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Oka manifolds

A complex manifold Y is called an Oka manifold if maps X → Y from any
Stein manifold (or reduced Stein space) X satisfy the following conditions:

every continuous map f0 : X → Y can be homotopically deformed to a
holomorphic map f : X → Y .

If in addition f0 : X → Y is holomorphic on a compact O(X )-convex set
K and on a closed complex subvariety X ′ of X , then there is a homotopy
{ft}t∈[0,1] from f0 to a holomorphic map f1 : X → Y consisting of maps

which are holomorphic near K , close to f0 on K , and agree with f0 on X ′.

The analogous properties hold for continuous families of maps X → Y .

These properties say that, in the absence of topological obstructions,
holomorphic maps from Stein manifolds to Oka manifolds satisfy the same
conditions as holomorphic functions on Stein manifolds.
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A brief history

The concept of an Oka manifold evolved during the 70-year period 1939–2009.

Oka 1939 The holomorphic classification of line bundles on a domain of
holomorphy coincide with the topological one. (C∗ = C \ {0} is Oka.)

Grauert 1958 Every complex Lie group G and every complex
homogeneous manifold G/H is an Oka manifold.

The holomorphic classification of principal G -bundles on a Stein space
coincides with the topological classification.

Gromov 1989 Every elliptic complex manifold is an Oka manifold.

If Y admits complete holomorphic vector fields which span the tangent
space at every point (such a manifold is called flexible after Arzhantsev
et al.), then Y is elliptic and hence Oka.

F. 2006, 2009 A complex manifold Y is Oka iff it satisfies the

Convex approximation property (CAP): Every holomorphic map K → Y
from a compact convex set K in Cn is a limit of entire maps Cn → Y .

I proved that most Oka-type conditions are equivalent.



Another characterization of Oka manifolds

Kusakabe 2021 A complex manifold Y is Oka iff every holomorphic map
f : K → Y from a compact convex set K ⊂ Cn is the core map of a
dominating holomorphic spray F : K ×CN → Y for some N ≥ dimY :

F (· , 0) = f and
∂
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F (ζ, z) : CN → Tf (ζ)Y is surjective for every ζ ∈ K .

This is a restricted version of condition Ell1 introduced and studied by Gromov
in 1986 and 1989. Kusakabe proved that

Ell1 =⇒ CAP.

The implications CAP⇐⇒ Oka =⇒ Ell1 were known before (F. 2006).

As an application, Kusakabe proved in the same paper

The localization theorem for Oka manifolds: If a complex manifold Y is a
union of Zariski-open Oka domains Y \ Ai , with every Ai a closed complex
subvariety of Y , then Y is Oka.



Oka maps

A holomorphic map π : E → B is said
to have the Oka property if for any
holomorphic map f : X → B from a
Stein manifold, liftings X → E of f
satisfy the Oka property with
approximation and interpolation.
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The Oka property of a holo. submersion E → B is local on the base B.

A holomorphic map π : E → B of complex manifolds is an Oka map if it
satisfies the Oka property and is a topological (Serre) fibration.

F, 2006–2010 A holomorphic fibre bundle with an Oka fibre is an Oka map.
If E → B is an Oka map then E is Oka iff B is Oka.

Kusakabe, 2021 If a complex manifold Y admits holomorphic maps
πi : Y → Bi with the Oka property such that the kernels of the differentials
dπi span TY at every point, then Y is an Oka manifold.



Oka complements of holomorphically convex sets

Kusakabe 2020 [Annals of Math, to appear]

If K is compact polynomially convex set in Cn (n > 1) then Cn \K is an
Oka domain. The same holds for complements of holomorphically convex
sets in any Stein manifold having Varolin’s density property.

If S is a closed polynomially convex subset of Cn such that

S ⊂
{
(z ,w) ∈ Cn−2 ×C2 : |w | ≤ c(1 + |z |)

}
for some c > 0, then Cn \ S is an Oka manifold.

Let π : Y → Z be a holomorphic fibre bundle whose fibre is a Stein
manifold with the density property, and let S ⊂ Y be a family of compact
holomorphically convex sets. Then, π : Y \ S → Z has the Oka property.

Wold & F., 2023 For most closed convex sets K ⊂ Cn (n > 1), Cn \K is Oka.
If K is a compact polynomially convex set in Cn and H is a complex
hyperplane in Cn, then Cn \ (H ∪K ) is Oka.

F. 2023 If K ⊂ Cn (n > 1) is polynomially convex then CPn \K is Oka.



Our new work with Kusakabe

Let π : E → X be a holomorphic vector bundle on a connected compact
complex manifold X , and let h be a hermitian metric on E . Denote by |e|h the
norm of e ∈ E . If E is a line bundle then h : E → [0, ∞) is a function.

Problem
Given a hermitian line bundle (E , h)→ X, when is the disc bundle

∆h(E ) = {e ∈ E : |e|h < 1}

an Oka manifold? In particular, when does the zero section
E (0) = {e ∈ E : |e|h = 0} admit a basis of open Oka neighbourhoods?

What about vector bundles of rank > 1?



Some observations

Let π : E → X be a holomorphic vector bundle.

The total space E is Oka if and only if the base X is Oka.

For any c > 0 the disc bundle ∆h,c (E ) = {|e|h < c} is biholomorphic to
∆h(E ) by a dilation in the fibres, and hence an affirmative answer to the
first question implies the same for the second one.

Since ∆h(E ) admits a holomorphic deformation retraction onto the zero
section E (0) ∼= X , we infer that if ∆h(E ) is an Oka manifold then so is X .

If X is compact then the answer to both questions is negative for any
hermitian metric h on the trivial bundle E = X ×Cr .

Indeed, ∆h(E ) ⊂ X × cBr for some c > 0, where Br is the unit ball.

Clearly, X × cBr admits a bounded plurisubharmonic function which is
nonconstant on every open subset, so it does not contain any Oka
domains.



Some basic facts about line bundles

Holomorphic isomorphism classes of line bundles on a complex manifold X
form the Picard group

Pic(X ) = H1(X , O∗).

There is a natural homomorphism c1 : Pic(X )→ H2(X , Z) coming from the
exponential sheaf sequence. We have

Pic(CPn) ∼= H2(CPn, Z) ∼= Z.

We write OCPn (k) for the line bundle corresponding to k ∈ Z.

OCPn (1) is the hyperplane section bundle, and
OCPn (−1) is the universal bundle.

The bundle OCPn (k) is the k-th tensor power of OCPn (1).

The dual bundle of OCPn (k) is OCPn (−k).

The bundle OCPn (k) is positive if k > 0 and negative if k < 0.



Curvature and pseudoconvexity

Let φi ,j ∈ O∗(Ui ,j ) be a transition 1-cocycle of a line bundle E → X . A
hermitian metric h on E is given on any line bundle chart (x , t) ∈ Ui ×C by

h(x , t) = hi (x)|t|2,

where the functions hi : Ui → (0,+∞) satisfy the compatibility conditions

hi (x)|φi ,j (x)|2 = hj (x) for x ∈ Ui ,j = Ui ∩Uj .

In the tensor power (E⊗k , h⊗k ), the functions φi ,j and hi are raised to power k.

The bundle (E , h) is curved positively (resp. negatively) if the real (1, 1)-form

iΘh = −i∂∂̄ log hi = −i ∂∂̄ log h = −1

2
ddc log h

is positive (resp. negative). The following conditions are equivalent.

(i) The metric h is semipositive: iΘh ≥ 0.

(ii) The function − log h is plurisubharmonic on E .

(iii) The disc bundle ∆h(E ) = {h < 1} is pseudoconcave along {h = 1}.



The first result: Oka tubes on projective spaces

Kusakabe & F., 2023 Given a positive holomorphic line bundle E = OCPn (k)
on CPn (n ≥ 1, k ≥ 1) and a semipositive hermitian metric h on E (iΘh ≥ 0),
the following assertions hold.

(a) The punctured disc bundle ∆∗h(E ) = {e ∈ E : 0 < |e|h < 1} is an Oka
manifold, and the disc bundle ∆h(E ) = {e ∈ E : |e|h < 1} is an Oka-1
manifold (i.e., it satisfies the basic Oka property for maps from open
Riemann surfaces).

(b) If n ≥ 2 or E = OCPn (1) then ∆h(E ) is an Oka manifold.

(c) The domain Dh(E ) = E \ ∆h(E ) = {|e|h > 1} is Kobayashi hyperbolic.

Given a negative holomorphic line bundle E = OCPn (k) (k ≤ −1) and a
seminegative hermitian metric h on E (iΘh ≤ 0), the following hold.

(a’) The punctured disc bundle ∆∗h(E ) is Kobayashi hyperbolic.

(b’) The domain Dh(E ) = E \ ∆h(E ) is Oka.

These results hold if the metric h is continuous and semipositive (resp.
seminegative) in the weak sense. They also hold for the restrictions of these
bundles to any affine Euclidean chart in CPn.



Proof of the theorem for the hyperplane section bundle

Let π : E = OCPn (1)→ CPn be the hyperplane section bundle.

Consider H = CPn as the hyperplane at infinity in CPn+1 = Cn+1 ∪H. Let
0 ∈ Cn+1 denote the origin. Then:

the total space of E is CPn+1 \ {0},
the zero section is E (0) = H, and

the fibres of π are lines through 0, punctured at 0.

If h is a semipositive hermitian metric on E then ∆h(E ) = {h < 1} is a
pseudoconcave domain in CPn+1 containing H = {h = 0}, and

K = {h ≥ 1} = {1/h ≤ 1} ⊂ Cn+1

is a compact set with disc fibres, containing 0 in the interior.
Since 1/h = e− log h is plurisubharmonic on Cn+1, K is polynomially convex, so

∆h(E ) = CPn+1 \K and ∆∗h(E ) = Cn+1 \K

are Oka domains.

We do not know a comparably simple proof for bundles OCPn (k) with k > 1.



Special hermitian line bundles on CPn

Denote by z = (z0, z1, . . . , zn) the Euclidean coordinates on Cn+1 and by
[z ] = [z0 : z1 : · · · : zn] the homogeneous coordinates on CPn.

On the affine chart Ui = {[z ] ∈ CPn : zi 6= 0} ∼= Cn (i = 0, 1, . . . , n) we have
the affine coordinates z i = (z0/zi , . . . , zn/zi ), where zi/zi = 1 omitted.

On E = OCPn (k), we have φi ,j (z) = (zj/zi )k . Hence,

h([z ], t) =
|t|2

(1 + |z i |2)k
=
|zi |2k
|z |2k

|t|2 for [z ] ∈ Ui and t ∈ C. (1)

is a hermitian metric on E . Note that h = h̃⊗k where h̃ is the metric (1) on
OCPn (1). We have

iΘh = k i ∂∂̄ log
(
|z |2

)
,

which is k-times the Fubini–Study form. The disc tube

∆h(E )|Ui
= {(z , t) ∈ Cn ×C : |t| < (1 + |z |2)k/2}

is a Hartogs domain with radius of order |z |k as |z | → ∞.

Hence, every hermitian metric on OCPn (k) grows/decays at this rate at infinity.



Oka Hartogs domains

This shows that for every semipositive hermitian metric h on E = OCPn (k)
(k ≥ 1) and affine chart Cn ∼= U ⊂ CPn, the restricted disc bundle ∆h(E )|U is
a pseudoconcave Hartogs domain

Ω = {(z , t) ∈ Cn ×C : |t| < φ(z)},

where φ > 0 is a positive function on Cn such that log φ is plurisubharmonic
and there is a constant c > 0 such that

φ(z) ≥ c (1 + |z |) holds for all z ∈ Cn.

Lemma
If n ≥ 2 then every domain Ω as above is an Oka domain.

Since ∆h(E ) is covered by Zariski open Oka domains ∆h(E )|U for affine charts
U ⊂ CPn, it follows that ∆h(E ) is Oka by Kusakabe’s localization theorem.



Proof of the lemma, 1

Let T : Cn+1 = Cn ×C→ C denote the projection T (z , t) = t. Set

S = Cn+1 \Ω = {(z , t) ∈ Cn ×C : |t| ≥ φ(z)}
= {(z , t) ∈ Cn ×C∗ : log φ(z)− log |t| ≤ 0}.

Since log |t| is harmonic on t ∈ C∗,

ψ(z , t) = log φ(z)− log |t| is plurisubharmonic on Cn ×C∗.

Since φ grows at least linearly, the restricted projection T |S : S → C is proper.
It follows that for every r > 0 the set

Sr = {(z , t) ∈ S : |t| ≤ r} = {(z , t) ∈ Cn ×C∗ : ψ(z , t) ≤ 0, log |t| ≤ log r}

is compact and O(Cn ×C∗)-convex. By a theorem of Kusakabe,

T : (Cn ×C∗) \ S → C∗ has the Oka property.

Since S ∩ {t = 0} = ∅, the projection T : Cn+1 \ S → C has the Oka property
as well. (For a holomorphic submersion, the Oka property is local on the base.)
Unfortunately, this is not a topological fibration, hence not an Oka map.



Proof of the lemma, 2

To complete the proof, we consider tilted projections Cn+1 → C.

Since the function φ grows at least linearly at infinity, we have Λ ∩ S = ∅ for
every complex hyperplane Λ ⊂ Cn+1 sufficiently close to Λ0 = {t = 0}, and
there is a path Λs (s ∈ [0, 1]) of such hyperplanes connecting Λ0 to Λ.

For any such Λ the set Sr is also O(Cn+1 \Λ)-convex. (Apply Oka’s criterion
for holomorphic convexity.) Hence, S is O(Cn+1 \Λ)-convex.

Let TΛ : Cn+1 → C be a linear projection with (TΛ)
−1(0) = Λ. If Λ is close

to Λ0 then the restricted projection TΛ|S : S → C is still proper. As before, we
infer that TΛ : Cn+1 \ S → C has the Oka property.

Applying this conclusion with two linearly independent projections, we see that
Cn+1 \ S = Ω is an Oka domain.

This proves that ∆h(E ) is Oka in all bundles OCPn (k) for n ≥ 2, k ≥ 1.



The Oka property of ∆∗h(E )

We have seen that the puncture disc bundle ∆∗h(E ) = {0 < h < 1} is Oka
when E = OCPn (1), n ≥ 1, is the hyperplane section bundle.

For every holomorphic line bundle E → X the map t 7→ tk in the fibres defines
a surjective holomorphic map Ψk : E → E⊗k which is branched along the zeros
section E (0), and

Ψk : E \ E (0)→ E⊗k \ (E⊗k )(0)
is a k-sheeted unbranched holomorphic covering.

Furthermore,
Ψk : ∆∗h(E )→ ∆∗h⊗k (E

⊗k )

is a holomorphic covering projection.

Since the class of Oka manifolds is closed under nonbranched holomorphic
coverings, the theorem for OCPn (k) (k > 1) follows from the one for OCPn (1).



The dual bundle

Let φi ,j be a transition 1-cocycle defining a line bundle E → X . We can
represent the dual bundle E ∗ = E−1 of as follows.

Compactifying each fibre Ex
∼= C (x ∈ X ) with the point at infinity yields a

holomorphic fibre bundle Ê → X with fibre CP1 having a well-defined
∞-section E (∞) ∼= X , disjoint from E (0).

Set Ẽ = Ê \ E (0)→ X . If t ∈ C is a coordinate on a fibre Ex then u = t−1 is
a coordinate on Ẽx , and the transition functions are φ−1i ,j = 1/φi ,j .

Hence, (Ẽ , h−1) is a hermitian holomorphic line bundle on X with zero section
Ẽ (0) = E (∞), isomorphic to the dual line bundle (E ∗, h∗).

Under this identification, the identity map on Ê induces a fibre preserving
biholomorphism

I : E \ E (0)→ E ∗ \ E ∗(0)
mapping ∆∗h(E ) = {0 < h < 1} onto Dh∗ (E

∗) = {h∗ > 1}, and

mapping Dh(E ) = {h > 1} onto ∆∗h∗ (E
∗) = {0 < h∗ < 1}.



Conclusion of proof of the theorem

Note that (E , h) is semipositive iff (E ∗, h∗) is seminegative; in fact,

Θh−1 = −Θh.

If E = OCPn (k) with k > 0 then E ∗ = OCPn (−k) is negative.

Hence, in a seminegative line bundle (E ∗, h∗) on CPn, the exterior tube
Dh∗ (E

∗) = {h∗ > 1} is Oka (since it is biholomorphic to ∆∗h(E )).

Furthermore, the disc tube ∆h∗ (E
∗) is pseudoconvex, and the zero section

E ∗(0) is the maximal compact complex subvariety of E ∗, which can be blown
down to a point according to Grauert.

This shows that ∆∗h∗ (E
∗) (and hence Dh(E )) is Kobayashi hyperbolic.



Oka disc bundles on certain projective manifolds

Varolin 2001 A Stein manifold X has the density property if every
holomorphic vector field on X can be approximated uniformly on compacts by
sums (and commutators) of C-complete holomorphic vector fields.

Theorem
Let π : E → CPn be a positive holomorphic line bundle with a hermitian
metric h, and let Ui

∼= Cn (i = 0, . . . , n) be affine charts covering CPn.
If X ⊂ CPn is a compact complex submanifold such that iΘh(x) ≥ 0 for all
x ∈ X and X ∩Ui has the density property for every i =, then

∆h(E )|X = {e ∈ E : π(e) ∈ X , |e|h < 1} is an Oka manifold.

is an Oka manifold, while Dh(E )|X = {e ∈ E |X : |e|h > 1} is hyperbolic.

An example is the quadric

X = {[z0 : z1 : · · · : zn] ∈ CPn : z20 + z21 + · · ·+ z2n = 0}, n ≥ 3.

The intersection of X with any affine chart zi = 1 is the complexified sphere,
which has the density property (Kaliman and Kutzschebauch 2008).



Line bundles on Grassmannians

Given integers 1 ≤ m < n we denote by Gm,n the Grassmann manifold of
complex m-dimensional subspaces of Cn.

The Plücker embedding P : Gm,n ↪→ CPN , with N = (nm)− 1, sends an

m-plane span(v1, . . . , vm) ∈ Gm,n to the complex line in CN+1 given by the
vector v1 ∧ · · · ∧ vm ∈ Λm(Cn) ∼= CN+1. The intersection of the image
P(Gm,n) ⊂ CPN with an affine chart CN ∼= U ⊂ CPN is biholomorphic to

Cm(n−m), which has the density property if m(n−m) > 1.

Furthermore, the map

P∗ : Pic(CPN )→ Pic(Gm,n) ∼= Z

is an isomorphism, and positive line bundles on CPN pull back to positive line
bundles on Gm,n.

If m(n−m) > 1, it follows that for every positive holomorphic line bundle E
on Gm,n and semipositive hermitian metric h on E the disc bundle
∆h(E ) = {e ∈ E : |e|h < 1} is an Oka manifold



The most general result

Theorem
Let (E , h) be a semipositive hermitian holomorphic line bundle on a compact
complex manifold X .

Assume that for each point x ∈ X there exists a divisor D ∈ |E | whose
complement X \D is a Stein neighbourhood of x with the density property.

Then, the disc bundle ∆h(E ) is an Oka manifold while Dh(E ) = E \ ∆h(E ) is a
pseudoconvex Kobayashi hyperbolic domain.

Idea of proof: Fix D. It suffices to show that ∆h(E )|X\D is Oka. Note that

E |X\D ∼= (X \D)×C. Since the complete linear system |E | is base-point-free,

there are a holomorphic map Φ : X → CPN and a hyperplane H ⊂ CPN such
that

E = Φ∗(O
CPN (1)) and Φ−1(CPN \H) = X \D.

This shows that the pseudoconvex Hartogs domain ∆h(E )|X\D ⊂ (X \D)×C

grows at least linearly. Since the Stein manifold X \D has the density property,
we can apply the previous proof with projections T : (X \D)×C→ C close to
the standard one.



Griffiths seminegative vector bundles of higher rank

Theorem
If (E , h) is a Griffiths seminegative hermitian holomorphic vector bundle of rank
> 1 on a (not necessarily compact) Oka manifold X , then
Ωh(E ) = {e ∈ E : |e|h > 1} is a pseudoconcave Oka domain.

Proof. Let π : E → X be the bundle projection and set

S = {e ∈ E : |e|h ≤ 1}.

For each holomorphic chart ψ : U → Bn from an open set U ⊂ X onto the unit
ball Bn ⊂ Cn (n = dimX ) and each 0 < r < 1,

{e ∈ S |U : |ψ ◦ π(e)| ≤ r} is O(E |U )-convex.

By a theorem of Kusakabe, the restricted projection π : Ωh(E ) = E \ S → X
has the Oka property.

This projection is also a topological fibre bundle, and hence an Oka map.

Since X is an Oka manifold, it follows that Ωh(E ) is an Oka manifold as well.



The inverse Levi problem for Oka manifolds

Problem
Let (E , h) be a Griffiths semipositive hermitian holomorphic vector bundle of
rank > 1 over an Oka manifold X . Let

φ(e) = |e|2h, e ∈ E .

Is the tube {φ < 1} an Oka manifold?

The boundary {φ = 1} of this domain is pseudoconcave in the horizontal
directions and strongly pseudoconvex in the fibre directions.

There is no example in the literature of a non-pseudoconcave Oka domain.

Problem (The inverse Levi problem for Oka manifolds)

Is every Oka domain with smooth boundary pseudoconcave?



Oka properties and metric positivity

A heuristic principle: Oka properties are related to metric positivity.

Mori 1979, Siu & Yau 1980, Mok 1988 Every compact Kähler manifold with
semipositive holomorphic bisectional curvature is Oka.

Ustinovskiy 2019 If (X , h) is a compact hermitian manifold whose
holomorphic bisectional curvature is semipositive everywhere and positive at a
point, then X is a projective space, hence Oka.

X. Yang 2018 Every compact Kähler manifold with positive holomorphic
sectional curvature is rationally connected and projective.

Alarcón & F. 2023 Every rationally connected projective manifold is an Oka-1
manifold (i.e., it has an abundance of open holomorphic curves).

It is not known whether every such manifold is Oka. If it is, then by a result of
Matsumura 2022 and invariance of Oka manifolds under holomorphic fibre
bundles with Oka fibres, the same is true for every projective manifold with
semipositive holomorphic sectional curvature. However, this is likely false.
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