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Oka manifolds and their role in complex geometry

Franc Forstnerič

University of Oxford, 7 May 2024
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Flexibility versus rigidity in complex geometry

A central question of complex geometry is to understand the space of
holomorphic maps X → Y between a pair of complex manifolds. Are there
many maps, or few maps? Which properties can such maps have?

There are many holomorphic maps C → C and C → C∗ = C \ {0}, but there
are no nonconstant algebraic maps C → C∗ or holomorphic maps
C → C \ {0, 1}. Manifolds with the latter property are called hyperbolic.
Hyperbolicity is often an obstruction to solving complex analytic problems.

On the opposite side, Oka theory studies complex manifolds which admit
many holomorphic maps from all Stein manifolds, i.e., closed complex
submanifolds of affine spaces CN. It provides solutions to many
complex-analytic problems in the absence of topological obstructions.

OKA THEORY = h-PRINCIPLE IN COMPLEX GEOMETRY
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The h-principle

Gromov’s general h-principle, 1970s The obstructions to solving certain
partial differential relations are purely topological.

Basic h-principle: Every formal solution can be deformed to a genuine solution.

Parametric h-principle The inclusion

{genuine solutions} ↪−→ {formal solutions}

is a weak homotopy equivalence (often with additional features).
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Examples of the h-principle

H. Whitney 1937 (attributed to W. C. Graustein): Smooth immersions of the
circle into the plane are classified, up to isotopy, by the winding number.

Formal solutions = {loops with a nowhere-vanishing vector field}
∼= {loops in R2 \ {0}}

This seems a first example of Gromov’s h-principle for ample differential
relations and the beginning of a major chapter in differential topology.

A few other examples:
C 1 isometric embeddings (Nash, Kuiper 1950s)
Smale’s sphere eversion (1950s)
Classification of immersions by their tangent maps (Smale, Hirsch 1959)
Classification of submersions by their tangent maps (Phillips 1966)
Symplectic geometry, contact geometry
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The first appearance of the h-principle in complex analysis

Kiyoshi Oka 1939; Hans Grauert 1958
For principal and their associate fibre bundles (e.g. vector bundles) over Stein
spaces, the holomorphic classification agrees with the topological classification.

Equivalence between two such bundles is a section of an associated fibre bundle
with homogeneous fibre.

Hence, the proof amounts to showing that every Stein space X admits many
holomorphic maps X → Y to any complex homogeneous manifold Y, and many
global holomorphic sections X → Z of any principal and related holomorphic
fibre bundle Z → X.

What is a good way to interpret ‘many holomorphic maps’?

Look at properties of holomorphic functions X → C on Stein spaces.
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Oka–Weil and Oka–Cartan

Let X be a Stein space.

Oka–Weil 1936 If K is a compact holomorphically convex subset of X then
every holomorphic function on (a neighbourhood of) K can be approximated
uniformly on K by holomorphic functions on X.

Oka–Cartan 1951 If T is a closed complex subvariety of X then every
holomorphic function on T extends to a holomorphic function on X.

These two results can be combined to approximation and (jet) interpolation.
They extend to sections of coherent analytic sheaves on Stein spaces.

These are fundamental properties of Stein manifolds and Stein spaces.

A twist of philosophy: We can view them as properties of the target manifold,
the complex number field C. We now formulate them as properties of an
arbitrary target manifold Y, taking into account topological obstructions.
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Oka properties of a complex manifold Y

BOPA — the basic Oka property with approximation: For every compact
O(X)-convex subset K of a Stein space X and every continuous map f0 : X → Y
which is holomorphic on K there is a homotopy ft : X → Y (t ∈ [0, 1]) of maps
of the same type such that ft|K ≈ f0|K for all t and f1 is holomorphic on X.

BOPI — the basic Oka property with interpolation: For every closed
complex subvariety T of a Stein space X and continuous map f0 : X → Y such
that f0|T is holomorphic there is a homotopy ft : X → Y (t ∈ [0, 1]) of maps of
the same type such that ft|T = f0|T for all t and f1 is holomorphic on X.

BOPAI = BOPA + BOPI.

POPA, POPI, POPAI — the parametric Oka properties: The analogous
properties for families of maps fp : X → Y depending continuously on a
parameter p ∈ P in a compact Hausdorff space, with fp holomorphic for p in a
compact subset Q ⊂ P. We ask for the existence of a homotopy f t : X → Y,
t ∈ [0, 1], fixed for p ∈ Q, to a family of holomorphic maps f 1

p : X → Y, p ∈ P.
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Enter Oka manifolds — 2009

A complex manifold satisfying all these properties is called an

*** OKA MANIFOLD ***

MSC 2020: New subfield 32Q56 Oka principle and Oka manifolds
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Oka manifolds

Oka 1939, Grauert 1958 Every complex homogeneous manifold is Oka.

Gromov 1989 Every elliptic complex manifold is an Oka manifold.

F. 2005 A complex manifold Y enjoys the convex approximation property
(CAP) if every holomorphic map K → Y from a compact convex set K ⊂ Cn is
a limit of entire maps Cn → Y.

F. 2005–2009, 2017
A complex manifold is an Oka manifold if and only if it enjoys CAP.
The Oka properties described above are pairwise equivalent.
If Y → Z is a holomorphic fibre bundle with Oka fibre, then Y is Oka iff Z
is Oka. (This generalizes to Oka maps.)
Every Oka manifold Y is the image of a strongly dominating holomorphic
map CdimY → Y.
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Further properties of Oka manifolds

The weak homotopy equivalence principle: For every Stein space X and
Oka manifold Y, the inclusion

O(X,Y ) ↪−→ C (X,Y )

is a weak homotopy equivalence.

Lárusson 2015 If X is a Stein manifold which admits a strongly
plurisubharmonic exhaustion function with only finitely many critical
points then the above inclusion is a genuine homotopy equivalence.

A Riemann surface is Oka if and only if it is not hyperbolic.

Every Oka manifold is Liouville, i.e., every bounded plurisubharmonic
function on the manifold is constant.

Kobayashi and Ochiai 1977 A compact complex manifold X of general
type (i.e., of maximal Kodaira dimension κ(X) = dimX) is not dominable
by affine space. Hence, such a manifold is not Oka.
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Gromov’s ellipticity

Gromov 1989 A complex manifold Y is called elliptic if it admits a
dominating holomorphic spray:

A holomorphic map s : E → Y, defined on the total space of a holomorphic
vector bundle E over Y, such that for all y ∈ Y we have

s(0y) = y and s : Ey → Y is a submersion at 0y ∈ Ey.

b

b

b
e s

Y
y

Ey

Sprays are used to linearize the approximation and gluing problems for
manifold-valued holomorphic maps from Stein manifolds.
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Gromov’s Oka principle

Gromov 1989: Every elliptic
manifold is an Oka manifold.

The Oka principle holds for
sections of elliptic submersions
Z → X over a Stein base X.

Detailed proofs were given by
Prezelj & F., 2000–2002.
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A homotopy approximation theorem

Given the equivalence CAP ⇐⇒ Oka (F. 2009), the main point is that

ellipticity =⇒ CAP.

This is a special case of Gromov’s

Homotopy approximation theorem: Let f : X → Y be a holomorphic map to
a complex manifold Y. Assume that K ⊂ X is a compact O(X)-convex set and
ft : U → Y (t ∈ [0, 1]) is a homotopy of holomorphic maps on an open set
K ⊂ U ⊂ X such that f0 = f |U.
If Y is elliptic, then we can approximate ft uniformly on K by a homotopy
f̃t : K → Y of holomorphic maps, with f̃0 = f.

By using a dominating spray s : E → Y, the proof reduces to the Oka–Weil
approximation theorem for sections of vector bundles over X.
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Subelliptic manifolds

A complex manifold Y is subelliptic if there exist finitely many sprays
sj : Ej → Y which together dominate:

∑
j

dsj(Ej,y) = TyY for all y ∈ Y.

F. 2002 Every subelliptic manifold is Oka. Sections of a subelliptic
holomorphic submersion over a Stein base satisfy the Oka principle.

Gromov 1989 An algebraic manifold Y is algebraically (sub) elliptic if it
admits an algebraic dominating spray (or a family of sprays).
Algebraic subellipticity is a Zariski open property.

Kaliman and Zaidenberg 2024 Every algebraically subelliptic manifold is
algebraically elliptic. (This is not known in the holomorphic category.)
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Examples of (sub) elliptic manifolds

Every C-homogeneous Y is elliptic: Y × g →s Y, (y, v) 7→ ev· y.

A flexible manifold Y is elliptic. Such Y admits C-complete holomorphic
vector fields V1, . . . ,Vk spanning the tangent space TyY at every point.
Let ϕj

t denote the flow of Vj for time t ∈ C. The map s : Y × Ck → Y,

s(y, t1, . . . , tk) = ϕ1
t1 ◦ · · · ◦ ϕk

tk (y)

is then a dominating spray on Y.

An algebraically flexible manifold is algebraically elliptic. The tangent
bundle of such a manifold is pointwise spanned by LND’s.

A spray of this type exists on Cn \ A, where A is algebraic subvariety with
dimA ≤ n − 2. We can use complete vector fields f(π(z))v where v ∈ Cn,
π : Cn → Cn−1 is a linear projection with π(v) = 0, and f is a polynomial
on Cn−1 that vanishes on the subvariety π(A) ⊂ Cn−1.

Arzhantsev, Kaliman and Zaidenberg 2024 Every uniformly rational
projective manifold Y ⊂ Pn is algebraically elliptic.
The affine cone C(Y ) ⊂ Cn+1 \ {0} is also algebraically elliptic.
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Notable applications of modern Oka theory

Eliashberg & Gromov 1992; Schürmann 1996
Every Stein manifold of dimension n > 1 admits a proper holomorphic
embedding in C[3n/2]+1 and immersion in C[(3n+1)/2]. These dimensions
are optimal, and they solve a conjecture of Forster 1970.

Eliashberg & Gromov 1985 Holomorphic immersions Xn → CN for
N > n ≥ 1 satisfy the basic h-principle with respect to their tangent maps.

F. 2003 Holomorphic subersions Xn → Cm for n > m ≥ 1 satisfy the
basic h-principle with respect to their tangent maps. In particular, every
Stein manifold admits many holomorphic functions without critical points.

Wold & F. 2009, 2013 Proper holomorphic embeddings of bordered
Riemann surfaces in C2.

Ivarsson & Kutzschebauch 2012 Null homotopic holomorphic maps
X → SLm(C) satisfy the Vaserstein factorisation theorem into upper and
lower triangular matrix-valued maps.

Alarcón & F. 2014, Lárusson & F. 2019 Immersions X → Cn from
open Riemann surfaces which are directed by a nondegenerate Oka cone
A ⊂ Cn \ {0} satisfy the parametric h-principle.
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Applications to minimal surfaces (2021)

A minimal surface in Rn, n ≥ 3, is
given by a conformal harmonic
immersion F : X → Rn from an open
Riemann surface.

The (1, 0)-differential Φ = ∂F is a
holomorphic 1-form with exact real
part 2<Φ = dF and values in the cone

A = {z 2
1 + z 2

2 + · · ·+ z 2
n = 0} \ {0},

and vice versa.

The cone A is algebraically flexible.

Applications of Oka theory yield a
variety of new results on minimal
surfaces in Euclidean spaces.
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Oka principle in the algebraic category

Loday 1972 The Oka principle fails in general for algebraic (regular) maps
from an affine variety X to an algebraically elliptic manifold Y. For example, let

Σn = {(z0, . . . , zn) ∈ Cn+1 : z2
0 + z2

1 + · · ·+ z2
n = 1}.

Every algebraic map Σp × Σq → Σp+q is null-homotopic when p and q are odd,
but there always exists a nontrivial continuous (and holomorphic) map.

Lárusson & Truong 2019 Algebraic analogues of properties CAP, BOPI,
BOPA fail for morphisms from affine varieties to any compact algebraic
manifold, and to any algebraic manifold with a nontrivial rational curve.

The following is the closest algebraic analogue of the basic Oka principle.

F. 2006 Let X be an affine variety and Y be an algebraically elliptic manifold.
Every holomorphic map X → Y which is homotopic to an algebraic map can be
approximated, uniformly on compacts in X, by algebraic maps.

In particular, a compact algebraically elliptic manifold Y admits a surjective
strongly dominating morphism Cn → Y with n = dimY.
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Recent developments and open problems

Kusakabe 2021 Assume that a complex manifold Y satisfies the following
condition C-Ell1 (a special case of condition Ell1 considered by Gromov):

For every holomorphic map f : U → Y from a bounded open convex set U ⊂ Cn

there is a holomorphic F : U × CN → Y such that F(· , 0) = f and

∂

∂ζ

∣∣∣
ζ=0

F(z, ζ) : CN → Tf(z)Y is surjective for every z ∈ U.

Then, Y is an Oka manifold. Hence, the following conditions are equivalent:

C-Ell1 ⇐⇒ CAP ⇐⇒ OKA.

Corollary (Kusakabe 2021)
If a complex manifold Y is a union of Zariski open Oka domains, then Y is Oka.
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Complements of polynomially convex sets are Oka

Kusakabe 2024 If K is a compact polynomially convex set in Cn (n > 1) then
Cn \ K is Oka. The same holds if K is an closed unbounded polynomially
convex set in Cn with a proper projection to Cn−2.

The analogous result holds in any Stein manifold X with Varolin’s density
property: every holomorphic vector field on X can be approximated on
compacts by sums and commutators of complete holomorphic vector fields.

Andrist, Shcherbina & Wold 2016 If K is a compact set in Cn (n ≥ 3) with
infinitely many limit points then Cn \ K is not (sub) elliptic.

Hence, Kusakabe’s theorem gives a huge number of nonelliptic Oka manifolds,
thereby solving a longstanding open problem.

Problem: is there a non-elliptic compact (or even projective) Oka manifold?
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Complements of polynomially convex sets are Oka

To see this, we show that Cn \ K enjoys condition C-Ell1.

Let L ⊂ CN be a compact convex set and f : U → Cn \ K be a holomorphic
map from a convex open neighbourhood U ⊂ CN of L. Let
Γ = {(z, f (z)) : z ∈ L}. The set

(L × K) ∪ Γ

is then polynomialy convex in CN × Cn. Let

G(z, ζ) = (z,ψ(z, ζ))

be the identity map on a neighborhood of U × K and the contraction

ψ(z, ζ) =
1
2 ζ +

1
2 f (z)

to the point f (z) ∈ Cn for each (z, ζ) in a neighbourhood of Γ.
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Complements of polynomially convex sets are Oka, 2

Rosay & F. 1993 We can approximate the biholomorphic map G uniformly on
(L × K) ∪ Γ by a holomorphic automorphism Φ ∈ Aut(U × Cn) of the form

Φ(z, ζ) =
(
z, ϕ(z, ζ)), z ∈ U, ζ ∈ Cn.

Iteration of this procedure leads to a holomorphic maps F : U × Cn → Cn such
that for all z ∈ U we have F(z, 0) = f (z) and

F(z, · ) : Cn → Cn \ K is a Fatou–Bieberbach map.

Thus, Cn \ K satisfies condition C-Ell1, so it is Oka.

Furthermore, CPn \ K is Oka for every such K by the localization theorem for
Oka manifolds.
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Further applications

F. & Wold, 2023 Complements of most closed convex sets E ⊂ Cn for n > 1
are Oka. This holds in particular if E does not contain any affine real line.

Drinovec Drnovšek & F. 2023 For most closed convex sets E ⊂ Cn, any
Stein manifold X with 2 dimX < n admits a proper holomorphic embedding
f : X ↪→ Cn with f (X) ∩ E = ∅.

Kusakabe & F. 2024 Let L → X be a holomorphic line bundle on a compact
complex manifold X. Assume that for each x ∈ X there exists a divisor D ∈ |L|
whose complement X \ D is a Stein neighbourhood of x with the density
property. Then, for any semipositive hermitian metric h on L the disc bundle
∆h(L) = {h < 1} is an Oka manifold.

Examples: ample line bundles on projective spaces, Grassmannians, flag
manifolds,…. This can be contrasted with the following classical result:

Grauert 1961 If (L, h) is a negative holomorphic hermitian line bundle on a
compact complex manifold X then {0 < h < 1} is Kobayashi hyperbolic.
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Oka properties and metric positivity

A challenging open problem is to understand the relationship between Oka
properties and metric positivity of compact hermitian or Kähler manifolds.

The specialness of varieties of low Kodaira dimension is analogous to the
specialness of Riemannian manifolds of positive curvature, and general type
corresponds to the genericity of non-positive curvature.

We mention a few known results in this direction, beginning with the following.

Grauert & Reckziegel 1965 A compact hermitian manifold with negative
holomorphic sectional curvature is Kobayashi hyperbolic.

This is a generalization of the Ahlfors–Schwarz lemma. There are many further
results on this subject (Wu 1967, Kobayashi 1970, Greene and Wu 1979).
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Oka properties and metric positivity

Mori 1979, Siu and Yau 1980, Mok 1988 The universal cover of a compact
Kähler manifold with nonnegative holomorphic bisectional curvature is
biholomorphic to

Ck × CPn1 × · · · × CPnl × M1 × · · · × Mp

where each Mj is a compact hermitian symmetric space with its canonical
complex structure and Kähler metric. Every such manifold Y is Oka.

Campana & Peternell 1991 A compact projective manifold with dim ≤ 3
with nef tangent bundle is an Oka manifold.

Lárusson and F. 2024 A projective manifold that is birationally equivalent to
an algebraically elliptic projective manifold is an aOka-1 manifold, i.e., it has
the Oka properties for regular maps X → Y from any affine algebraic curve X.
This holds in particular for all rational manifolds.

Conjecture Every compact rationally connected manifold is an Oka-1 and
aOka-1 manifold. (If the holomorphic sectional curvature of a compact Kähler
manifold is positive then, by Yau’s conjecture solved by X. Yang 2018, the
manifold is rationally connected.)
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The main results on this subject up to
2017, discussed in this talk, are
presented in my Ergebnisse
monograph.

Developments after 2017 are
summarised in my survey

Recent developments on Oka
manifolds.
Indag. Math., 34(2) (2023) 367–417.

Thank you for your attention.


