X is an Oka-1 manifold.

The condition on X in the theorem is called dense dominability. We
have that

Oka =⇒ densely dominable =⇒ Oka-1 =⇒ nonhyperbolic.

These conditions are pairwise equivalent for a Riemann surface X.

Theorem
Every Kummer surface and every elliptic K3 surface is Oka-1.
Every compact rationally connected manifold is Oka-1.


