
MINIMAL SURFACES WITH SYMMETRIES

Franc Forstnerič
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Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this talk, I shall discuss the existence of orientable minimal surfaces in
Euclidean spaces Rn, n ≥ 3, with a given group of symmetries.

We show in particular that every finite group is a group of symmetries of a
minimal surface.
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What is a minimal surface?

Euler 1744; Lagrange 1762 A smooth immersed surface F : X → Rn

(n ≥ 3) is a minimal surface if it is a stationary point of the area functional.
Any small enough piece of such a surface has the smallest area among all
surfaces with the same boundary.

Meusnier, 1776 A surface in Rn is a minimal surface if and only if its
mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion F : X → Rn determines on X a
Riemannian metric g = F ∗ds2, which makes F an isometry, and hence a
conformal map. By Gauss, there are local isothermal coordinates (x , y) at
any point of X in which

g = λ(dx2 + dy2) for some function λ > 0.

Transition maps between isothermal charts are conformal diffeomorphisms of
plane domains, hence holomorphic or antiholomorphic. This endows X with the
structure of a conformal surface, and of a Riemann surface if X is oriented.



Minimal surfaces are given by conformal harmonic immersions

If F : X → Rn is a conformal immersion, then

F parameterizes a minimal surface ⇐⇒ F is a harmonic map

⇐⇒ F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X , this is the Laplace equation

∆F = Fxx + Fyy = 4
∂2F

∂z̄ ∂z
= 0. (1)

Write ∂F = ∂F
∂z dz = 1

2

(
∂F
∂x − i ∂F

∂y

)
(dx + idy). Then, <(2∂F ) = dF and

∆F = 0 ⇐⇒ ∂F = (∂F1, . . . , ∂Fn) is a holomorphic 1-form on X .

It is elementary see that an immersion F = (F1, . . . ,Fn) is conformal iff

n

∑
i=1

(∂Fi )
2 = 0. (2)

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).



The Enneper–Weierstrass representation of minimal surfaces

Let A ⊂ Cn denote the null quadric

A = {z = (z1, . . . , zn) : z21 + z22 + · · ·+ z2n = 0},

and let A ⊂ CPn denote its projective closure. Pick a nontrivial holomorphic
1-form θ on X (possibly with zeros). If F : X → Rn is a minimal surface then

2∂F = f θ,

where f = (f1, . . . , fn) : X → A \ {0} is a holomorphic map such that

<
∮
C
f θ =

∮
C
dF = 0 for every closed curve C ⊂ X . (3)

Conversely, given f as above such that f θ is a nowhere vanishing holomorphic
1-form on X satisfying (3), the map F : X → Rn given by

F (x) = <
∫ x

∗
f θ

is a conformal harmonic immersion.



Symmetries and G -equivariant maps

A smooth map T : Rn → Rn maps minimal surfaces to minimal surfaces iff T
is a rigid map — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on Rn by rigid transformations. A surface S ⊂ Rn is
G -invariant if

g(S) = S for every g ∈ G .

If F : X → S = F (X ) ⊂ Rn is an injective conformal immersion, then G also
acts on X by conformal diffeomorphisms such that F is G -equivariant:

F ◦ g = g ◦ F for every g ∈ G .

If X is a Riemann surface and every g ∈ G preserves the orientation on
S = F (X ), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G -equivariant immersion is a G -invariant surface.

∗ ∗ ∗ Which groups arise in this way for minimal surfaces? ∗ ∗ ∗



Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in R3 are planes and
catenoids.

x2 + y2 = cosh2 z

(t, z) 7→ (cos t · cosh z , sin t · cosh z , z)

The symmetry group consist of
rotations in the (x , y)-plane and the
reflection z 7→ −z .



The helicoid (Archimedes’ screw)

Meusnier 1776 The helicoid is a ruled minimal surface.
It is obtained by rotating a line and displacing it along the axis of rotation.

x = ρ cos(αz),

y = ρ sin(αz), (z , ρ) ∈ R2.

The group Z acts on the helicoid by
translations z 7→ z + k2π/α, k ∈ Z.

Also, R acts by translations and
simultaneous rotations.



Scherk’s first surface

Scherk, 1835 The first Scherk’s surface is doubly periodic, with the symmetry
group Z2 of translations.

Its main branch is a graph over the
square P = (−π/2, π/2)2 given by

x3 = log
cos x2
cos x1

Finn and Osserman, 1964
Sherk’s surface S has the biggest
absolute Gaussian curvature at
0 ∈ R3 over all minimal graphs over
P tangent to S at 0.



Riemann’s minimal examples

Bernhard Riemann 1867: A family Rλ, λ > 0, of periodic planar domains,
properly embedded as minimal surfaces in R3 such that every horizontal plane
intersects each Rλ in a circle or a line. As λ→ 0 his surfaces converge to a
vertical catenoid, and as λ→ ∞ they converge to a vertical helicoid.

The symmetry group is Z acting by translations.



The main theorem

Let X be a connected open Riemann surface and G ⊂ Aut(X ) be a
finite group of holomorphic automorphisms. The stabiliser of x ∈ X is

Gx = {g ∈ G : gx = x}.

This is a cyclic group of rotations in a local holomorphic coordinate at x .

Assume that G also acts on Rn by orthogonal transformations in O(n, R).

Theorem

The following are equivalent:

(a) For every nontrivial stabiliser Gx (x ∈ X ) there is a Gx -invariant 2-plane
Λx ⊂ Rn on which Gx acts effectively by rotations.

(b) There exists a G-equivariant conformal minimal immersion F : X → Rn:

F (gx) = gF (x), x ∈ X , g ∈ G .

In particular, such F exists if the group G acts freely on X .



Two generalizations

The same holds if G is an infinite group which acts on a connected open
Riemann surface X properly discontinuously by holomorphic automorphisms
such that X/G is open, and G acts on Rn by rigid transformations, i.e.,
compositions of orthogonal maps, translations, and dilations.

The result also holds if the differential ∂F has poles. The poles of ∂F are
proper ends of the minimal surface F : X → Rn with finite total curvature:∫

K · dArea > −∞,

where K : X → (−∞, 0] is the Gaussian curvature function.



Every finite group is a symmetry group of a minimal surface

Greenberg 1960, 1974 Every countable group G is the automorphism group
of a Riemann surface X . If G is finite then X can be taken compact.

It is elementary to see that every finite group G of order n = |G | acts on R2n

by orthogonal maps such that for every g ∈ G there is a 2-plane Λ ⊂ R2n on
which g acts by a rotation for the angle 2π/k, where k is the order of g .

Corollary

For every finite group G of order n > 1 there exist an open connected Riemann
surface X , effective actions of G by holomorphic automorphisms on X and by
orthogonal transformations on R2n, and a G-equivariant conformal minimal
immersion X → R2n.

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus g ≥ 2 then

|Aut(X )| ≤ 84(g− 1).

Most such surfaces have no nontrivial automorphisms.



Proof of (b) =⇒ (a)

Let x ∈ X be a point with a nontrivial stabiliser Gx of order k = |Gx | > 1.

There is a local holomorphic coordinate z on X around x , with z(x) = 0, in
which a generator of Gx = 〈g〉 is the rotation

gz = eiφz , φ = 2π/k. (4)

Assume that G acts on Rn by orthogonal maps and F : X → Rn is a
G -equivariant immersion. Differentiating g ◦ F = F ◦ g gives

g ◦ dFx = dFx ◦ dgx : TxX → Λx := dFx (TxX ) ⊂ Rn.

Since dFx : TxX → Λx is a linear isomorphism, we see that Λx ⊂ Rn is a
Gx -invariant plane on which g acts as the rotation Rφ, so condition (a) holds.

Taking the C-linear part of the above equation gives

g ◦ ∂Fx = ∂Fx ◦ dgx . (5)

Conversely, if condition (a) holds at x ∈ X for the 2-plane Λx ⊂ Rn then the
conformal linear map from the z-neighbourhood of x ∈ X as in (4) to
Λx ⊂ Rn is a Gx -equivariant conformal minimal immersion.



The h-principle for G -equivariant minimal surfaces

Corollary

Assume that G is a finite subgroup of the orthogonal group O(n, R), n ≥ 3.

Let X ⊂ Rn be a smoothly embedded, oriented, noncompact G-invariant
surface such that every g ∈ G preserves the orientation on X .

Then, X endowed with the complex structure induced by the embedding
X ↪→ Rn admits a G-equivariant conformal minimal immersion F : X → Rn.

Proof.

Condition (a) in the Theorem holds by the argument on the previous page.



The setup used in the proof of (a) =⇒ (b)

Let G be a finite group acting on an open Riemann surface X by holomorphic
automorphisms. The set

X0 = {x ∈ X : Gx 6= {1}}

is a closed, discrete, G -invariant subset of X , and G acts freely on

X1 = X \ X0 = {x ∈ X : gx 6= x for all g ∈ G \ {1}}.

The orbit space X/G is an open Riemann surface,

π : X → X/G is a holomorphic map which branches precisely on X0

π : X1 → X1/G is a holomorphic covering projection of degree |G |.

Choose a holomorphic immersion h̃ : X/G → C. The holomorphic map

h = h̃ ◦ π : X → C

is G -invariant (h ◦ g = h), and the holomorphic 1-form θ = dh satisfies

θgx ◦ dgx = θx for all x ∈ X , {θ = 0} = X0. (6)



Notation

A = {z = (z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0} the null quadric

A∗ = A \ {0} the punctured null quadric

A = the closure of A in CPn = Cn ∪CPn−1

Y = A \ {0} = A∗ ∪ Y0

Y0 = Y \ A∗ =
{
[z1 : · · · : zn] ∈ CPn−1 : z21 + z22 + · · ·+ z2n = 0

}
.

The actions of O(n, R) ⊂ O(n, C) on Cn extends to CPn, with A∗ ⊂ Y and
the hyperplane at infinity CPn \Cn ∼= CPn−1 being invariant submanifolds.

To any oriented 2-plane 0 ∈ Λ ⊂ Rn we associate a complex line L ⊂ A ⊂ Cn

by choosing an oriented basis (u, v) of Λ such that ‖u‖ = ‖v‖ 6= 0 and
u · v = 0 (a conformal frame) and setting

L = L(Λ) = C(u − iv) ⊂ A ⊂ Cn.

A rotation Rφ on Λ corresponds to the multiplication by eiφ on L(Λ).



Weierstrass representation of G -equivariant minimal surfaces

Assume that X and G are as in the Theorem.

Every G -equivariant conformal minimal immersion F : X → Rn is of the form

F (x) = v +<
∫ x

x0
f θ for x0, x ∈ X and v = F (x0), (7)

where
f = 2∂F/θ : X → Y = A∗ ∪ Y0

is a G -equivariant holomorphic map satisfying f −1(Y0) = X0 such that f θ has
no zeros or poles, and it satisfies the period conditions

<
∫
C
f θ = 0 for every [C ] ∈ H1(X , Z), (8)

gv = v +<
∫ gx0

x0
f θ for all g ∈ G . (9)



Proof

Suppose that F : X → Rn (7) is a G -equivariant conformal minimal immersion.
Then, 2∂F = f θ is holomorphic, conditions (8) hold, and f : X → Y is
G -equivariant:

f (gx) =
2∂Fgx

θgx
=

2∂Fgx ◦ dgx
θgx ◦ dgx

=
g 2∂Fx

θx
= g f (x). (10)

The G -equivariance condition on F at x0 gives (9) with v = F (x0):

gv = gF (x0) = F (gx0) = v +<
∫ gx0

x0
f θ for all g ∈ G .

Conversely, assume that f : X → Y is a G -equivariant holomorphic map
satisfying the stated conditions. Then, the map F given by (7) is a conformal
minimal immersion. Given a path γ : [0, 1]→ X , we have for any g ∈ G :∫
gγ

f θ =
∫ 1

0
f (gγ(t)) θgγ(t)(dgγ(t)γ̇(t)) dt

(6)
=
∫ 1

0
gf (γ(t)) θγ(t)(γ̇(t)) dt = g

∫
γ
f θ,

F (gx) = v +<
∫ gx

x0
f θ =

(
v +<

∫ gx0

x0
f θ

)
+<

∫ gx

gx0
f θ

(9)
= gv +<g

∫ x

x0
f θ = gF (x).



Proof of the Theorem, 1

Step 1: We find a G -equivariant conformal minimal immersion
F0 : V → Rn from a neighbourhood of the closed discrete subset X0 ⊂ X .

Fix x0 ∈ X0 and set k = |Gx0 | > 1. Let Gx0 = 〈g0〉. There is a holomorphic
coordinate z on a disc x0 ∈ ∆ ⊂ X , with z(x0) = 0, such that

g0z = eiφz , φ = 2π/k.

Let Λ ⊂ Rn be a Gx0 -invariant plane on which g0 acts as the rotation Rφ.

Then, g0 acts on the null line L = L(Λ) as multiplication by eiφ.

The conformal linear map F0 : ∆→ Λ is Gx0 -equivariant, and 2∂F0 = f0θ where

f0(z) =
y0

zk−1
for some y0 ∈ L and all z ∈ ∆.

We extend F0 and f0 by G -equivariance to the orbit G ·∆ and perform the same
construction on all G -orbits of X0.

This defines a G -equivariant map f0 : V → Y on a G -invariant neighbourhood
V ⊂ X of X0, with f −10 (Y0) = X0.



Proof of the Theorem, 2

Step 2: We find a G -equivariant holomorphic map f : X → Y which agrees
with f0 on X0, it satisfies f (X1) ⊂ A∗, and the period conditions (8) and
(9) hold. The map F : X → Rn given by (7) then solves the problem.

Consider the action of G on X × Y by

g(x , y) = (gx , gy), x ∈ X , g ∈ G .

The projection X × Y → X is then G -equivariant, so it induces a projection

ρ : Z = (X × Y )/G → X/G .

Note that Z is a reduced complex space, the map ρ is holomorphic, it is
branched over the closed discrete subset X0/G of X/G , and the restriction

ρ : Z1 = ρ−1(X1/G )→ X1/G

is a holomorphic G -bundle with fibre Y = A∗ ∪ Y0. The subset

Ω := (X1 × A∗)/G ⊂ Z1 ⊂ Z

is a G -invariant Zariski open domain without singularities.



Proof of the Theorem, 3

1 The restricted projection

ρ : Ω = (X1 × A∗)/G → X1/G (11)

is a holomorphic G -bundle with fibre A∗.

2 A G -equivariant map f : X → Y is the same thing as a section
f̃ : X/G → Z of ρ : Z → X/G .

3 The map f0 from step 1 gives a local holomorphic section f̃0 of Z → X/G
on a neighbourhood V/G ⊂ X/G of X0/G such that

f̃0
(
(V \ X0)/G )

)
⊂ Ω.

4 The fibre A∗ of (11) is O(n, C)-homogeneous, hence an Oka manifold.
Therefore, sections of ρ : Z = (X × Y )/G → X/G mapping X1/G to Ω
satisfy the Oka principle (F. 2003). This gives a global holomorphic
section f̃ : X/G → Z with f̃ (X1/G ) ⊂ Ω which agrees with f̃0 on X0/G .

5 f̃ can be chosen such that the corresponding G -equivariant map
f : X → Y integrates to a G -equivariant conformal minimal immersion.



The main reference

Our book (2021) includes proofs of
the Runge/Mergelyan approximation
theorem, the Weierstrass interpolation
theorem, and related results in the
classical theory of minimal surfaces in
Euclidean spaces. They are obtained
by combining Oka-theoretic methods
with convex integration theory.

Since the convex hull of the null
quadric A ⊂ Cn equals Cn, the
holomorphic map f : X → A∗ ∪ Y0

can be chosen such that the value of
the integral

∫
γ f θ on any given curve

γ ⊂ X assumes an arbitrary value in
Cn. Hence, we can arrange the
desired period conditions.



In a galaxy of minimal surfaces

Thank your for your attention
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