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New developments in Oka theory

Franc Forstnerič

Giornata INdAM 2024
Varese, 2 October
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Kiyoshi Oka, 1901–1978

Kiyoshi Oka was a Japanese
mathematician who, during
1937–53, solved some of the most
important contemporary problems
in complex analysis.

One of his works from 1939 marks
the beginning of a major theory in
complex analysis in geometry, now
called the Oka theory.

In his homeland, Oka is better
known as a poet and a philosopher.
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Flexibility versus rigidity in complex geometry

A central question of complex geometry is to understand the space O(X,Y) of
holomorphic maps X → Y between a pair of complex manifolds. Are there
many maps, or few maps? Which properties can they have?

There are many holomorphic maps C → C and C → C∗ = C \ {0}, but there
are no nonconstant algebraic maps C → C∗ or holomorphic maps
C → C \ {0, 1}. Manifolds with the latter property are called hyperbolic.

Hyperbolicity has been studied since 1967 when Shoshichi Kobayashi
introduced his intrinsic pseudometric on complex manifold. A vast majority of
complex manifolds are close to hyperbolic. Hyperbolicity is a major obstruction
to solving global complex analytic problems. For example, there are continuous
maps C∗ → C \ {0, 1} which are not homotopic to a holomorphic map.

On the opposite side, Oka theory studies special complex manifolds which
admit many holomorphic maps from all Stein manifolds, i.e., closed complex
submanifolds of affine spaces CN. Oka theory provides solutions to a variety of
complex analytic problems in the absence of topological obstructions.

OKA THEORY = THE h-PRINCIPLE IN COMPLEX GEOMETRY
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First instances of the h-principle in complex geometry

Kiyoshi Oka 1939 For complex line bundles on Stein manifolds, the
holomorphic classification agrees with the topological classification.

Hans Grauert 1958 The same is true for principal and associated fibre
bundles (e.g. for vector bundles) on Stein manifolds and Stein spaces.

An equivalence between two such bundles is a section of an associated fibre
bundle with a complex Lie group fibre.

The proof amounts to showing that every Stein manifold X admits many
holomorphic maps X → Y to any complex homogeneous manifold Y, and many
holomorphic sections X → Z of any holomorphic fibre bundle Z → X with Lie
group fibre.

What is a good way to interpret ‘many holomorphic maps’?

Look at properties of holomorphic functions X → C on Stein manifolds.
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Oka–Weil and Oka–Cartan

A compact set K in a complex manifold X is called O(X)-convex if for every
point p ∈ X \ K there is a holomorphic function f ∈ O(X) such that

|f (p)| > sup
x∈K

|f (x)|.

Oka–Weil 1936 If K is a compact O(X)-convex subset of a Stein manifold X,
then every holomorphic function on (a neighbourhood of) K can be
approximated uniformly on K by holomorphic functions X → C.

Oka–Cartan 1951 If T is a closed complex subvariety of a Stein manifold X,
then every holomorphic function on T extends to a holomorphic function on X.

These results can be combined to approximation and (jet) interpolation.

These are fundamental properties of Stein manifolds and Stein spaces.

A twist of philosophy: We can view them as properties of the complex
number field C. We now formulate them as properties of an arbitrary target
manifold Y in the absence of topological obstructions.
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Oka properties of a complex manifold Y

BOPA — the basic Oka property with approximation: For every compact
O(X)-convex subset K of a Stein space X and continuous map f0 : X → Y
which is holomorphic on K there is a homotopy ft : X → Y (t ∈ [0, 1]) of maps
of the same type such that ft|K ≈ f0|K for all t and f1 is holomorphic on X.

BOPI — the basic Oka property with interpolation: For every closed
complex subvariety T of a Stein space X and continuous map f0 : X → Y such
that f0|T is holomorphic there is a homotopy ft : X → Y (t ∈ [0, 1]) of maps of
the same type such that ft|T = f0|T for all t and f1 is holomorphic on X.

BOPAI = BOPA + BOPI.

POPA, POPI, POPAI — the parametric Oka properties: The analogous
properties for families of maps fp : X → Y depending continuously on a
parameter p ∈ P in a compact Hausdorff space, with fp holomorphic for p in a
compact subset Q ⊂ P. We ask for the existence of a homotopy f t : X → Y,
t ∈ [0, 1], fixed for p ∈ Q, to a family of holomorphic maps f 1

p : X → Y, p ∈ P.
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70 years after Oka’s fundamental paper

A complex manifold satisfying all these properties is called an

*** OKA MANIFOLD ***

MSC 2020: New subfield 32Q56 Oka principle and Oka manifolds
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Basic properties of Oka manifolds

The weak homotopy equivalence principle: For every Stein manifold X
and Oka manifold Y, the inclusion

(∗) O(X,Y ) ↪−→ C (X,Y )

is a weak homotopy equivalence.

Lárusson 2015 If X is a Stein manifold of finite type (this holds in
particular for every affine manifold), then (∗) is a homotopy equivalence.

A Riemann surface is Oka iff it is not hyperbolic.

Every Oka manifold is Liouville, i.e., every bounded plurisubharmonic
function on the manifold is constant.

Kobayashi and Ochiai 1977 A compact complex manifold Y of maximal
Kodaira dimension κ(Y) = dimY (i.e., of general type) is not dominable
by the affine space. Hence, no such manifold is Oka.

Note that κ(Y) ∈ {−∞, 0, 1, . . . , dimY} is the smallest integer k such that
dimH 0(Y,Kd

Y) ≤ cdk for some c > 0. Here, KY = ∧dimYT∗Y.
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Gromov elliptic manifolds

Gromov 1989 Every elliptic complex manifold is an Oka manifold.
Furthermore, the Oka principle holds in all forms for sections of elliptic
holomorphic submersions Z → X over a Stein base X.

A complex manifold Y is elliptic if it admits a dominating holomorphic spray,
i.e., a holomorphic map s : E → Y from the total space of a holomorphic vector
bundle E → Y such that for all y ∈ Y,

s(0y) = y and s : Ey → Y is a submersion at 0y ∈ Ey.

Gromov’s seminal paper from 1989
marks the beginning of modern Oka
theory twenty years after the last
major works on the Oka–Grauert
theory by the German school.

b

b

b
e s

Y
y

Ey



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples of elliptic manifolds

Every complex homogeneous manifold Y is elliptic.
Let G be a complex Lie group with the Lie algebra g = T1G ∼= CdimG.
A dominating spray on a G-homogeneous manifold Y is given by
Y × g → Y, (y, g) 7→ eg y.
A flexible complex manifold Y is elliptic. Such Y admits C-complete
holomorphic vector fields V1, . . . ,Vk spanning the tangent space TyY at
every point. Let ϕj

t denote the flow of Vj for time t ∈ C. The following
map s : Y × Ck → Y is then a dominating spray on Y:

s(y, t1, . . . , tk) = ϕ1
t1 ◦ · · · ◦ ϕk

tk (y)

A spray of this type exists on Cn \ A, where A is algebraic subvariety with
dimA ≤ n − 2. We can use complete vector fields f (π(z))v, where
v ∈ Cn, π : Cn → Cn−1 is a linear projection with π(v) = 0, and f is a
polynomial on Cn−1 that vanishes on the subvariety π(A) ⊂ Cn−1.

An algebraically flexible manifold is algebraically elliptic. Every
uniformly rational projective manifold Y ⊂ Pn is algebraically elliptic
(Arzhantsev, Kaliman and Zaidenberg 2024).
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The convex approximation property (CAP), 2005

A complex manifold Y enjoys the convex approximation property (CAP) if
every holomorphic map K → Y from a compact convex set K ⊂ Cn is a uniform
limit of entire maps Cn → Y.

F. 2005–2009, 2017
A complex manifold is an Oka manifold iff it enjoys CAP.
It is easily seen that Gromov’s ellipticity implies CAP.
If Y → Z is a holomorphic fibre bundle with Oka fibre, then Y is Oka iff Z
is Oka. In particular, the class of Oka maps is invariant under unramified
holomorphic coverings and quotients.
The Oka properties described above are pairwise equivalent.
Every Oka manifold Y is the image of a strongly dominating holomorphic
map CdimY → Y.

The proof of the main result CAP ⇒ OKA amounts to inductively extending
holomorphic maps X ⊃ D → Y to bigger and bigger subsets of X, using
approximation and gluing techniques for manifold-valued maps.
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Kusakabe’s characterization of Oka manifolds (2021)

After 80 years, the Oka theory returned to Japan.

A complex manifold Y enjoys the convex extension property (CEP) if for
every compact convex set L ⊂ Cn and holomorphic map f : L → Y there is a
holomorphic map F : L × CN → Y such that F(· , 0) = f and

∂

∂ζ

∣∣∣
ζ=0

F(z, ζ) : CN → Tf (z)Y is surjective for every z ∈ L.

Condition CEP is a special case of Gromov’s Condition Ell1 (1986).

Yuta Kusakabe 2021 CEP ⇒ CAP. Thus:

CEP ⇐⇒ CAP ⇐⇒ OKA.

Corollary (Kusakabe 2021) A complex manifold Y which is a union of Zariski
open Oka domains is an Oka manifold.

A Zariski open domain in a complex manifold Y is the complement Y \ A of a
closed complex subvariety A ⊂ Y.
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Complements of polynomially convex sets are Oka

Kusakabe 2020; Ann. Math. 2024
If K is a compact polynomially convex set in Cn (n > 1) then Cn \ K satisfies
CEP, and hence is an Oka manifold. The same holds if K is an closed
unbounded polynomially convex set in Cn with a proper projection to Cn−2.

The analogous result holds in any Stein manifold having the following property.

Varolin’s density property (DP), 2000 Every holomorphic vector field on X
can be approximated on compacts by sums and commutators of complete
holomorphic vector fields. The Euclidean spaces Cn (n > 1) and many complex
Lie groups and homogeneous manifolds have DP.

Andrist, Shcherbina & Wold, 2016 If K is a compact set in Cn (n ≥ 3) with
infinitely many limit points, then Cn \ K is not elliptic.

Kusakabe’s theorem provides a huge class of nonelliptic Oka manifolds,
thereby solving a longstanding open problem.

Problem: is there a non-elliptic compact (or even projective) Oka manifold?
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Sketch of proof of the complements theorem

Assume that K is a compact polynomially convex set in Cn, n > 1. We shall
verify that Cn \ K satisfies CEP, so it is Oka.

Let L ⊂ CN be a compact convex set and f : U → Cn \ K be a holomorphic
map from an open neighbourhood U ⊂ CN of L. Let

Γ = {(z, f (z)) : z ∈ L} ⊂ CN × Cn.

The compact set
(L × K) ∪ Γ ⊂ CN × Cn

is polynomialy convex. Let

G(z, ζ) = (z,ψ(z, ζ))

be the identity map on a neighborhood of L × K and the contraction

ψ(z, ζ) = f (z) + 1
2 (ζ − f (z))

to the point f (z) ∈ Cn for (z, ζ) in a neighbourhood of Γ.
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Sketch of proof, 2

Rosay & F. 1993 We can approximate the map G, uniformly on a
neighbourhood of (L × K) ∪ Γ, by holomorphic automorphisms
Φ ∈ Aut(U × Cn) of the form

Φ(z, ζ) =
(
z, ϕ(z, ζ)), z ∈ U, ζ ∈ Cn.

Hence, ϕ(z, · ) ∈ Aut(Cn) is close to the identity on a neighbourhood of K and
has an attractive fixed point at f (z) for every z ∈ U.

Iteration of this procedure yields a holomorphic family of Fatou–Bieberbach
domains f (z) ∈ Ωz ⊂ Cn \ K for z ∈ L, and hence a holomorphic map
F : L × Cn → Cn such that for all z ∈ L,

F(z, 0) = f (z) and F(z, · ) : Cn ∼=→ Ωz ⊂ Cn \ K is a Fatou–Bieberbach map.

Thus, Cn \ K satisfies condition CEP, so it is Oka by Kusakabe’s theorem.
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Strictly concave domains in Cn are Oka

F. & Wold, 2023 Complements of most closed convex sets E ⊂ Cn for n > 1
are Oka. This holds in particular if E does not contain any affine real line.

We first show that for any polynomially convex set K ⊂ Cn and complex
hyperplane H ⊂ Cn, the domain Cn \ (H ∪ K) is Oka. This is similar to the
proof that Cn \ K is Oka since Cn \ H has the density property and the
approximation theorem of Rosay & F. applies.

Let E ⊂ Cn be as above. Consider the projective closure

K :=E ⊂ CPn = Cn ∪ H, H ∼= CPn−1.

Pick a projective hyperplane Λ ⊂ CPn with K ∩ Λ = ∅. Then, K =E is a
compact polynomially convex set in CPn \ Λ ∼= Cn, and hence

(CPn \ Λ) \ (H ∪ K) is Oka.

Finitely many such domains (varying Λ) cover CPn \ (H ∪ K) = Cn \ K, so this
domain is Oka by Kusakabe’s localization theorem.
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Oka tubes in ample line bundles

Kusakabe & F. 2024 Let L → X be a holomorphic line bundle on a compact
complex manifold X. Assume that for each x ∈ X there exists a divisor D ∈ |L|
whose complement X \ D is a Stein neighbourhood of x with the density
property. Then, for any semipositive hermitian metric h on L the disc bundle
∆h(L) = {h < 1} is an Oka manifold while L \ ∆h(L) = {h > 1} is Kobayashi
hyperbolic.

It is easily seen that every line bundle L → X as above is ample, and there is a
finite holomorphic map Φ : X → CPN such that L = Φ∗O

CPN (1).

Examples: ample line bundles on projective spaces, Grassmannians, flag
manifolds,…. This can be contrasted with the following classical result:

Grauert 1961 If (L, h) is a negatively curved holomorphic hermitian line
bundle on a compact complex manifold X, then the tube {0 < h < 1} is
Kobayashi hyperbolic.
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The inverse Levi problem

The classical Levi problem in complex analysis asks for a geometric
characterization of domains of holomorphy Ω ⊂ Cn, i.e., domains with a
holomorphic function which does not extend holomorphically across any
boundary point of Ω. This holds iff Ω is a Stein domain.

The Levi problem was solved by Oka (1942–53), who showed that Ω is a
domain of holomorphy iff it is pseudoconvex iff the function − log dist(· , bΩ) is
plurisubharmonic on Ω.

Since Oka manifolds are in a precise sense dual to Stein manifolds, the
following is a natural problem.

Problem
Is every Oka domain X ⊂ Cn pseudoconcave (i.e., is Cn \ X pseudoconvex)?

Is the complement X = Cn \ Ω of every smoothly bounded pseudoconvex
domain Ω ⊂ Cn (n > 1) an Oka domain?
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A new direction in Oka theory

I am currently developing the Oka principle for families of Stein structures
on the source manifold. The following is the first instance. Assume that

B is a Euclidean neighbourhood retract (every finite CW complex is such),
X is a smooth open oriented surface,
{Jb}b∈B is a continuous family of complex structures on X,
K ⊂ X is a compact Runge set (i.e., X \ K has no holes),
U ⊂ B × X is an open set containing B × K,
Y is an Oka manifold, and
f : B × X → Y is a continuous map such that fb = f (b, · ) : X → Y is
Jb-holomorphic on Ub = {x ∈ X : (b, x) ∈ U} for every b ∈ B.

Given a continuous function ϵ : B → (0,+∞), there is a continuous map
F : B × X → Y such that for every b ∈ B the map Fb = F(b, · ) : X → Y is
Jb-holomorphic and satisfies supx∈K distY(Fb(x), fb(x)) < ϵ(b).

If B is a smooth manifold and the data (Jb, fb) depend smoothly on b ∈ B,
then so do the approximants Fb.
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Oka properties and metric positivity

A challenging open problem is to understand the relationship between Oka
properties and metric positivity of compact hermitian or Kähler manifolds.

The specialness of manifolds of low Kodaira dimension is analogous to the
specialness of Riemannian manifolds of positive curvature, while general type
(maximal Kodaira dimension) corresponds to the genericity of non-positive
curvature.

The result on tubes of line bundles, mentioned above, is an example of this
phenomenon.

We mention a few known results in this direction, beginning with the following.

Grauert & Reckziegel 1965 A hermitian manifold with negative holomorphic
sectional curvature is Kobayashi hyperbolic.

This is a generalization of the Ahlfors–Schwarz lemma. There are many further
results on this subject (Wu 1967, Kobayashi 1970, Greene and Wu 1979).
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Oka properties and metric positivity

Mori 1979, Siu and Yau 1980, Mok 1988 The universal cover of a compact
Kähler manifold with nonnegative holomorphic bisectional curvature is
biholomorphic to

Ck × CPn1 × · · · × CPnl × M1 × · · · × Mp

where each Mj is a compact hermitian symmetric space.
Every such manifold is Oka.

Campana & Peternell 1991 A compact projective manifold with dim ≤ 3
with numerically effective tangent bundle is an Oka manifold.

Lárusson and F. 2024 A projective manifold that is birationally equivalent to
an algebraically elliptic projective manifold is an aOka-1 manifold, i.e., it has
the Oka properties for algebraic (regular) maps X → Y from any affine
algebraic curve X. This holds in particular for all rational manifolds.

Conjecture Every compact rationally connected manifold is an Oka-1 and
aOka-1 manifold. (If the holomorphic sectional curvature of a compact Kähler
manifold is positive then, by Yau’s conjecture solved X. Yang 2018, the
manifold is rationally connected.)
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Selected applications of Oka theory

Grauert 1958 Classification of principal G-bundles on Stein spaces.
Eliashberg & Gromov 1992; Schürmann 1996 Every Stein manifold X
of dimension n > 1 admits a proper holomorphic embedding in C[3n/2]+1

and immersion in C[(3n+1)/2]. These dimensions are optimal.

Eliashberg & Gromov 1985 Holomorphic immersions Xn → CN for
N > n ≥ 1 satisfy the basic h-principle with respect to their tangent maps.

F. 2003 Holomorphic subersions Xn → Cm for n > m ≥ 1 satisfy the
basic h-principle with respect to their tangent maps. In particular, every
Stein manifold admits many holomorphic functions without critical points.

Wold & F. 2009, 2013 Proper holomorphic embeddings of bordered
Riemann surfaces in C2.

Ivarsson & Kutzschebauch 2012 Null homotopic holomorphic maps
X → SLm(C) satisfy the Vaserstein factorisation theorem into upper and
lower triangular matrix-valued maps.

Ivarsson, Kutzschebauch, Løw, Schott, 2019–2022 Factorization of
holomorphic symplectic matrices into elementary factors.
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Applications to minimal surfaces

A minimal surface in Rn, n ≥ 3, is
given by a conformal harmonic
immersion F : X → Rn from an open
Riemann surface.

The (1, 0)-differential Φ = ∂F is a
holomorphic 1-form with exact real
part 2<Φ = dF and values in the cone

A = {z 2
1 + z 2

2 + · · ·+ z 2
n = 0} \ {0},

and vice versa.

The cone A is an Oka manifold.
(It is also algebraically flexible.)

Applications of Oka theory yield a
variety of new results on minimal
surfaces in Euclidean spaces.
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The main results on this subject up to
2017, discussed in this talk, are
presented in my Ergebnisse
monograph.

Developments after 2017 are
summarised in my survey

Recent developments on Oka
manifolds.
Indag. Math., 34(2) (2023) 367–417.

Thank you for your attention.


