MINIMAL SURFACES WITH SYMMETRIES

Franc Forstnerič

Univerza v Ljubljani

Established by the European Commission

Université libre de Bruxelles, 22 January 2024

Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this talk, I shall discuss the existence of orientable minimal surfaces in Euclidean spaces \mathbb{R}^n , $n \geq 3$, with a given group of symmetries.

We show in particular that every finite group is a group of symmetries of a minimal surface.

F. Forstnerič: Minimal surfaces with symmetries. Preprint, August 2023. https://arxiv.org/abs/2308.12637

An elementary introduction to minimal surfaces:

F. Forstnerič: Minimal surfaces in Euclidean spaces by way of complex analysis. European Congress of Mathematics, 9–43. EMS Press, Berlin, ©2023.

Euler 1744; Lagrange 1762 A smooth immersed surface $F: X \to \mathbb{R}^n$ $(n \ge 3)$ is a **minimal surface** if it is a **stationary point of the area functional**. Any small enough piece of such a surface has the smallest area among all surfaces with the same boundary.

Meusnier, 1776 A surface in \mathbb{R}^n is a minimal surface if and only if its mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion $F: X \to \mathbb{R}^n$ determines on X a Riemannian metric $g = F^*ds^2$, which makes F an isometry, and hence a **conformal map**. By **Gauss**, there are local **isothermal coordinates** (x,y) at any point of X in which

$$g = \lambda (dx^2 + dy^2)$$
 for some function $\lambda > 0$.

Transition maps between isothermal charts are conformal diffeomorphisms of plane domains, hence holomorphic or antiholomorphic. This endows X with the structure of a **conformal surface**, and of a **Riemann surface** if X is oriented.

Minimal surfaces are given by conformal harmonic immersions

If $F: X \to \mathbb{R}^n$ is a **conformal immersion**, then

F parameterizes a minimal surface \iff F is a harmonic map \iff F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X, this is the **Laplace equation**

$$\Delta F = F_{xx} + F_{yy} = 4 \frac{\partial^2 F}{\partial \bar{z} \partial z} = 0.$$
 (1)

Write $\partial F = \frac{\partial F}{\partial z} dz = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) (dx + i dy)$. Then, $\Re(2\partial F) = dF$ and

$$\Delta F = 0 \iff \partial F = (\partial F_1, \dots, \partial F_n)$$
 is a holomorphic 1-form on X .

It is elementary see that an immersion $F = (F_1, \dots, F_n)$ is conformal iff

$$\sum_{i=1}^{n} (\partial F_i)^2 = 0. \tag{2}$$

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).

The Enneper-Weierstrass representation of minimal surfaces

Let $A \subset \mathbb{C}^n$ denote the **null quadric**

$$A = \{z = (z_1, \dots, z_n) : z_1^2 + z_2^2 + \dots + z_n^2 = 0\},\$$

and let $\overline{A} \subset \mathbb{CP}^n$ denote its projective closure. Pick a nontrivial holomorphic 1-form θ on X (possibly with zeros). If $F: X \to \mathbb{R}^n$ is a minimal surface then

$$2\partial F = f\theta$$
,

where $f = (f_1, \dots, f_n) : X \to \overline{A} \setminus \{0\}$ is a holomorphic map such that

$$\Re \oint_C f\theta = \oint_C dF = 0 \text{ for every closed curve } C \subset X.$$
 (3)

Conversely, given f as above such that $f\theta$ is a nowhere vanishing holomorphic 1-form on X satisfying (3), the map $F:X\to\mathbb{R}^n$ given by

$$F(x) = \Re \int_{*}^{x} f\theta$$

is a conformal harmonic immersion.

Symmetries and G-equivariant maps

A smooth map $T: \mathbb{R}^n \to \mathbb{R}^n$ maps minimal surfaces to minimal surfaces iff T is a **rigid map** — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on \mathbb{R}^n by rigid transformations. A surface $S\subset\mathbb{R}^n$ is G-invariant if

$$g(S) = S$$
 for every $g \in G$.

If $F: X \to S = F(X) \subset \mathbb{R}^n$ is an injective conformal immersion, then G also acts on X by conformal diffeomorphisms such that F is G-equivariant:

$$F \circ g = g \circ F$$
 for every $g \in G$.

If X is a Riemann surface and every $g \in G$ preserves the orientation on S = F(X), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G-equivariant immersion is a G-invariant surface.

*** Which groups arise in this way for minimal surfaces? ***

Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in \mathbb{R}^3 are planes and catenoids.

$$x^{2} + y^{2} = \cosh^{2} z$$
$$(t, z) \mapsto (\cos t \cdot \cosh z, \sin t \cdot \cosh z, z)$$

The symmetry group consist of rotations in the (x,y)-plane and the reflection $z\mapsto -z$.

The helicoid (Archimedes' screw)

Meusnier 1776 The helicoid is a ruled minimal surface. It is obtained by rotating a line and displacing it along the axis of rotation.

$$x = \rho \cos(\alpha z),$$

 $y = \rho \sin(\alpha z), \quad (z, \rho) \in \mathbb{R}^2.$

The group \mathbb{Z} acts on the helicoid by translations $z \mapsto z + k2\pi/\alpha$, $k \in \mathbb{Z}$.

Also, ${\mathbb R}$ acts by translations and simultaneous rotations.

Scherk's first surface

Scherk, 1835 The first Scherk's surface is doubly periodic, with the symmetry group \mathbb{Z}^2 of translations.

Its main branch is a graph over the square $P=(-\pi/2,\pi/2)^2$ given by

$$x_3 = \log \frac{\cos x_2}{\cos x_1}$$

Finn and Osserman, 1964

Sherk's surface S has the biggest absolute Gaussian curvature at $0 \in \mathbb{R}^3$ over all minimal graphs over P tangent to S at 0.

Riemann's minimal examples

Bernhard Riemann 1867: A family R_{λ} , $\lambda > 0$, of periodic planar domains, properly embedded as minimal surfaces in \mathbb{R}^3 such that every horizontal plane intersects each R_{λ} in a circle or a line. As $\lambda \to 0$ his surfaces converge to a vertical catenoid, and as $\lambda \to \infty$ they converge to a vertical helicoid.

The symmetry group is $\mathbb Z$ acting by translations.

The main theorem

Let X be a connected open Riemann surface and $G \subset \operatorname{Aut}(X)$ be a finite group of holomorphic automorphisms. The stabiliser of $X \in X$ is

$$G_X = \{g \in G : gx = x\}.$$

This is a cyclic group of rotations in a local holomorphic coordinate at x.

Assume that G also acts on \mathbb{R}^n by orthogonal transformations in $O(n,\mathbb{R})$.

Theorem

The following are equivalent:

- **◎** For every nontrivial stabiliser G_X ($X \in X$) there is a G_X -invariant 2-plane $\Lambda_X \subset \mathbb{R}^n$ on which G_X acts effectively by rotations.
- lacktriangle There exists a G-equivariant conformal minimal immersion $F:X o\mathbb{R}^n$:

$$F(gx) = gF(x), \quad x \in X, \ g \in G.$$

In particular, such F exists if the group G acts freely on X.

Two generalizations

The same holds if G is an infinite group which acts on a connected open Riemann surface X properly discontinuously by holomorphic automorphisms such that X/G is open, and G acts on \mathbb{R}^n by rigid transformations, i.e., compositions of orthogonal maps, translations, and dilations.

The result also holds if the differential ∂F has poles. The poles of ∂F are **proper ends** of the minimal surface $F: X \to \mathbb{R}^n$ with **finite total curvature**:

$$\int K \cdot d$$
Area $> -\infty$,

where $K:X \to (-\infty,0]$ is the Gaussian curvature function.

Every finite group is a symmetry group of a minimal surface

Greenberg 1960, 1974 Every countable group G is the automorphism group of a Riemann surface X. If G is finite then X can be taken compact.

It is elementary to see that every finite group G of order n=|G| acts on \mathbb{R}^{2n} by orthogonal maps such that for every $g\in G$ there is a 2-plane $\Lambda\subset\mathbb{R}^{2n}$ on which g acts by a rotation for the angle $2\pi/k$, where k is the order of g.

Corollary

For every finite group G of order n>1 there exist an open connected Riemann surface X, effective actions of G by holomorphic automorphisms on X and by orthogonal transformations on \mathbb{R}^{2n} , and a G-equivariant conformal minimal immersion $X \to \mathbb{R}^{2n}$.

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus $\mathfrak{g} \geq 2$ then

$$|\operatorname{Aut}(X)| \leq 84(\mathfrak{g}-1).$$

Most such surfaces have no nontrivial automorphisms.

Proof of (b) \Longrightarrow (a)

Let $x \in X$ be a point with a nontrivial stabiliser G_X of order $k = |G_X| > 1$.

There is a local holomorphic coordinate z on X around x, with z(x)=0, in which a generator of $G_x=\langle g\rangle$ is the rotation

$$gz = e^{i\phi}z$$
, $\phi = 2\pi/k$. (4)

Assume that G acts on \mathbb{R}^n by orthogonal maps and $F:X\to\mathbb{R}^n$ is a G-equivariant immersion. Differentiating $g\circ F=F\circ g$ gives

$$g \circ dF_X = dF_X \circ dg_X : T_X X \to \Lambda_X := dF_X (T_X X) \subset \mathbb{R}^n.$$

Since $dF_X: T_XX \to \Lambda_X$ is a linear isomorphism, we see that $\Lambda_X \subset \mathbb{R}^n$ is a G_X -invariant plane on which g acts as the rotation R_{ϕ} , so condition (a) holds.

Taking the C-linear part of the above equation gives

$$g \circ \partial F_{\mathsf{X}} = \partial F_{\mathsf{X}} \circ dg_{\mathsf{X}}. \tag{5}$$

Conversely, if condition (a) holds at $x \in X$ for the 2-plane $\Lambda_x \subset \mathbb{R}^n$ then the conformal linear map from the z-neighbourhood of $x \in X$ as in (4) to $\Lambda_x \subset \mathbb{R}^n$ is a G_x -equivariant conformal minimal immersion.

The h-principle for *G*-equivariant minimal surfaces

Corollary

Assume that G is a finite subgroup of the orthogonal group $O(n, \mathbb{R})$, $n \geq 3$.

Let $X \subset \mathbb{R}^n$ be a smoothly embedded, oriented, noncompact G-invariant surface such that every $g \in G$ preserves the orientation on X.

Then, X endowed with the complex structure induced by the embedding $X \hookrightarrow \mathbb{R}^n$ admits a G-equivariant conformal minimal immersion $F: X \to \mathbb{R}^n$.

Proof.

Condition (a) in the Theorem holds by the argument on the previous page.

The setup used in the proof of (a) \implies (b)

Let ${\cal G}$ be a finite group acting on an open Riemann surface ${\cal X}$ by holomorphic automorphisms. The set

$$X_0 = \{x \in X : G_x \neq \{1\}\}$$

is a closed, discrete, G-invariant subset of X, and G acts freely on

$$X_1 = X \setminus X_0 = \{x \in X : gx \neq x \text{ for all } g \in G \setminus \{1\}\}.$$

The orbit space X/G is an open Riemann surface,

 $\pi: X \to X/G$ is a holomorphic map which branches precisely on X_0 $\pi: X_1 \to X_1/G$ is a holomorphic covering projection of degree |G|.

Choose a holomorphic immersion $\tilde{h}: X/G \to \mathbb{C}$. The holomorphic map

$$h = \tilde{h} \circ \pi : X \to \mathbb{C}$$

is G-invariant $(h \circ g = h)$, and the holomorphic 1-form $\theta = dh$ satisfies

$$\theta_{gx} \circ dg_x = \theta_x \text{ for all } x \in X, \quad \{\theta = 0\} = X_0.$$
 (6)

Notation

$$\begin{array}{lll} A & = & \{z=(z_1,\ldots,z_n)\in\mathbb{C}^n:z_1^2+z_2^2+\cdots+z_n^2=0\} \ \ \text{the null quadric} \\ A_* & = & A\setminus\{0\} \ \ \text{the punctured null quadric} \\ \overline{A} & = & \text{the closure of } A \text{ in } \mathbb{CP}^n=\mathbb{C}^n\cup\mathbb{CP}^{n-1} \\ Y & = & \overline{A}\setminus\{0\}=A_*\cup Y_0 \\ Y_0 & = & Y\setminus A_*=\{[z_1:\cdots:z_n]\in\mathbb{CP}^{n-1}:z_1^2+z_2^2+\cdots+z_n^2=0\}. \end{array}$$

The actions of $O(n,\mathbb{R})\subset O(n,\mathbb{C})$ on \mathbb{C}^n extends to \mathbb{CP}^n , with $A_*\subset Y$ and the hyperplane at infinity $\mathbb{CP}^n\setminus\mathbb{C}^n\cong\mathbb{CP}^{n-1}$ being invariant submanifolds.

To any oriented 2-plane $0 \in \Lambda \subset \mathbb{R}^n$ we associate a complex line $L \subset A \subset \mathbb{C}^n$ by choosing an oriented basis (u,v) of Λ such that $\|u\| = \|v\| \neq 0$ and $u \cdot v = 0$ (a **conformal frame**) and setting

$$L = L(\Lambda) = \mathbb{C}(u - iv) \subset A \subset \mathbb{C}^n$$
.

A rotation R_{ϕ} on Λ corresponds to the multiplication by $e^{i\phi}$ on $L(\Lambda)$.

Weierstrass representation of *G*-equivariant minimal surfaces

Assume that X and G are as in the Theorem.

Every G-equivariant conformal minimal immersion $F: X \to \mathbb{R}^n$ is of the form

$$F(x) = v + \Re \int_{x_0}^x f\theta \quad \text{for } x_0, x \in X \text{ and } v = F(x_0), \tag{7}$$

where

$$f = 2\partial F/\theta : X \to Y = A_* \cup Y_0$$

is a G-equivariant holomorphic map satisfying $f^{-1}(Y_0) = X_0$ such that $f\theta$ has no zeros or poles, and it satisfies the period conditions

$$\Re \int_C f\theta = 0 \text{ for every } [C] \in H_1(X, \mathbb{Z}),$$
 (8)

$$gv = v + \Re \int_{x_0}^{gx_0} f\theta \quad \text{for all } g \in G.$$
 (9)

Suppose that $F: X \to \mathbb{R}^n$ (7) is a G-equivariant conformal minimal immersion. Then, $2\partial F = f\theta$ is holomorphic, conditions (8) hold, and $f: X \to Y$ is G-equivariant:

$$f(gx) = \frac{2\partial F_{gx}}{\theta_{gx}} = \frac{2\partial F_{gx} \circ dg_x}{\theta_{gx} \circ dg_x} = \frac{g \, 2\partial F_x}{\theta_x} = g \, f(x). \tag{10}$$

The *G*-equivariance condition on *F* at x_0 gives (9) with $v = F(x_0)$:

$$gv = gF(x_0) = F(gx_0) = v + \Re \int_{x_0}^{gx_0} f\theta$$
 for all $g \in G$.

Conversely, assume that $f:X\to Y$ is a G-equivariant holomorphic map satisfying the stated conditions. Then, the map F given by (7) is a conformal minimal immersion. Given a path $\gamma:[0,1]\to X$, we have for any $g\in G$:

$$\int_{g\gamma} f\theta = \int_0^1 f(g\gamma(t))\,\theta_{g\gamma(t)}(dg_{\gamma(t)}\dot{\gamma}(t))\,dt \stackrel{(6)}{=} \int_0^1 gf(\gamma(t))\,\theta_{\gamma(t)}(\dot{\gamma}(t))\,dt = g\int_\gamma f\theta,$$

$$F(gx) = v + \Re \int_{x_0}^{gx} f\theta = \left(v + \Re \int_{x_0}^{gx_0} f\theta\right) + \Re \int_{gx_0}^{gx} f\theta$$

$$\stackrel{(9)}{=} gv + \Re g \int_{x_0}^{x} f\theta = gF(x).$$

Proof of the Theorem, 1

Step 1: We find a G-equivariant conformal minimal immersion $F_0: V \to \mathbb{R}^n$ from a neighbourhood of the closed discrete subset $X_0 \subset X$.

Fix $x_0 \in X_0$ and set $k = |G_{x_0}| > 1$. Let $G_{x_0} = \langle g_0 \rangle$. There is a holomorphic coordinate z on a disc $x_0 \in \Delta \subset X$, with $z(x_0) = 0$, such that

$$g_0 z = e^{i\phi} z$$
, $\phi = 2\pi/k$.

Let $\Lambda \subset \mathbb{R}^n$ be a G_{x_0} -invariant plane on which g_0 acts as the rotation R_{ϕ} . Then, g_0 acts on the null line $L = L(\Lambda)$ as multiplication by $\mathrm{e}^{\mathrm{i}\phi}$.

The conformal linear map $F_0:\Delta\to\Lambda$ is G_{x_0} -equivariant, and $2\partial F_0=f_0\theta$ where

$$f_0(z) = rac{y_0}{z^{k-1}}$$
 for some $y_0 \in L$ and all $z \in \Delta$.

We extend F_0 and f_0 by G-equivariance to the orbit $G \cdot \Delta$ and perform the same construction on all G-orbits of X_0 .

This defines a G-equivariant map $f_0: V \to Y$ on a G-invariant neighbourhood $V \subset X$ of X_0 , with $f_0^{-1}(Y_0) = X_0$.

Step 2: We find a G-equivariant holomorphic map $f: X \to Y$ which agrees with f_0 on X_0 , it satisfies $f(X_1) \subset A_*$, and the period conditions (8) and (9) hold. The map $F: X \to \mathbb{R}^n$ given by (7) then solves the problem.

Consider the action of G on $X \times Y$ by

$$g(x,y)=(gx,gy), x \in X, g \in G.$$

The projection $X \times Y \to X$ is then *G*-equivariant, so it induces a projection

$$\rho: Z = (X \times Y)/G \to X/G.$$

Note that Z is a reduced complex space, the map ρ is holomorphic, it is branched over the closed discrete subset X_0/G of X/G, and the restriction

$$\rho: Z_1 = \rho^{-1}(X_1/G) \to X_1/G$$

is a holomorphic G-bundle with fibre $Y=A_*\cup Y_0$. The subset

$$\Omega := (X_1 \times A_*)/G \subset Z_1 \subset Z$$

is a G-invariant Zariski open domain without singularities.

The restricted projection

$$\rho: \Omega = (X_1 \times A_*)/G \to X_1/G \tag{11}$$

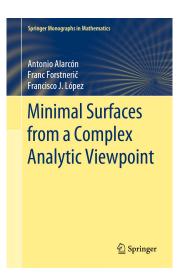
is a holomorphic G-bundle with fibre A_* .

- ② A G-equivariant map $f: X \to Y$ is the same thing as a section $\tilde{f}: X/G \to Z$ of $\rho: Z \to X/G$.
- **①** The map f_0 from step 1 gives a local holomorphic section \tilde{f}_0 of $Z \to X/G$ on a neighbourhood $V/G \subset X/G$ of X_0/G such that

$$\tilde{f}_0((V\setminus X_0)/G))\subset\Omega.$$

- The fibre A_* of (11) is $O(n,\mathbb{C})$ -homogeneous, hence an **Oka manifold**. Therefore, sections of $\rho: Z = (X \times Y)/G \to X/G$ mapping X_1/G to Ω satisfy the Oka principle (**F. 2003**). This gives a global holomorphic section $\tilde{f}: X/G \to Z$ with $\tilde{f}(X_1/G) \subset \Omega$ which agrees with \tilde{f}_0 on X_0/G .
- ① \tilde{f} can be chosen such that the corresponding G-equivariant map $f:X \to Y$ integrates to a G-equivariant conformal minimal immersion.

The main reference

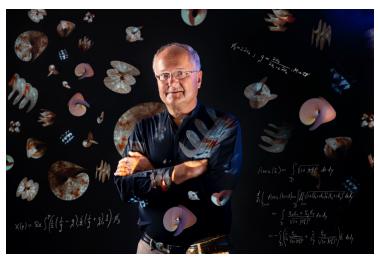


Our book (2021) includes proofs of the Runge/Mergelyan approximation theorem, the Weierstrass interpolation theorem, and related results in the classical theory of minimal surfaces in Euclidean spaces. They are obtained by combining Oka-theoretic methods with convex integration theory.

Since the convex hull of the null quadric $A \subset \mathbb{C}^n$ equals \mathbb{C}^n , the holomorphic map $f: X \to A_* \cup Y_0$ can be chosen such that the value of the integral $\int_{\gamma} f\theta$ on any given curve $\gamma \subset X$ assumes an arbitrary value in \mathbb{C}^n . Hence, we can arrange the desired period conditions.

In a galaxy of minimal surfaces

Thank your for your attention



© Katja Bidovec & Arne Hodalič