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Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this work, we study the existence of orientable minimal surfaces in Euclidean
spaces R"”, n > 3, with a given finite group of symmetries induced by
orthogonal transformations of the ambient space.

We show in particular that any finite group is a group of symmetries of a
minimal surface.
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What is a minimal surface?

Euler 1744; Lagrange 1762 Let (R”, ds?) be the flat Euclidean space.

A smooth immersed surface F : X — R" (n > 3) is a minimal surface if it is a
stationary point of the area functional. Any small enough piece of such a
surface has the smallest area among all surfaces with the same boundary.

Meusnier, 1776 A surface in IR” is a minimal surface if and only if its
mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion F : X — IR"” determines on X a
Riemannian metric g = F*ds?, which makes F an isometry, and hence a
conformal map. By Gauss, there are local isothermal coordinates (x, y) at
any point of X in which

g = A(dx? + dy?) for some function A > 0.

Transition maps between isothermal charts are conformal diffeomorphisms of
plane domains, hence holomorphic or antiholomorphic. This endows X with the
structure of a conformal surface, and of a Riemann surface if X is oriented.



Minimal surfaces are given by conformal harmonic immersions

If F: X — IR" is a conformal immersion, then

F parameterizes a minimal surface <= F is a harmonic map
<= F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X, this is the Laplace equation

9*F
AF = Foct Fyy = 45— =0. (1)

Write 9F = £dz — 1 (35 5) (dx +idy). Then, R(20F) = dF and

AF =0 <= 0dF =(9dF1,...,0F,) is a holomorphic 1-form on X.

It is elementary see that an immersion F = (Fy,..., Fp) is conformal iff

Y () =o. )
i=1

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).



The Enneper—\Weierstrass representation of minimal surfaces

Let A C C" denote the null quadric
A={z=(z1,....20): 22 +25+---+22 =0},

and let A C CIP" denote its projective closure. Pick a nontrivial holomorphic
1-form 0 on X (possibly with zeros). If F: X — R" is a minimal surface then

20F = 10,

where f = (f1,...,fy) : X = A\ {0} is a holomorphic map such that
§R]{ e :% dF =0 for every closed curve C C X. (3)
C C

Conversely, given f as above such that f0 is a nowhere vanishing holomorphic
1-form on X satisfying (3), the map F : X — R" given by

Fo) =% [ ro

is a conformal harmonic immersion.



Symmetries and G-equivariant maps

A smooth map T : R" — R” maps minimal surfaces to minimal surfaces iff T
is a rigid map — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on R” by rigid transformations. A surface S C R" is
G-invariant if

g(5) =S forevery g €G.

If F: X — S = F(X) CR"is an injective conformal immersion, then G also
acts on X by conformal diffeomorphisms such that F is G-equivariant:

Fog=goF forevery geG.

If X is a Riemann surface and every g € G preserves the orientation on
S = F(X), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G-equivariant immersion is a G-invariant surface.

* % x Which groups arise in this way for minimal surfaces? x x x



Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in IR? are planes and

catenoids.

x2 4+ y? =cosh’®z
(t,z) — (cost-coshz,sint-coshz, z)
The symmetries consist of rotations in

the (x, y)-plane and the reflection
z+ —2z.



The helicoid (Archimedes’ screw)

Meusnier 1776 The helicoid is a ruled minimal surface.

x =pcos(az), y=psin(az); (z,p)ecR>

The group Z acts on the helicoid by translations z — z + k27 /«.
Also, R acts by translations and simultaneous rotations.



Scherk’s first surface

Scherk, 1835 The first Scherk’s surface is doubly periodic, with the symmetry
group Z2 of translations.

Its main branch is a graph over the
square P = (—7/2, 1/2)? given by

COS X2

x3 = log
COS X1

Finn and Osserman, 1964

Sherk’s surface S has the biggest
absolute Gaussian curvature at

0 € IR3 over all minimal graphs over
P tangent to S at 0.




The main theorem

Let X be a connected open Riemann surface and G C Aut(X) be a
finite group of holomorphic automorphisms. The stabiliser of x € X is

Gy ={g e G:gx=x}.

Assume that G also acts on R” by orthogonal transformations in O(n, R).

The following are equivalent:
@ For every nontrivial stabiliser Gy (x € X) there is a Gyx-invariant 2-plane
Ax CIR" on which Gy acts effectively by rotations.

@ There exists a G-equivariant conformal minimal immersion F : X — R":

F(gx) =gF(x), x€ X, g€ @G.

In particular, such F exists if the group G acts freely on X.




(b) = (a)

Let x € X be a point with a nontrivial stabiliser G of order k = |G| > 1.

There is a local holomorphic coordinate z on X around x, with z(x) =0, in
which a generator of Gy = (g) is the rotation

gz = el?z ¢ =2m/k.

Assume that F : X — R" is an immersion. Differentiating g o F = F o g gives
godFy = dFcodgy: TuX = Ay :=dFy(TX) CR".

Since dFy : T X — Ay is a linear isomorphism, we see that Ay C R" is a
Gx-invariant plane on which g acts as the rotation Ry, so condition (a) holds.
Remark: Condition (a) implies the existence of a flat (linear) Gy-equivariant

conformal minimal immersion from a neighbourhood of x € X to R".

The main work is to globalize this construction, thereby proving (a) = (b).



The h-principle for G-equivariant minimal surfaces

Assume that G is a finite subgroup of the orthogonal group O(n,R), n > 3.

Let X C R" be a smoothly embedded, connected, oriented, noncompact,
G-invariant surface such that every g € G preserves the orientation on X, and
g induces the identity map on X only ifg =1 € G.

Then, X endowed with the complex structure induced by the embedding
X — R" admits a G-equivariant conformal minimal immersion F : X — R".

The given embedding Fg : X < IR” induces on X a unique structure of a
Riemann surface and an action of G by holomorphic automorphisms so that
Fo : X = IR" is conformal and G-equivariant.

Hence, condition (a) in the Theorem holds by the argument on the previous
page, so we can change Fg to a conformal minimal immersion. O




Every finite group in Aut(X) is a symmetry group of a minimal surface

For every connected open Riemann surface X and finite subgroup G C Aut(X)
of order n > 2 there are an effective action of G by orthogonal transformations
on R?" and a G-equivariant conformal minimal immersion F : X — IR?".

Consider the representation of G on C” with the basis vectors ez, g € G,
where h € G acts by heg = ep,. For a fixed g € G of order k > 1 let ¥ denote
the k-dimensional C-linear subspace of C" spanned by the vectors ez, for
Jj=0,1,..., k —1, corresponding to the elements of the cyclic group (g).

Then, X is g-invariant, and the eigenvalues of the C-linear isomorphism

g : X — X are precisely all the k-th roots of 1. In particular, there is a vector
0 # w € T with gw = e2™/kw_ Identifying C" with R2", the 2-plane A C R?"
determined by the complex line Cw is g-invariant, and g acts on it as a
rotation by the angle 27t/ k. Hence, condition (a) in the Theorem holds. O




Equivariant minimal surfaces of genus zero

Let S 2 CIP! be the unit sphere in R3. The group SO(3,R) acts on S by
orientation preserving isometries, hence by holomorphic automorphisms, and it
forms a real 3-dimensional subgroup of the holomorphic automorphism group

az+b
cz+d’

Aut(S):{zr—> abcdeC, ad—bc:l}.
Finite subgroups of SO(3,IR) are called spherical von Dyck groups.
Besides the cyclic and the dihedral groups, we have the symmetry groups of
Platonic solids, the so-called crystallographic groups:
@ the alternating group A4 of order 12 is the group of symmetries of the
tetrahedron,
o the symmetric group S4 of order 24 is the group of symmetries of the cube
and the octahedron, and
@ the alternating group As of order 60 is the group of symmetries of the
icosahedron and the dodecahedron.
Xu 1995 Any closed subgroup G of SO(3,R), which is not isomorphic to
S50(2,R) or SO(3,R), is the symmetry group of a complete immersed minimal

surface in R3 of genus zero with finite total curvature and embedded ends.
Examples by Jorge and Meeks 1983, Rossman 1995, Small 1999, and others.



Every finite group is a symmetry group of a minimal surface

Every Riemann surface of genus > 2 is uniformized by H = {x +1iy : y > 0}.
The projective special linear group PSL(2,R) = SL(2,R)/{=£!} is the group of
orientation preserving isometries (holomorphic automorphisms) of the

2 2
hyperbolic plane IH with the metric dxy%dy of constant negative curvature:

b
Aut(]H):{zHaz—'_ for a, b, c,d € R, adfbc:l}.
cz+d

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus > 2 then
| Aut(X)| < 84(g — 1). Most such surfaces have no nontrivial automorphisms.

Greenberg 1960, 1974 Every countable group G is the automorphism group of
a Riemann surface X. If G is finite then X can be taken compact.

For every finite group G of order n > 1 there exist an open connected Riemann
surface X, effective actions of G by holomorphic automorphisms on X and by
orthogonal transformations on R2", and a G-equivariant conformal minimal
immersion X — R2". The surface X can be chosen to be the complement of n
points in a compact Riemann surface.




Notation and the setup used in the proof

Let G be a finite group acting on an open Riemann surface X by holomorphic
automorphisms.
Fix(g) ={xeX:gx=x}, g€G

Xo= |J Fix(g) ={x€X:G#{1}}
geG\{1}

Xp is a closed, discrete, G-invariant subset of X. Set
X1=X\Xo={xeX:gx#xforall g e G\ {1}}.
The orbit space X/ G is an open Riemann surface, the quotient projection

T: X — X/G is a holomorphic map which branches precisely on Xp
7t : X1 — X1/ G is a holomorphic covering projection of degree |G|.

Choose a holomorphic immersion h: X/G — C. The holomorphic map
h=hom:X =C

is G-invariant (ho g = h), and it branches precisely at the points of Xp.



Notation, 2

The holomorphic 1-form
0 =dh=d(hom)=m*dh
on X satisfies the following invariance condition for every g € G:

Ogx 0 dgx = 0 for all x € X, and {6, = 0} if and only if x € Xp.

A {z=(z1,....20) €EC": 22+ 25 +---+22 =0}

A, = A\{0} the punctured null quadric

A = the closure of Ain CP" =C"UCP""?

Y = A\{0}=A.UY,

Yo = Y\A={lz1: 1z eCP" iz} +23+ - +22=0}
p o C"\{0} = CP" Y p(zy,....z0) =[z1:: 2z

Then, p: A« — Yy is a holomorphic C*-bundle, and p: Y — Yy is a
holomorphic line bundle with the zero section Yj.

The action of O(n,R) C O(n,C) on C" extends to an action on CPP", with Y
and the hyperplane at infinity CIP" \ C" & cpt being invariant submanifolds.



Conformal frames

To any oriented 2-plane 0 € A C IR” we associate a complex line L C C” in the
null quadric A, by choosing an oriented basis (u, v) of A such that
llull = ||v]| # 0 and u-v = 0 (a conformal frame) and setting

L=L(A)=C(u—iv) CACC"
A rotation Ry on A corresponds to the multiplication by e on L(A).

If F: X — R" is a conformal immersion then, in any local holomorphic
coordinate z = x +iy on X,

F F
the vectors g—x(z) and g—y(z) form a conformal frame in R".

The corresponding null complex line L(z) C A is spanned by the vector

JoF OF oF
(—TX(Z) —1@(2) = 287(2)-

The chain rule applied to Fo g = go F gives

OFgx o dgx = goFx forevery x € X and g € G.



Basic properties of G-equivariant conformal minimal immersions

If F: X — R"is a G-equivariant conformal minimal immersion then
f=20F/0: X =Y =AUYp
is a holomorphic G-equivariant map satisfying f~1(Yy) = Xo:

_ 20Fgx  20Fgcodgx  g20F,
f(gx) = . = B 0 dg =", ~ gf(x) for every x € X; and g € G.

The following conditions hold for every point xg € Xp.

@ The stabiliser Gy, = (go) is a cyclic group. There is a local holomorphic
coordinate z on X, with z(xg) = 0, such that go(z) = e'?z, where
¢ =21/ k with k = |G|

@ The tangent plane A = dFy,(Tx,X) C R" is Gy -invariant, go acts on A
by the rotation Ry, and gp acts on the null line L = L(A) C A as
multiplication by el?.

@ goF(x0) = F(goxo) = F(x0), and the vector F(xp) is orthogonal to A.
@ f(xo) =p(L) € Yo C CPP" 1, and f has a pole of order |Gy,| — 1 at xq.



The converse

Conversely: Let X be a connected open Riemann surface and
f: X — Y = A,UYy be a holomorphic map such that the 1-form 6 has no
zeros or poles (i.e., the poles of f on Xp exactly cancel the zeros of ) and

%/C f0 =0 forevery [C] € Hi(X,2Z), 4

We obtain a conformal minimal immersion F : X — R" by fixing any pair
xp € X and v € R" and setting

F(x):v—&—/xéﬁ(f(?) for all x € X. (5)

Xo
Claim: The immersion F is G-equivariant if and only if f is G-equivariant and
X0

g
gv=v+ R(FO) holds for all g € G. (6)

7 X0



Proof of the Claim

Suppose that F : X — R"” (5) is G-equivariant. We have seen that the map
f =2dF/6: X — Y is then also G-equivariant, and

gx
gv =gF(x0) = F(gxo) = v+ ’ R(f0) forall g€ G.
X0

Conversely, assume that f : X — Y is a G-equivariant holomorphic map such
that the 1-form f6 on X is holomorphic and nowhere vanishing. Given a path
v :[0,1] = X, we have for any g € G that

1 ) 1 )
[ 0= | F@7(1)) gy ey o 7(1)) dt = [ (1)) b ((0)) e = g [ 0.

(We used that 0gx o dgx = 6 for all x € X.) If f also satisfies conditions (4)
and (6), then the integral of R(f0) is well-defined and we get

Flgx) — v+/xgxﬂ%(f9) - <V+/ngo s%(fe)) +/;X8%(f9)

0 0 X0
© e g [ R(FO) = gF(x).
X0



Sketch of proof of the Theorem, 1

Step 1: We find a G-equivariant conformal minimal immersion
Fo: V — R"” from a neighbourhood of the closed discrete subset Xy C X.

Fix xp € Xo and set k = |Gy, | > 1. Let G, = (go). There is a holomorphic
coordinate z on a disc xg € A C X, with z(xg) = 0, such that

g0z = e?z ¢ =2m/k.

Let A CR" be a Gy,-invariant plane on which go acts as the rotation Ry.
Then, go acts on the null line L = L(A) as multiplication by e'?.

The conformal linear map Fp : A — A is equivariant, and 20Fy = ff where
fo(z) = % for some yp € L and all z € A.
z

We extend Fg and fy by G-equivariance to the orbit G- A and perform the same
construction on all G-orbits of Xy. This defines a G-equivariant map
fo : V — Y on a G-invariant neighbourhood V C X of Xp, with fo_l(Yo) = Xo.



Proof of the Theorem, 2

Step 2: We find a G-equivariant holomorphic map f : X — Y which agrees
with fj on X, it satisfies f(X;) C A, and the period conditions (4) and
(6) hold. The map F : X — IR"” given by (5) then solves the problem.

Consider the action of G on X X Y by
g(xy) = (ex.8y), x€X, g€GC.
The projection X X Y — X is then G-equivariant, so it induces a projection
p:Z=(XxXY)/G— X/G. (7)

Note that Z is a reduced complex space, the map p is holomorphic, it is
branched over the closed discrete subset Xo/ G of X /G, and the restriction

p:Z1=p1(X1/G) = X1/G
is a holomorphic G-bundle with fibre Y = A, U Yp. The subset
0= (X1><A*)/GC21CZ

is a G-invariant Zariski open domain without singularities.



Proof of the Theorem, 3

Observations and facts:
@ The restricted projection
0:Q=(X1xA)/G— X1/G (8)
is a holomorphic G-bundle with fibre A,.

@ A G-equivariant map f : X; — Ax is the same thing as a section
f:X1/G — Q of the G-bundle p: Q) — X1 /G (8).

© The map fy from step 1 gives a local holomorphic section fy of (7) on a
neighbourhood V/G C X/G of Xy/G, and

fo((V\X0)/G)) C Q.

Q The fibre A, of (8) is On(C)-homogeneous, hence an Oka manifold.
Therefore, sections of p: Z = (X x Y)/G — X/ G mapping X1/G to Q
satisfy the Oka principle (F. 2003). This gives global holomorphic sections
f:X/G — Z with f(Xl/G) C Q) which agrees with fg on Xp/G.

@ f can be chosen such that the corresponding G-equivariant map
f : X — Y integrates to a G-equivariant conformal minimal immersion.



The main reference

Springer Monographs in Mathematics

Antonio Alarcon
Franc Forstneri¢
Francisco J. Lopez

Minimal Surfaces
froma Complex
Analytic Viewpoint

@ Springer

Our book (2021) includes proofs of
the Runge/Mergelyan approximation
theorem, the Weierstrass interpolation
theorem, and related results in the
classical theory of minimal surfaces in
Euclidean spaces. They are obtained
by combining Oka-theoretic methods
with convex integration theory.

Since the convex hull of the null
quadric A C C" equals C", the
holomorphic map f : X — A, U Yy
can be chosen such that the value of
the integral f’y f0 on any given curve
7y C X assumes an arbitrary value in
C". Hence, we can arrange the
desired period conditions.



In a galaxy of minimal surfaces

Thank your for your attention
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