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Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this work, we study the existence of orientable minimal surfaces in Euclidean
spaces Rn, n ≥ 3, with a given finite group of symmetries induced by
orthogonal transformations of the ambient space.

We show in particular that any finite group is a group of symmetries of a
minimal surface.
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What is a minimal surface?

Euler 1744; Lagrange 1762 Let (Rn, ds2) be the flat Euclidean space.
A smooth immersed surface F : X → Rn (n ≥ 3) is a minimal surface if it is a
stationary point of the area functional. Any small enough piece of such a
surface has the smallest area among all surfaces with the same boundary.

Meusnier, 1776 A surface in Rn is a minimal surface if and only if its
mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion F : X → Rn determines on X a
Riemannian metric g = F ∗ds2, which makes F an isometry, and hence a
conformal map. By Gauss, there are local isothermal coordinates (x , y ) at
any point of X in which

g = λ(dx2 + dy2) for some function λ > 0.

Transition maps between isothermal charts are conformal diffeomorphisms of
plane domains, hence holomorphic or antiholomorphic. This endows X with the
structure of a conformal surface, and of a Riemann surface if X is oriented.



Minimal surfaces are given by conformal harmonic immersions

If F : X → Rn is a conformal immersion, then

F parameterizes a minimal surface ⇐⇒ F is a harmonic map

⇐⇒ F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X , this is the Laplace equation

∆F = Fxx + Fyy = 4
∂2F

∂z̄ ∂z
= 0. (1)

Write ∂F = ∂F
∂z dz = 1

2

(
∂F
∂x − i ∂F

∂y

)
(dx + idy). Then, ℜ(2∂F ) = dF and

∆F = 0 ⇐⇒ ∂F = (∂F1, . . . , ∂Fn) is a holomorphic 1-form on X .

It is elementary see that an immersion F = (F1, . . . ,Fn) is conformal iff

n

∑
i=1

(∂Fi )
2 = 0. (2)

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).



The Enneper–Weierstrass representation of minimal surfaces

Let A ⊂ Cn denote the null quadric

A = {z = (z1, . . . , zn) : z21 + z22 + · · ·+ z2n = 0},

and let A ⊂ CPn denote its projective closure. Pick a nontrivial holomorphic
1-form θ on X (possibly with zeros). If F : X → Rn is a minimal surface then

2∂F = f θ,

where f = (f1, . . . , fn) : X → A \ {0} is a holomorphic map such that

ℜ
∮
C
f θ =

∮
C
dF = 0 for every closed curve C ⊂ X . (3)

Conversely, given f as above such that f θ is a nowhere vanishing holomorphic
1-form on X satisfying (3), the map F : X → Rn given by

F (x) = ℜ
∫ x

∗
f θ

is a conformal harmonic immersion.



Symmetries and G -equivariant maps

A smooth map T : Rn → Rn maps minimal surfaces to minimal surfaces iff T
is a rigid map — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on Rn by rigid transformations. A surface S ⊂ Rn is
G -invariant if

g(S) = S for every g ∈ G .

If F : X → S = F (X ) ⊂ Rn is an injective conformal immersion, then G also
acts on X by conformal diffeomorphisms such that F is G -equivariant:

F ◦ g = g ◦ F for every g ∈ G .

If X is a Riemann surface and every g ∈ G preserves the orientation on
S = F (X ), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G -equivariant immersion is a G -invariant surface.

∗ ∗ ∗ Which groups arise in this way for minimal surfaces? ∗ ∗ ∗



Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in R3 are planes and
catenoids.

x2 + y2 = cosh2 z

(t, z) 7→ (cos t · cosh z , sin t · cosh z , z)

The symmetries consist of rotations in
the (x , y )-plane and the reflection
z 7→ −z .



The helicoid (Archimedes’ screw)

Meusnier 1776 The helicoid is a ruled minimal surface.

x = ρ cos(αz), y = ρ sin(αz); (z , ρ) ∈ R2.

The group Z acts on the helicoid by translations z 7→ z + k2π/α.
Also, R acts by translations and simultaneous rotations.



Scherk’s first surface

Scherk, 1835 The first Scherk’s surface is doubly periodic, with the symmetry
group Z2 of translations.

Its main branch is a graph over the
square P = (−π/2,π/2)2 given by

x3 = log
cos x2
cos x1

Finn and Osserman, 1964
Sherk’s surface S has the biggest
absolute Gaussian curvature at
0 ∈ R3 over all minimal graphs over
P tangent to S at 0.



The main theorem

Let X be a connected open Riemann surface and G ⊂ Aut(X ) be a
finite group of holomorphic automorphisms. The stabiliser of x ∈ X is

Gx = {g ∈ G : gx = x}.

Assume that G also acts on Rn by orthogonal transformations in O(n,R).

Theorem

The following are equivalent:

(a) For every nontrivial stabiliser Gx (x ∈ X ) there is a Gx -invariant 2-plane
Λx ⊂ Rn on which Gx acts effectively by rotations.

(b) There exists a G-equivariant conformal minimal immersion F : X → Rn:

F (gx) = gF (x), x ∈ X , g ∈ G .

In particular, such F exists if the group G acts freely on X .



(b) =⇒ (a)

Let x ∈ X be a point with a nontrivial stabiliser Gx of order k = |Gx | > 1.

There is a local holomorphic coordinate z on X around x , with z(x) = 0, in
which a generator of Gx = ⟨g ⟩ is the rotation

gz = eiϕz , ϕ = 2π/k.

Assume that F : X → Rn is an immersion. Differentiating g ◦ F = F ◦ g gives

g ◦ dFx = dFx ◦ dgx : TxX → Λx := dFx (TxX ) ⊂ Rn.

Since dFx : TxX → Λx is a linear isomorphism, we see that Λx ⊂ Rn is a
Gx -invariant plane on which g acts as the rotation Rϕ, so condition (a) holds.

Remark: Condition (a) implies the existence of a flat (linear) Gx -equivariant
conformal minimal immersion from a neighbourhood of x ∈ X to Rn.

The main work is to globalize this construction, thereby proving (a) =⇒ (b).



The h-principle for G -equivariant minimal surfaces

Corollary

Assume that G is a finite subgroup of the orthogonal group O(n,R), n ≥ 3.

Let X ⊂ Rn be a smoothly embedded, connected, oriented, noncompact,
G-invariant surface such that every g ∈ G preserves the orientation on X , and
g induces the identity map on X only if g = 1 ∈ G.

Then, X endowed with the complex structure induced by the embedding
X ↪→ Rn admits a G-equivariant conformal minimal immersion F : X → Rn.

Proof.

The given embedding F0 : X ↪→ Rn induces on X a unique structure of a
Riemann surface and an action of G by holomorphic automorphisms so that
F0 : X ↪→ Rn is conformal and G -equivariant.

Hence, condition (a) in the Theorem holds by the argument on the previous
page, so we can change F0 to a conformal minimal immersion.



Every finite group in Aut(X ) is a symmetry group of a minimal surface

Corollary

For every connected open Riemann surface X and finite subgroup G ⊂ Aut(X )
of order n ≥ 2 there are an effective action of G by orthogonal transformations
on R2n and a G-equivariant conformal minimal immersion F : X → R2n.

Proof.

Consider the representation of G on Cn with the basis vectors eg , g ∈ G ,
where h ∈ G acts by heg = ehg . For a fixed g ∈ G of order k > 1 let Σ denote
the k-dimensional C-linear subspace of Cn spanned by the vectors eg j for
j = 0, 1, . . . , k − 1, corresponding to the elements of the cyclic group ⟨g⟩.

Then, Σ is g -invariant, and the eigenvalues of the C-linear isomorphism
g : Σ → Σ are precisely all the k-th roots of 1. In particular, there is a vector
0 ̸= w ∈ Σ with gw = ei2π/kw . Identifying Cn with R2n, the 2-plane Λ ⊂ R2n

determined by the complex line Cw is g -invariant, and g acts on it as a
rotation by the angle 2π/k. Hence, condition (a) in the Theorem holds.



Equivariant minimal surfaces of genus zero

Let S ∼= CP1 be the unit sphere in R3. The group SO(3,R) acts on S by
orientation preserving isometries, hence by holomorphic automorphisms, and it
forms a real 3-dimensional subgroup of the holomorphic automorphism group

Aut(S) =
{
z 7→ az + b

cz + d
: a, b, c, d ∈ C, ad − bc = 1

}
.

Finite subgroups of SO(3,R) are called spherical von Dyck groups.
Besides the cyclic and the dihedral groups, we have the symmetry groups of
Platonic solids, the so-called crystallographic groups:

the alternating group A4 of order 12 is the group of symmetries of the
tetrahedron,

the symmetric group S4 of order 24 is the group of symmetries of the cube
and the octahedron, and

the alternating group A5 of order 60 is the group of symmetries of the
icosahedron and the dodecahedron.

Xu 1995 Any closed subgroup G of SO(3,R), which is not isomorphic to
SO(2,R) or SO(3,R), is the symmetry group of a complete immersed minimal
surface in R3 of genus zero with finite total curvature and embedded ends.
Examples by Jorge and Meeks 1983, Rossman 1995, Small 1999, and others.



Every finite group is a symmetry group of a minimal surface

Every Riemann surface of genus ≥ 2 is uniformized by H = {x + iy : y > 0}.
The projective special linear group PSL(2,R) = SL(2,R)/{±I} is the group of
orientation preserving isometries (holomorphic automorphisms) of the

hyperbolic plane H with the metric dx2+dy2

y2 of constant negative curvature:

Aut(H) =

{
z 7→ az + b

cz + d
for a, b, c, d ∈ R, ad − bc = 1

}
.

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus ≥ 2 then
|Aut(X )| ≤ 84(g− 1). Most such surfaces have no nontrivial automorphisms.

Greenberg 1960, 1974 Every countable group G is the automorphism group of
a Riemann surface X . If G is finite then X can be taken compact.

Corollary

For every finite group G of order n > 1 there exist an open connected Riemann
surface X , effective actions of G by holomorphic automorphisms on X and by
orthogonal transformations on R2n, and a G-equivariant conformal minimal
immersion X → R2n. The surface X can be chosen to be the complement of n
points in a compact Riemann surface.



Notation and the setup used in the proof

Let G be a finite group acting on an open Riemann surface X by holomorphic
automorphisms.

Fix(g ) = {x ∈ X : gx = x}, g ∈ G

X0 =
⋃

g∈G\{1}
Fix(g ) = {x ∈ X : Gx ̸= {1}}

X0 is a closed, discrete, G -invariant subset of X . Set

X1 = X \ X0 = {x ∈ X : gx ̸= x for all g ∈ G \ {1}}.

The orbit space X/G is an open Riemann surface, the quotient projection

π : X → X/G is a holomorphic map which branches precisely on X0

π : X1 → X1/G is a holomorphic covering projection of degree |G |.

Choose a holomorphic immersion h̃ : X/G → C. The holomorphic map

h = h̃ ◦ π : X → C

is G -invariant (h ◦ g = h), and it branches precisely at the points of X0.



Notation, 2

The holomorphic 1-form

θ = dh = d(h̃ ◦ π) = π∗dh̃

on X satisfies the following invariance condition for every g ∈ G :

θgx ◦ dgx = θx for all x ∈ X , and {θx = 0} if and only if x ∈ X0.

A = {z = (z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0}
A∗ = A \ {0} the punctured null quadric

A = the closure of A in CPn = Cn ∪ CPn−1

Y = A \ {0} = A∗ ∪Y0

Y0 = Y \ A∗ =
{
[z1 : · · · : zn] ∈ CPn−1 : z21 + z22 + · · ·+ z2n = 0

}
p : Cn \ {0} → CPn−1, p(z1, . . . , zn) = [z1 : · · · : zn]

Then, p : A∗ → Y0 is a holomorphic C∗-bundle, and p : Y → Y0 is a
holomorphic line bundle with the zero section Y0.

The action of O(n,R) ⊂ O(n,C) on Cn extends to an action on CPn, with Y
and the hyperplane at infinity CPn \Cn ∼= CPn−1 being invariant submanifolds.



Conformal frames

To any oriented 2-plane 0 ∈ Λ ⊂ Rn we associate a complex line L ⊂ Cn in the
null quadric A, by choosing an oriented basis (u, v ) of Λ such that
∥u∥ = ∥v∥ ̸= 0 and u · v = 0 (a conformal frame) and setting

L = L(Λ) = C(u − iv) ⊂ A ⊂ Cn.

A rotation Rϕ on Λ corresponds to the multiplication by eiϕ on L(Λ).

If F : X → Rn is a conformal immersion then, in any local holomorphic
coordinate z = x + iy on X ,

the vectors
∂F

∂x
(z) and

∂F

∂y
(z) form a conformal frame in Rn.

The corresponding null complex line L(z) ⊂ A is spanned by the vector

∂F

∂x
(z)− i

∂F

∂y
(z) = 2

∂F

∂z
(z).

The chain rule applied to F ◦ g = g ◦ F gives

∂Fgx ◦ dgx = g ∂Fx for every x ∈ X and g ∈ G .



Basic properties of G -equivariant conformal minimal immersions

If F : X → Rn is a G -equivariant conformal minimal immersion then

f = 2∂F/θ : X → Y = A∗ ∪Y0

is a holomorphic G -equivariant map satisfying f −1(Y0) = X0:

f (gx) =
2∂Fgx

θgx
=

2∂Fgx ◦ dgx
θgx ◦ dgx

=
g 2∂Fx

θx
= gf (x) for every x ∈ X1 and g ∈ G .

The following conditions hold for every point x0 ∈ X0.

(a) The stabiliser Gx0 = ⟨g0⟩ is a cyclic group. There is a local holomorphic
coordinate z on X , with z(x0) = 0, such that g0(z) = eiϕz , where
ϕ = 2π/k with k = |Gx0 |.

(b) The tangent plane Λ = dFx0 (Tx0X ) ⊂ Rn is Gx0 -invariant, g0 acts on Λ
by the rotation Rϕ, and g0 acts on the null line L = L(Λ) ⊂ A as

multiplication by eiϕ.

(c) g0F (x0) = F (g0x0) = F (x0), and the vector F (x0) is orthogonal to Λ.

(d) f (x0) = p(L) ∈ Y0 ⊂ CPn−1, and f has a pole of order |Gx0 | − 1 at x0.



The converse

Conversely: Let X be a connected open Riemann surface and
f : X → Y = A∗ ∪Y0 be a holomorphic map such that the 1-form f θ has no
zeros or poles (i.e., the poles of f on X0 exactly cancel the zeros of θ) and

ℜ
∫
C
f θ = 0 for every [C ] ∈ H1(X ,Z), (4)

We obtain a conformal minimal immersion F : X → Rn by fixing any pair
x0 ∈ X and v ∈ Rn and setting

F (x) = v +
∫ x

x0
ℜ(f θ) for all x ∈ X . (5)

Claim: The immersion F is G -equivariant if and only if f is G -equivariant and

gv = v +
∫ gx0

x0
ℜ(f θ) holds for all g ∈ G . (6)



Proof of the Claim

Suppose that F : X → Rn (5) is G -equivariant. We have seen that the map
f = 2∂F/θ : X → Y is then also G -equivariant, and

gv = gF (x0) = F (gx0) = v +
∫ gx0

x0
ℜ(f θ) for all g ∈ G .

Conversely, assume that f : X → Y is a G -equivariant holomorphic map such
that the 1-form f θ on X is holomorphic and nowhere vanishing. Given a path
γ : [0, 1] → X , we have for any g ∈ G that∫
gγ

f θ =
∫ 1

0
f (gγ(t)) θgγ(t)(dgγ(t)γ̇(t)) dt =

∫ 1

0
gf (γ(t)) θγ(t)(γ̇(t)) dt = g

∫
γ
f θ.

(We used that θgx ◦ dgx = θx for all x ∈ X .) If f also satisfies conditions (4)
and (6), then the integral of ℜ(f θ) is well-defined and we get

F (gx) = v +
∫ gx

x0
ℜ(f θ) =

(
v +

∫ gx0

x0
ℜ(f θ)

)
+

∫ gx

gx0
ℜ(f θ)

(6)
= gv + g

∫ x

x0
ℜ(f θ) = gF (x).



Sketch of proof of the Theorem, 1

Step 1: We find a G -equivariant conformal minimal immersion
F0 : V → Rn from a neighbourhood of the closed discrete subset X0 ⊂ X .

Fix x0 ∈ X0 and set k = |Gx0 | > 1. Let Gx0 = ⟨g0⟩. There is a holomorphic
coordinate z on a disc x0 ∈ ∆ ⊂ X , with z(x0) = 0, such that

g0z = eiϕz , ϕ = 2π/k.

Let Λ ⊂ Rn be a Gx0 -invariant plane on which g0 acts as the rotation Rϕ.

Then, g0 acts on the null line L = L(Λ) as multiplication by eiϕ.

The conformal linear map F0 : ∆ → Λ is equivariant, and 2∂F0 = f0θ where

f0(z) =
y0

zk−1
for some y0 ∈ L and all z ∈ ∆.

We extend F0 and f0 by G -equivariance to the orbit G ·∆ and perform the same
construction on all G -orbits of X0. This defines a G -equivariant map
f0 : V → Y on a G -invariant neighbourhood V ⊂ X of X0, with f −1

0 (Y0) = X0.



Proof of the Theorem, 2

Step 2: We find a G -equivariant holomorphic map f : X → Y which agrees
with f0 on X0, it satisfies f (X1) ⊂ A∗, and the period conditions (4) and
(6) hold. The map F : X → Rn given by (5) then solves the problem.

Consider the action of G on X ×Y by

g(x , y) = (gx , gy), x ∈ X , g ∈ G .

The projection X ×Y → X is then G -equivariant, so it induces a projection

ρ : Z = (X ×Y )/G → X/G . (7)

Note that Z is a reduced complex space, the map ρ is holomorphic, it is
branched over the closed discrete subset X0/G of X/G , and the restriction

ρ : Z1 = ρ−1(X1/G ) → X1/G

is a holomorphic G -bundle with fibre Y = A∗ ∪Y0. The subset

Ω := (X1 ×A∗)/G ⊂ Z1 ⊂ Z

is a G -invariant Zariski open domain without singularities.



Proof of the Theorem, 3

Observations and facts:

1 The restricted projection

ρ : Ω = (X1 ×A∗)/G → X1/G (8)

is a holomorphic G -bundle with fibre A∗.

2 A G -equivariant map f : X1 → A∗ is the same thing as a section
f̃ : X1/G → Ω of the G -bundle ρ : Ω → X1/G (8).

3 The map f0 from step 1 gives a local holomorphic section f̃0 of (7) on a
neighbourhood V/G ⊂ X/G of X0/G , and

f̃0
(
(V \ X0)/G )

)
⊂ Ω.

4 The fibre A∗ of (8) is On(C)-homogeneous, hence an Oka manifold.
Therefore, sections of ρ : Z = (X × Y )/G → X/G mapping X1/G to Ω
satisfy the Oka principle (F. 2003). This gives global holomorphic sections
f̃ : X/G → Z with f̃ (X1/G ) ⊂ Ω which agrees with f̃0 on X0/G .

5 f̃ can be chosen such that the corresponding G -equivariant map
f : X → Y integrates to a G -equivariant conformal minimal immersion.



The main reference

Our book (2021) includes proofs of
the Runge/Mergelyan approximation
theorem, the Weierstrass interpolation
theorem, and related results in the
classical theory of minimal surfaces in
Euclidean spaces. They are obtained
by combining Oka-theoretic methods
with convex integration theory.

Since the convex hull of the null
quadric A ⊂ Cn equals Cn, the
holomorphic map f : X → A∗ ∪Y0

can be chosen such that the value of
the integral

∫
γ f θ on any given curve

γ ⊂ X assumes an arbitrary value in
Cn. Hence, we can arrange the
desired period conditions.



In a galaxy of minimal surfaces
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