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ISOTOPIES OF COMPLETE MINIMAL SURFACES
OF FINITE TOTAL CURVATURE

Franc Forstnerič

Geometric methods of complex analysis
Wuppetal, 21–25 October 2024
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Abstract

Complete minimal surfaces of finite total Gaussian curvature in Euclidean
spaces Rn are among the most classical and widely studied objects in the
theory. They are analogues of algebraic curves in complex Euclidean spaces.

In this talk, I shall presents the results on the approximation and structure
theory of complete minimal surfaces of finite total curvature:

A. Alarcón, F. Forstnerič, and F. Lárusson: Isotopies of complete minimal
surfaces of finite total curvature.
Preprint, June 2024. https://arxiv.org/abs/2308.12637

An elementary introduction to minimal surfaces:

F. Forstnerič: Minimal surfaces in Euclidean spaces by way of complex analysis.
European Congress of Mathematics, 9–43. EMS Press, Berlin, ©2023.

A more comprehensive treatment:

A. Alarcón, F. Forstnerič, F. J. López: Minimal surfaces from a complex analytic
viewpoint. Springer, Cham, 2021.

https://arxiv.org/abs/2308.12637
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The area and the Dirichlet functionals

Assume that M is a domain in C with coordinate z = x + iy. Given a C 1 map
u : M → Rn, consider the area functional

Area(u) =
∫

M
|ux × uy| dxdy =

∫
M

√
|ux|2|uy|2 − |ux · uy|2 dxdy

and the Dirichlet energy functional

D(u) = 1
2

∫
M
|∇u|2 dxdy =

1
2

∫
M

(
|ux|2 + |uy|2

)
dxdy.

From the elementary inequalities

|a|2|b|2 − |a · b|2 ≤ |a|2|b|2 ≤ 1
4
(
|a|2 + |b|2

)2
, a, b ∈ Rn,

which are equalities iff a, b is a conformal frame
a · b = 0 and |a|2 = |b|2,

we infer that
Area(u) ≤ D(u), with equality iff u is conformal.

The map u is conformal iff (ux, uy) is a conformal frame at every point.

Hence, these two functionals have the same critical points on the space of
conformal immersions.

Joseph-Louis de Lagrange (Giuseppe Lodovico Lagrangia), 1762 Minimal surfaces
are critical points of these functionals.
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Characterizations of minimal surfaces

Assume now that M is a bounded domain in R2 with piecewise smooth
boundary and u, v : M → Rn are smooth maps such that u is conformal and
v|bM = 0. Integration by parts gives

d
dt

∣∣∣
t=0

D(u + tv) =
∫

M
(ux · vx + uy · vy) dxdy = −

∫
M

∆u · v dxdy.

This vanishes for all such v iff ∆u = 0, thereby proving the first part of the
following theorem. The characterization of minimal surfaces by vanishing mean
curvature is due to Meusnier.

Theorem (Lagrange 1762, Meusnier 1776)
Let M be an open Riemann surface (or a conformal surface). The following are
equivalent for a smooth conformal immersion u : M → Rn (n ≥ 3):

u parametrizes a minimal surface in Rn (it is a critical point of the area
and the Dirichlet functionals on every smoothly bounded domain in M).
u is a harmonic map, i.e., ∆u = 0.
The mean curvature of the surface u(M) vanishes at every point.
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The Enneper-Weierstrass representation, 1860

Let M be an open Riemann surface. An immersion u = (u1, . . . , un) : M → Rn

for n ≥ 2 is conformal if and only if the Cn-valued (1, 0)-form
ϕ = (ϕ1, . . . , ϕn) = ∂u, with ϕi = ∂ui, satisfies the nullity condition

n
∑
i=1

ϕ2
i =

n
∑
i=1

(∂ui)
2 = 0.

A conformal immersion u : M → Rn (n ≥ 3) parametrizes a minimal surface in
Rn if and only if ϕ = ∂u is a holomorphic 1-form.

Conversely, a nowhere vanishing holomorphic 1-form ϕ = (ϕ1, . . . , ϕn) on M
satisfying the above nullity condition and the period vanishing condition

<
∫

C
ϕ = 0 for all closed curves C in M

integrates to a conformal minimal immersion u = <
∫

ϕ : M → Rn.

If in addition
∫

C ϕ = 0 holds for all closed curves C in M, then ϕ integrates to
an immersed holomorphic null curve h =

∫
ϕ : M → Cn whose real and

imaginary parts are conjugate minimal surfaces.

Every holomorphic curve in Cn, n ≥ 2, is a conformal minimal surface in R2n.
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The null quadric A and the subbundle A ⊂ (T∗M)⊕n

Define the (punctured) null quadric

A =
{
(z1, . . . , zn) ∈ Cn

∗ = Cn \ {0} : z2
1 + z2

2 + · · ·+ z2
n = 0

}
.

This manifold is flexible (LND’s on A generate the tangent space at every
point), hence algebraically elliptic and an Oka manifold.

Given a Riemann surface M, we have a holomorphic subbundle A of the vector
bundle (T∗M)⊕n, with fibre isomorphic to A, whose sections are n-tuples
(ϕ1, . . . , ϕn) of (1, 0)-forms on M without common zeros such that the map

G(ϕ) = [ϕ1 : ϕ2 : · · · : ϕn] : M → Pn−1

takes values in the projective quadric P(A) ⊂ Pn−1 defined by the same
equation z2

1 + z2
2 + · · ·+ z2

n = 0. Transition maps on A are given by fibre
multiplication by nonvanishing holomorphic functions.

Hence, a smooth map u : M → Rn is a conformal minimal immersion if and
only if ϕ = ∂u is a holomorphic section of the bundle A → M.

The holomorphic map G(∂u) : M → P(A) is called the Gauss map of the
conformal minimal immersion u : M → Rn.
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Dimension n = 3

Let u = (u1, u2, u3) : M → R3 be a conformal minimal immersion, and let
(N1,N2,N3) : M → S2 ⊂ R3 denote its classical Gauss map. Then, the
stereographic projection

g =
N1 + iN2
1 − N3

=
∂u3

∂u1 − i∂u2
: M → P1 ∼= P(A) ⊂ P2

is a holomorphic map, called the complex Gauss map of u, and we have the
classical Enneper–Weierstrass formula for minimal surfaces:

u = 2<
∫ (1

2

(1
g
− g

)
,
i

2

(1
g
+ g

)
, 1
)

∂u3.

Many quantities of a minimal surface can be expressed by its Gauss map:

g = u∗ds2 =
(1 + |g|2)2

4|g|2 |∂u3|2 the induced metric on M

Kg = − 4|dg|2
(1 + |g|2)2 = −g∗(σ2

P1 ) the Gauss curvature function

TC(u) =
∫

M
K dA = −AreaP1 (g(M)) the total Gaussian curvature
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Complete FTC minimal surfaces

A minimal surface u : M → Rn is said to be complete if the Riemannian metric
g = u∗ds2 = |du|2 on M is a complete metric, and of finite total curvature if

TC(u) =
∫

M
K dA > −∞.

If u : M → Rn is a conformally immersed minimal surface of finite total curvature,
then M = M \ E where M is a compact Riemann surface and E = {x1, . . . , xm} is a
nonempty finite set (Huber 1957). Such M admits a biholomorphism onto a closed
embedded algebraic curve in C3, so it will be called an affine Riemann surface.

The bundle (T∗M)⊕n ⊃ A → M with fibre A is algebraic, and ∂u is a rational 1-form
on M without zeros or poles on M, that is, a regular algebraic section of A → M.

The Gauss map of such a surface is also algebraic. The total Gaussian curvature of
any complete minimal surface in R3 in a nonnegative integer multiple of
−4π = −Area(P1), where the integer is the degree of the Gauss map g : M → P1.
For surfaces in Rn with n > 3, it is an integer multiple of −2π.

The surface u : M → Rn is complete iff ∂u has an effective pole at every point of
E = M \ M. In such case, u(M) is properly immersed in Rn and has a fairly simple and
well-understood asymptotic behaviour at every end of M, described by the
Jorge–Meeks theorem, 1983.
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Example: the catenoid

The catenoid is obtained by rotating the catenal curve in R2 (the graph of the
hyperbolic cosine function) around a suitable axis in R3. It was first described
by Euler in 1744. For example, by rotating the catenal curve
R 3 v 7→ (cosh v, 0, v) ∈ R3 around the x3-axis we obtain the vertical catenoid
in R3 with the axis x1 = x2 = 0 and the implicit equation

x2
1 + x2

2 = cosh2 x3.
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Enneper–Weierstrass representation of the catenoid

A conformal parametrization is given by u = (u1, u2, u3) : R2 → R3,

u(x, y) = (cos x · cosh y, sin x · cosh y, y) .

It is 2π-periodic in the x variable. Introducing the variable ζ = x + iy and
z = eiζ = e−y+ix ∈ C∗, we obtain a single sheeted parametrization
u : C∗ → R3 having the Weierstrass representation

u(z) = (1, 0, 0)−<
∫ z

1

(1
2
(1

ζ
− ζ

)
,
i

2
(1

ζ
+ ζ

)
, 1
) dζ

ζ
.

The complex Gauss map of this catenoid is

g(z) = z, z ∈ C∗,

so it extends to the identity map on C∗ = P1. Hence, this catenoid is complete
and has total Gaussian curvature −4π = −Area(P1).

Osserman 1986 Together with Enneper’s surface, the catenoid is the only
complete minimal surface in R3 with total Gaussian curvature −4π.
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Example: Costa’s minimal surface

Celso J. Costa (1982) discovered a complete embedded minimal surface in R3

of genus one, a middle planar end and two catenoidal ends, of total Gaussian
curvature −12π. Its conformal type is that of a thrice-punctured torus. It has
the D4 dihedral group of symmetries.

Costa 1991 The only complete embedded minimal surfaces in R3 having
genus one and three ends are the 1-parameter family of Costa–Hoffman–Meeks
surfaces.
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Runge approximation theorem for minimal surfaces

Alarcón, Forstnerič, López, 2012–2016 Let M be an open Riemann surface,
K be a compact Runge set in M, and u : U → Rn (n ≥ 3) be a conformal
minimal immersion from an open neighbourhood of K. Then, u can be
approximated uniformly on K by proper conformal minimal immersions
ũ : M → Rn. The analogous result holds for holomorphic null curves and for
nonorientable minimal surfaces.

The proof uses methods of Oka theory (maps from Stein manifolds into the
Oka manifold A satisfy the Oka principle) and of convex integration theory
(to arrange vanishing periods of holomorphic maps M → A).

Alarcón & Lopez 2021; Alarcón & Lárusson 2023
If M = M \ E is an affine Riemann surface and K is a compact Runge set in M,
then a conformal minimal immersion u : U → Rn from a neighbourhood of K
can be approximated, uniformly on K, by complete conformal minimal
immersions ũ : M → Rn of finite total curvature.

That is, ∂ũ is algebraic and has an effective pole in every end of M.
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An algebraic approximation theorem

The first proof of the theorem for FTC minimal surfaces uses special divisors on
Riemann surfaces and is technically very involved.

The second proof is more conceptual, and it relies on the following algebraic
approximation theorem.

F. 2006 Let X be an affine algebraic manifold and Y be an algebraically
elliptic manifold (i.e., Y admits a dominating algebraic spray s : E → Y from
the total space of an algebraic vector bundle π : E → Y). Assume that

f0 : X → Y is an algebraic map,
K ⊂ X is a compact O(X)-convex set, and
ft : U → Y (t ∈ I = [0, 1]) is a homotopy of holomorphic maps from a
neighbourhood U ⊃ K.

Then, {ft}t∈I can be approximated uniformly on K × I by algebraic maps
F : X × C → Y.
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A simplified idea of proof

x

X

b

ξt Zx = Y

ft

f0(X)E|f0(X)

s

Z = X × Y

We replace maps X → Y by sections of Z = X × Y → X and consider E as an
algebraic vector bundle over Z. The homotopy of sections ft : U → Z is lifted
to a homotopy of sections ξt : f0(U) → E of the restricted algebraic bundle
E|f0(X) → f0(X) such that s ◦ ξt ◦ f0 = ft and ξ0 is the zero section.

Then, ξt is approximated by a homotopy of algebraic sections
ξ̃t : f0(X) → E|f0(X). The homotopy Ft = s ◦ ξ̃t : X → Z does the job.
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Towards the main theorem

Let M = M \ E be an affine Riemann surface.

CMI∗(M,Rn) denotes the space of complete nonflat conformal minimal
immersions M → Rn of finite total curvature.

NC∗(M,Cn) is the space of complete nonflat holomorphic null immersions
M → Cn of finite total curvature (that is, proper and algebraic).

<NC∗(M,Cn) = {<f : f ∈ NC∗(M,Cn)} ⊂ CMI∗(M,Rn).

A 1(M,A) denotes the space of Cn-valued rational 1-forms
ϕ = (ϕ1, . . . , ϕn) on M having no zeros or poles in M and satisfying the
nullity condition, that is, regular algebraic sections of the bundle A → M.

A 1
∗ (M,A) is the subspace of A 1(M,A) consisting of nonflat 1-forms.

A minimal surface u = (u1, . . . , un) : M → Rn is said to be nonflat iff u(M) is
not contained in an affine plane.

This holds iff the Gauss map G = [∂u1 : · · · : ∂un] : M → Pn−1 is nonconstant.
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The main theorem

Consider the diagram

<NC∗(M,Cn) �
� //

∂ ((PP
PPP

PPP
PPP

P
CMI∗(M,Rn)

∂
��

A 1(M,A)

where ∂ is the (1, 0)-differential.

Theorem (Alarcón, F., Lárusson, 2024)
If M is an affine Riemann surface, then the maps in the above diagram are
weak homotopy equivalences.

Recall that a continuous map α : X → Y between topological spaces is said to
be a weak homotopy equivalence (WHE) if it induces a bijection of path
components of the two spaces and an isomorphism πk(α) : πk(X) → πk(Y) of
their homotopy groups for k = 1, 2, . . . and arbitrary base points.

Thus, our theorem says that the three mapping spaces in the above diagram
have the same rough topological shape.
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A comment

Note that the images of the maps ∂ in the above diagram are contained in the
subspace A 1

∞(M,A) ⊂ A 1
∗ (M,A) consisting of nonflat 1-forms that have

effective poles at all ends of M.

We show that A 1
∞(M,A) and A 1

∗ (M,A) are open everywhere dense subsets of
A 1(M,A), and the inclusions

A 1
∞(M,A) ↪−→ A 1

∗ (M,A) ↪−→ A 1(M,A)

are weak homotopy equivalences.

Hence, our theorem also holds if ∂ is considered as a map to any of these two
smaller spaces of 1-forms on M.
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Topological structure of these mapping spaces

In order to understand the topological structure of the relevant mapping
spaces, one may consider the following extended diagram

CMI∗(M,Rn)

∂
��

� � ι // CMInf(M,Rn)

∂
��

A 1(M,A)
� � α // O1(M,A)

β // C (M,A),

where
ι is the inclusion of CMI∗(M,Rn) in the space CMInf(M,Rn) of nonflat
conformal minimal immersions M → Rn,

α is the inclusion of the space of algebraic 1-forms in the space O1(M,A)
of holomorphic 1-forms with values in A, and

β is the map O1(M,A) 3 ϕ 7→ ϕ/θ ∈ O(M,A), where θ is a fixed
nowhere vanishing holomorphic 1-form on M, followed by the inclusion
O(M,A) ↪→ C (M,A). In general, θ cannot be chosen algebraic.
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Topological structure, 2

CMI∗(M,Rn)

∂
��

� � ι // CMInf(M,Rn)

∂
��

A 1(M,A)
� � α // O1(M,A)

β // C (M,A),

The map β is a WHE by the Oka–Grauert principle since A is an Oka manifold.

The left-hand vertical map ∂ is a WHE by our theorem, while the right-hand
one is a WHE by a theorem of Lárusson and myself (2019).

In order to understand the inclusion ι, it thus remains to understand the
inclusion α.

The limitations of the algebraic Oka principle, discovered by Lárusson and
Truong (2019), suggest that α may fail to be a weak homotopy equivalence.
Nevertheless, it has recently been shown by Alarcón and Lárusson that α
induces a surjection of the path components, so ι does as well.

We expect that α and hence ι induce bijections of path components.
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An h-principle for ∂ : CMI∗(M,Rn) → A 1
∗ (M,A)

The WHE of this map is a consequence of the following h-principle.

Theorem

Assume that
M is an affine Riemann surface,
Q is a closed subspace of a compact Hausdorff space P,
u : M × Q → Rn, n ≥ 3, is a continuous map such that
up = u(· , p) ∈ CMI∗(M,Rn) for all p ∈ Q, and
ϕ : M × P → A is a continuous map such that
(a) ϕp = ϕ(· , p) ∈ A 1

∗ (M,A) for every p ∈ P, and
(b) ∂up = ϕp for every p ∈ Q.

Then there is a homotopy ϕt : M × P → A, t ∈ [0, 1], such that ϕ0 = ϕ and
the following conditions hold.
(i) ϕt

p = ϕt(· , p) ∈ A 1
∗ (M,A) for every p ∈ P and t ∈ [0, 1].

(ii) ϕt
p = ϕp for every p ∈ Q and t ∈ [0, 1] (the homotopy is fixed on Q).

(iii) ϕ1
p ∈ A 1

∞(M,A) for every p ∈ P.
(iv) <

∫
C ϕ1

p = 0 for every p ∈ P and [C] ∈ H1(M,Z).
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It follows from (iii) and (iv) that the maps u1
p : M → Rn defined by

u1
p(x) = cp +<

∫ x

x0
2ϕ1

p for x ∈ M and p ∈ P,

with suitably chosen constants cp ∈ Rn, form a continuous family

P → CMI∗(M,Rn), p 7→ u1
p

of complete nonflat conformal minimal immersions of finite total curvature
such that u1

p = up for all p ∈ Q.

The analogous h-principle for conformal minimal immersions without FTC and
completeness was obtained by Lárusson and myself in 2019.

In the present work, we combine their result with a newly developed parametric
algebraic approximation theorem for maps from affine manifolds X to
smooth flexible varieties Y and, more generally, for sections of algebraic
submersions Z → X which admit a dominating algebraic fibre-spray defined on
a trivial vector bundle Z × CN → Z. (In our case, X = M is an affine Riemann
surface and Z = A → M is the algebraic fibre bundle with fibre A.)

We also apply the new method of ensuring effective poles at all ends of the
given affine Riemann surface M.
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The WHE principle for directed holomorphic immersion

Holomorphic null curves are a special type of directed holomorphic immersions of open
Riemann surfaces to Euclidean spaces. A connected compact complex submanifold Y
of Pn−1, n ≥ 2, determines the punctured complex cone

A = {(z1, . . . , zn) ∈ Cn
∗ : [z1 : · · · : zn] ∈ Y}.

A holomorphic immersion h : M → Cn from an open Riemann surface is said to be
directed by A, or an A-immersion, if the differential dh = ∂h is a section of the
subbundle A with fibre A of the vector bundle (T∗M)⊕n.

Theorem
Let M be an affine Riemann surface, and let A ⊂ Cn

∗, n ≥ 2, be a flexible smooth
connected cone not contained in any hyperplane. Then the map

I∗(M,A) → A 1(M,A), h 7→ dh, (1)
from the space I∗(M,A) of proper nondegenerate algebraic A-immersions M → Cn to
the space A 1(M,A) of algebraic 1-forms on M with values in A is a weak homotopy
equivalence.

This holds for example for the ”big cone” A = Cn \ {0}, and in this case directed
immersions are plain immersions.


