MINIMAL SURFACES WITH SYMMETRIES

Franc Forstnerič

Univerza v Ljubljani

Executive Agency

Established by the European Commission

University of Ljubljana, 19 December 2023

Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this work, we study the existence of orientable minimal surfaces in Euclidean spaces \mathbb{R}^n , $n \geq 3$, with a given finite group of symmetries induced by orthogonal transformations of the ambient space.

We show in particular that any finite group is a group of symmetries of a minimal surface.

F. Forstnerič: Minimal surfaces with symmetries. Preprint, August 2023. https://arxiv.org/abs/2308.12637

Euler 1744; Lagrange 1762 Let (\mathbb{R}^n, ds^2) be the flat Euclidean space. A smooth immersed surface $F: X \to \mathbb{R}^n \ (n \ge 3)$ is a **minimal surface** if it is a **stationary point of the area functional**. Any small enough piece of such a surface has the smallest area among all surfaces with the same boundary.

Meusnier, 1776 A surface in \mathbb{R}^n is a minimal surface if and only if its mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion $F: X \to \mathbb{R}^n$ determines on X a Riemannian metric $g = F^*ds^2$, which makes F an isometry, and hence a **conformal map**. By **Gauss**, there are local **isothermal coordinates** (x,y) at any point of X in which

$$g = \lambda (dx^2 + dy^2)$$
 for some function $\lambda > 0$.

Transition maps between isothermal charts are conformal diffeomorphisms of plane domains, hence holomorphic or antiholomorphic. This endows X with the structure of a **conformal surface**, and of a **Riemann surface** if X is oriented.

Minimal surfaces are given by conformal harmonic immersions

If $F: X \to \mathbb{R}^n$ is a **conformal immersion**, then

F parameterizes a minimal surface \iff F is a harmonic map \iff F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X, this is the **Laplace equation**

$$\Delta F = F_{xx} + F_{yy} = 4 \frac{\partial^2 F}{\partial \bar{z} \partial z} = 0.$$
 (1)

Write $\partial F = \frac{\partial F}{\partial z} dz = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) (dx + i dy)$. Then, $\Re(2\partial F) = dF$ and

$$\Delta F = 0 \iff \partial F = (\partial F_1, \dots, \partial F_n)$$
 is a holomorphic 1-form on X .

It is elementary see that an immersion $F = (F_1, \dots, F_n)$ is conformal iff

$$\sum_{i=1}^{n} (\partial F_i)^2 = 0. \tag{2}$$

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).

The Enneper-Weierstrass representation of minimal surfaces

Let $A \subset \mathbb{C}^n$ denote the **null quadric**

$$A = \{z = (z_1, \dots, z_n) : z_1^2 + z_2^2 + \dots + z_n^2 = 0\},\$$

and let $\overline{A} \subset \mathbb{CP}^n$ denote its projective closure. Pick a nontrivial holomorphic 1-form θ on X (possibly with zeros). If $F: X \to \mathbb{R}^n$ is a minimal surface then

$$2\partial F = f\theta$$
,

where $f=(f_1,\ldots,f_n):X \to \overline{A}\setminus\{0\}$ is a holomorphic map such that

$$\Re \oint_C f\theta = \oint_C dF = 0 \text{ for every closed curve } C \subset X.$$
 (3)

Conversely, given f as above such that $f\theta$ is a nowhere vanishing holomorphic 1-form on X satisfying (3), the map $F: X \to \mathbb{R}^n$ given by

$$F(x) = \Re \int_{*}^{x} f\theta$$

is a conformal harmonic immersion.

Symmetries and *G*-equivariant maps

A smooth map $T: \mathbb{R}^n \to \mathbb{R}^n$ maps minimal surfaces to minimal surfaces iff T is a **rigid map** — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on \mathbb{R}^n by rigid transformations. A surface $S\subset\mathbb{R}^n$ is G-invariant if

$$g(S) = S$$
 for every $g \in G$.

If $F: X \to S = F(X) \subset \mathbb{R}^n$ is an injective conformal immersion, then G also acts on X by conformal diffeomorphisms such that F is G-equivariant:

$$F \circ g = g \circ F$$
 for every $g \in G$.

If X is a Riemann surface and every $g \in G$ preserves the orientation on S = F(X), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G-equivariant immersion is a G-invariant surface.

*** Which groups arise in this way for minimal surfaces? ***

Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in \mathbb{R}^3 are planes and catenoids.

$$x^{2} + y^{2} = \cosh^{2} z$$
$$(t, z) \mapsto (\cos t \cdot \cosh z, \sin t \cdot \cosh z, z)$$

The symmetries consist of rotations in the (x, y)-plane and the reflection $z \mapsto -z$.

The helicoid (Archimedes' screw)

Meusnier 1776 The helicoid is a ruled minimal surface.

$$x = \rho \cos(\alpha z), \quad y = \rho \sin(\alpha z); \quad (z, \rho) \in \mathbb{R}^2.$$

The group $\mathbb Z$ acts on the helicoid by translations $z\mapsto z+k2\pi/\alpha$. Also, $\mathbb R$ acts by translations and simultaneous rotations.

Scherk's first surface

Scherk, 1835 The first Scherk's surface is doubly periodic, with the symmetry group \mathbb{Z}^2 of translations.

Its main branch is a graph over the square $P = (-\pi/2, \pi/2)^2$ given by

$$x_3 = \log \frac{\cos x_2}{\cos x_1}$$

Finn and Osserman, 1964

Sherk's surface S has the biggest absolute Gaussian curvature at $0 \in \mathbb{R}^3$ over all minimal graphs over P tangent to S at 0.

The main theorem

Let X be a connected open Riemann surface and $G \subset \operatorname{Aut}(X)$ be a finite group of holomorphic automorphisms. The stabiliser of $X \in X$ is

$$G_X = \{g \in G : gx = x\}.$$

Assume that G also acts on \mathbb{R}^n by orthogonal transformations in $O(n, \mathbb{R})$.

Theorem

The following are equivalent:

- **a** For every nontrivial stabiliser G_X $(x \in X)$ there is a G_X -invariant 2-plane $\Lambda_X \subset \mathbb{R}^n$ on which G_X acts effectively by rotations.
- **1** There exists a G-equivariant conformal minimal immersion $F: X \to \mathbb{R}^n$:

$$F(gx) = gF(x), \quad x \in X, \ g \in G.$$

In particular, such F exists if the group G acts freely on X.

(b)
$$\Longrightarrow$$
 (a)

Let $x \in X$ be a point with a nontrivial stabiliser G_X of order $k = |G_X| > 1$.

There is a local holomorphic coordinate z on X around x, with z(x)=0, in which a generator of $G_x=\langle g\rangle$ is the rotation

$$gz = e^{i\phi}z$$
, $\phi = 2\pi/k$.

Assume that $F:X \to \mathbb{R}^n$ is an immersion. Differentiating $g \circ F = F \circ g$ gives

$$g \circ dF_X = dF_X \circ dg_X : T_X X \to \Lambda_X := dF_X (T_X X) \subset \mathbb{R}^n.$$

Since $dF_X: T_XX \to \Lambda_X$ is a linear isomorphism, we see that $\Lambda_X \subset \mathbb{R}^n$ is a G_X -invariant plane on which g acts as the rotation R_{ϕ} , so condition (a) holds.

Remark: Condition (a) implies the existence of a flat (linear) G_X -equivariant conformal minimal immersion from a neighbourhood of $x \in X$ to \mathbb{R}^n .

The main work is to globalize this construction, thereby proving (a) \Longrightarrow (b).

The h-principle for *G*-equivariant minimal surfaces

Corollary

Assume that G is a finite subgroup of the orthogonal group $O(n, \mathbb{R})$, $n \ge 3$.

Let $X \subset \mathbb{R}^n$ be a smoothly embedded, connected, oriented, noncompact, G-invariant surface such that every $g \in G$ preserves the orientation on X, and g induces the identity map on X only if $g = 1 \in G$.

Then, X endowed with the complex structure induced by the embedding $X \hookrightarrow \mathbb{R}^n$ admits a G-equivariant conformal minimal immersion $F: X \to \mathbb{R}^n$.

Proof.

The given embedding $F_0: X \hookrightarrow \mathbb{R}^n$ induces on X a unique structure of a Riemann surface and an action of G by holomorphic automorphisms so that $F_0: X \hookrightarrow \mathbb{R}^n$ is conformal and G-equivariant.

Hence, condition (a) in the Theorem holds by the argument on the previous page, so we can change F_0 to a conformal minimal immersion.

Every finite group in Aut(X) is a symmetry group of a minimal surface

Corollary

For every connected open Riemann surface X and finite subgroup $G \subset \operatorname{Aut}(X)$ of order $n \geq 2$ there are an effective action of G by orthogonal transformations on \mathbb{R}^{2n} and a G-equivariant conformal minimal immersion $F: X \to \mathbb{R}^{2n}$.

Proof.

Consider the representation of G on \mathbb{C}^n with the basis vectors e_g , $g\in G$, where $h\in G$ acts by $he_g=e_{hg}$. For a fixed $g\in G$ of order k>1 let Σ denote the k-dimensional \mathbb{C} -linear subspace of \mathbb{C}^n spanned by the vectors e_{g^j} for $j=0,1,\ldots,k-1$, corresponding to the elements of the cyclic group $\langle g \rangle$.

Then, Σ is g-invariant, and the eigenvalues of the \mathbb{C} -linear isomorphism $g:\Sigma\to\Sigma$ are precisely all the k-th roots of 1. In particular, there is a vector $0\neq w\in\Sigma$ with $gw=\mathrm{e}^{\mathrm{i}2\pi/k}w$. Identifying \mathbb{C}^n with \mathbb{R}^{2n} , the 2-plane $\Lambda\subset\mathbb{R}^{2n}$ determined by the complex line $\mathbb{C}w$ is g-invariant, and g acts on it as a rotation by the angle $2\pi/k$. Hence, condition (a) in the Theorem holds.

Let $S\cong \mathbb{CP}^1$ be the unit sphere in \mathbb{R}^3 . The group $SO(3,\mathbb{R})$ acts on S by orientation preserving isometries, hence by holomorphic automorphisms, and it forms a real 3-dimensional subgroup of the holomorphic automorphism group

$$\operatorname{Aut}(S) = \Big\{ z \mapsto \frac{az+b}{cz+d} : \quad a,b,c,d \in \mathbb{C}, \ ad-bc = 1 \Big\}.$$

Finite subgroups of $SO(3,\mathbb{R})$ are called spherical von Dyck groups. Besides the cyclic and the dihedral groups, we have the symmetry groups of Platonic solids, the so-called crystallographic groups:

- the alternating group A_4 of order 12 is the group of symmetries of the tetrahedron,
- the symmetric group S_4 of order 24 is the group of symmetries of the cube and the octahedron, and
- the alternating group A_5 of order 60 is the group of symmetries of the icosahedron and the dodecahedron.

Xu 1995 Any closed subgroup G of $SO(3,\mathbb{R})$, which is not isomorphic to $SO(2,\mathbb{R})$ or $SO(3,\mathbb{R})$, is the symmetry group of a complete immersed minimal surface in \mathbb{R}^3 of genus zero with finite total curvature and embedded ends. Examples by **Jorge and Meeks 1983**, **Rossman 1995**, **Small 1999**, and others.

Every finite group is a symmetry group of a minimal surface

Every Riemann surface of genus ≥ 2 is uniformized by $\mathbb{H}=\{x+\mathrm{i}y:y>0\}$. The projective special linear group $PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}$ is the group of orientation preserving isometries (holomorphic automorphisms) of the hyperbolic plane \mathbb{H} with the metric $\frac{dx^2+dy^2}{y^2}$ of constant negative curvature:

$$\operatorname{Aut}(\mathbb{H}) = \left\{ z \mapsto \frac{\mathsf{a}z + \mathsf{b}}{\mathsf{c}z + \mathsf{d}} \quad \text{for a, b, c, d} \in \mathbb{R}, \ \mathsf{a}\mathsf{d} - \mathsf{b}\mathsf{c} = 1 \right\}.$$

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus ≥ 2 then $|\operatorname{Aut}(X)| \leq 84(\mathfrak{g}-1)$. Most such surfaces have no nontrivial automorphisms.

Greenberg 1960, 1974 Every countable group G is the automorphism group of a Riemann surface X. If G is finite then X can be taken compact.

Corollary

For every finite group G of order n>1 there exist an open connected Riemann surface X, effective actions of G by holomorphic automorphisms on X and by orthogonal transformations on \mathbb{R}^{2n} , and a G-equivariant conformal minimal immersion $X \to \mathbb{R}^{2n}$. The surface X can be chosen to be the complement of n points in a compact Riemann surface.

Notation and the setup used in the proof

Let G be a finite group acting on an open Riemann surface X by holomorphic automorphisms.

$$Fix(g) = \{x \in X : gx = x\}, \quad g \in G$$

$$X_0 = \bigcup_{g \in G \setminus \{1\}} Fix(g) = \{x \in X : G_X \neq \{1\}\}$$

 X_0 is a closed, discrete, G-invariant subset of X. Set

$$X_1 = X \setminus X_0 = \{x \in X : gx \neq x \text{ for all } g \in G \setminus \{1\}\}.$$

The orbit space X/G is an open Riemann surface, the quotient projection

 $\pi: X \to X/G$ is a holomorphic map which branches precisely on X_0 $\pi: X_1 \to X_1/G$ is a holomorphic covering projection of degree |G|.

Choose a holomorphic immersion $\tilde{h}: X/G \to \mathbb{C}$. The holomorphic map

$$h = \tilde{h} \circ \pi : X \to \mathbb{C}$$

is G-invariant $(h \circ g = h)$, and it branches precisely at the points of X_0 .

The holomorphic 1-form

$$\theta = dh = d(\tilde{h} \circ \pi) = \pi^* d\tilde{h}$$

on X satisfies the following invariance condition for every $g \in G$:

$$\theta_{gx} \circ dg_x = \theta_x$$
 for all $x \in X$, and $\{\theta_x = 0\}$ if and only if $x \in X_0$.

$$A = \{z = (z_1, \dots, z_n) \in \mathbb{C}^n : z_1^2 + z_2^2 + \dots + z_n^2 = 0\}$$

 $A_* = A \setminus \{0\}$ the punctured null quadric

 \overline{A} = the closure of A in $\mathbb{CP}^n = \mathbb{C}^n \cup \mathbb{CP}^{n-1}$

$$Y = \overline{A} \setminus \{0\} = A_* \cup Y_0$$

$$Y_0 = Y \setminus A_* = \{ [z_1 : \cdots : z_n] \in \mathbb{CP}^{n-1} : z_1^2 + z_2^2 + \cdots + z_n^2 = 0 \}$$

$$p$$
: $\mathbb{C}^n \setminus \{0\} \to \mathbb{CP}^{n-1}$, $p(z_1, \ldots, z_n) = [z_1 : \cdots : z_n]$

Then, $p: A_* \to Y_0$ is a holomorphic \mathbb{C}^* -bundle, and $p: Y \to Y_0$ is a holomorphic line bundle with the zero section Y_0 .

The action of $O(n,\mathbb{R})\subset O(n,\mathbb{C})$ on \mathbb{C}^n extends to an action on \mathbb{CP}^n , with Y and the hyperplane at infinity $\mathbb{CP}^n\setminus\mathbb{C}^n\cong\mathbb{CP}^{n-1}$ being invariant submanifolds.

Conformal frames

To any oriented 2-plane $0\in\Lambda\subset\mathbb{R}^n$ we associate a complex line $L\subset\mathbb{C}^n$ in the null quadric A, by choosing an oriented basis (u,v) of Λ such that $\|u\|=\|v\|\neq 0$ and $u\cdot v=0$ (a **conformal frame**) and setting

$$L = L(\Lambda) = \mathbb{C}(u - \mathfrak{i}v) \subset A \subset \mathbb{C}^n.$$

A rotation R_{ϕ} on Λ corresponds to the multiplication by $e^{i\phi}$ on $L(\Lambda)$.

If $F:X\to\mathbb{R}^n$ is a conformal immersion then, in any local holomorphic coordinate $z=x+\mathrm{i} y$ on X,

the vectors
$$\frac{\partial F}{\partial x}(z)$$
 and $\frac{\partial F}{\partial y}(z)$ form a conformal frame in \mathbb{R}^n .

The corresponding null complex line $L(z)\subset A$ is spanned by the vector

$$\frac{\partial F}{\partial x}(z) - i \frac{\partial F}{\partial y}(z) = 2 \frac{\partial F}{\partial z}(z).$$

The chain rule applied to $F \circ g = g \circ F$ gives

$$\partial F_{gx} \circ dg_x = g \, \partial F_x$$
 for every $x \in X$ and $g \in G$.

Basic properties of G-equivariant conformal minimal immersions

If $F:X \to \mathbb{R}^n$ is a *G*-equivariant conformal minimal immersion then

$$f=2\partial F/\theta:X\to Y=A_*\cup Y_0$$

is a holomorphic G-equivariant map satisfying $f^{-1}(Y_0) = X_0$:

$$f(gx) = \frac{2\partial F_{gx}}{\theta_{gx}} = \frac{2\partial F_{gx} \circ dg_x}{\theta_{gx} \circ dg_x} = \frac{g}{\theta_x} \frac{2\partial F_x}{\theta_x} = gf(x) \text{ for every } x \in X_1 \text{ and } g \in G.$$

The following conditions hold for every point $x_0 \in X_0$.

- The stabiliser $G_{x_0}=\langle g_0 \rangle$ is a cyclic group. There is a local holomorphic coordinate z on X, with $z(x_0)=0$, such that $g_0(z)=\mathrm{e}^{\mathrm{i}\phi}z$, where $\phi=2\pi/k$ with $k=|G_{x_0}|$.
- The tangent plane Λ = $dF_{x_0}(T_{x_0}X)$ ⊂ \mathbb{R}^n is G_{x_0} -invariant, g_0 acts on Λ by the rotation R_{ϕ} , and g_0 acts on the null line $L = L(\Lambda) \subset A$ as multiplication by $e^{i\phi}$.
- **9** $g_0F(x_0) = F(g_0x_0) = F(x_0)$, and the vector $F(x_0)$ is orthogonal to Λ .
- $f(x_0) = p(L) \in Y_0 \subset \mathbb{CP}^{n-1}$, and f has a pole of order $|G_{x_0}| 1$ at x_0 .

Conversely: Let X be a connected open Riemann surface and $f: X \to Y = A_* \cup Y_0$ be a holomorphic map such that the 1-form $f\theta$ has no zeros or poles (i.e., the poles of f on X_0 exactly cancel the zeros of θ) and

$$\Re \int_C f\theta = 0 \text{ for every } [C] \in H_1(X, \mathbb{Z}),$$
 (4)

We obtain a conformal minimal immersion $F:X\to\mathbb{R}^n$ by fixing any pair $x_0\in X$ and $v\in\mathbb{R}^n$ and setting

$$F(x) = v + \int_{x_0}^{x} \Re(f\theta) \text{ for all } x \in X.$$
 (5)

Claim: The immersion F is G-equivariant if and only if f is G-equivariant and

$$gv = v + \int_{x_0}^{gx_0} \Re(f\theta)$$
 holds for all $g \in G$. (6)

Suppose that $F:X\to\mathbb{R}^n$ (5) is G-equivariant. We have seen that the map $f=2\partial F/\theta:X\to Y$ is then also G-equivariant, and

$$gv = gF(x_0) = F(gx_0) = v + \int_{x_0}^{gx_0} \Re(f\theta)$$
 for all $g \in G$.

Conversely, assume that $f:X\to Y$ is a G-equivariant holomorphic map such that the 1-form $f\theta$ on X is holomorphic and nowhere vanishing. Given a path $\gamma:[0,1]\to X$, we have for any $g\in G$ that

$$\int_{g\gamma} f\theta = \int_0^1 f(g\gamma(t)) \, \theta_{g\gamma(t)}(dg_{\gamma(t)}\dot{\gamma}(t)) \, dt = \int_0^1 gf(\gamma(t)) \, \theta_{\gamma(t)}(\dot{\gamma}(t)) \, dt = g \int_\gamma f\theta.$$

(We used that $\theta_{g_X} \circ dg_X = \theta_X$ for all $X \in X$.) If f also satisfies conditions (4) and (6), then the integral of $\Re(f\theta)$ is well-defined and we get

$$\begin{split} F(gx) &= v + \int_{x_0}^{gx} \Re(f\theta) = \left(v + \int_{x_0}^{gx_0} \Re(f\theta)\right) + \int_{gx_0}^{gx} \Re(f\theta) \\ &\stackrel{\text{(6)}}{=} gv + g \int_{x_0}^{x} \Re(f\theta) = gF(x). \end{split}$$

Step 1: We find a G-equivariant conformal minimal immersion $F_0: V \to \mathbb{R}^n$ from a neighbourhood of the closed discrete subset $X_0 \subset X$.

Fix $x_0 \in X_0$ and set $k = |G_{x_0}| > 1$. Let $G_{x_0} = \langle g_0 \rangle$. There is a holomorphic coordinate z on a disc $x_0 \in \Delta \subset X$, with $z(x_0) = 0$, such that

$$g_0 z = e^{i\phi} z$$
, $\phi = 2\pi/k$.

Let $\Lambda \subset \mathbb{R}^n$ be a G_{x_0} -invariant plane on which g_0 acts as the rotation R_{ϕ} . Then, g_0 acts on the null line $L = L(\Lambda)$ as multiplication by $e^{i\phi}$.

The conformal linear map $F_0:\Delta \to \Lambda$ is equivariant, and $2\partial F_0=f_0\theta$ where

$$f_0(z) = rac{y_0}{z^{k-1}}$$
 for some $y_0 \in L$ and all $z \in \Delta$.

We extend F_0 and f_0 by G-equivariance to the orbit $G \cdot \Delta$ and perform the same construction on all G-orbits of X_0 . This defines a G-equivariant map $f_0: V \to Y$ on a G-invariant neighbourhood $V \subset X$ of X_0 , with $f_0^{-1}(Y_0) = X_0$.

Step 2: We find a G-equivariant holomorphic map $f:X\to Y$ which agrees with f_0 on X_0 , it satisfies $f(X_1)\subset A_*$, and the period conditions (4) and (6) hold. The map $F:X\to\mathbb{R}^n$ given by (5) then solves the problem.

Consider the action of G on $X \times Y$ by

$$g(x,y) = (gx, gy), \quad x \in X, g \in G.$$

The projection $X \times Y \to X$ is then *G*-equivariant, so it induces a projection

$$\rho: Z = (X \times Y)/G \to X/G. \tag{7}$$

Note that Z is a reduced complex space, the map ρ is holomorphic, it is branched over the closed discrete subset X_0/G of X/G, and the restriction

$$\rho: Z_1 = \rho^{-1}(X_1/G) \to X_1/G$$

is a holomorphic G-bundle with fibre $Y=A_*\cup Y_0$. The subset

$$\Omega := (X_1 \times A_*)/G \subset Z_1 \subset Z$$

is a G-invariant Zariski open domain without singularities.

Proof of the Theorem, 3

Observations and facts:

The restricted projection

$$\rho: \Omega = (X_1 \times A_*)/G \to X_1/G \tag{8}$$

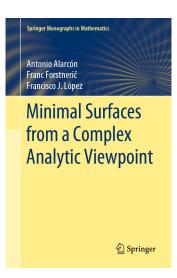
is a holomorphic G-bundle with fibre A_* .

- ② A *G*-equivariant map $f: X_1 \to A_*$ is the same thing as a section $\tilde{f}: X_1/G \to \Omega$ of the *G*-bundle $\rho: \Omega \to X_1/G$ (8).
- **③** The map f_0 from step 1 gives a local holomorphic section \bar{f}_0 of (7) on a neighbourhood $V/G \subset X/G$ of X_0/G , and

$$\tilde{f}_0((V\setminus X_0)/G))\subset\Omega.$$

- The fibre A_* of (8) is $O_n(\mathbb{C})$ -homogeneous, hence an **Oka manifold**. Therefore, sections of $\rho: Z = (X \times Y)/G \to X/G$ mapping X_1/G to Ω satisfy the Oka principle (**F. 2003**). This gives global holomorphic sections $\tilde{f}: X/G \to Z$ with $\tilde{f}(X_1/G) \subset \Omega$ which agrees with \tilde{f}_0 on X_0/G .
- ① \tilde{f} can be chosen such that the corresponding G-equivariant map $f: X \to Y$ integrates to a G-equivariant conformal minimal immersion.

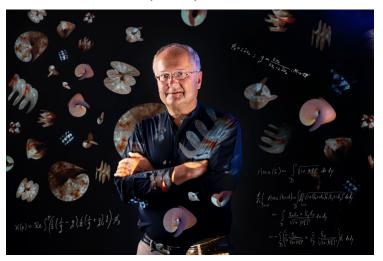
The main reference



Our book (2021) includes proofs of the Runge/Mergelyan approximation theorem, the Weierstrass interpolation theorem, and related results in the classical theory of minimal surfaces in Euclidean spaces. They are obtained by combining Oka-theoretic methods with convex integration theory.

Since the convex hull of the null quadric $A \subset \mathbb{C}^n$ equals \mathbb{C}^n , the holomorphic map $f: X \to A_* \cup Y_0$ can be chosen such that the value of the integral $\int_{\gamma} f\theta$ on any given curve $\gamma \subset X$ assumes an arbitrary value in \mathbb{C}^n . Hence, we can arrange the desired period conditions.

Thank your for your attention



© Katja Bidovec & Arne Hodalič