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Abstract

Objects with symmetries are of special interest in any mathematical theory.

In this talk, | shall discuss the existence of orientable minimal surfaces in
Euclidean spaces IR”, n > 3, with a given group of symmetries.

We show in particular that every finite group is a group of symmetries of a
minimal surface.

F. Forstneri¢: Minimal surfaces with symmetries. Preprint, August 2023.
https://arxiv.org/abs/2308.12637

An elementary introduction to minimal surfaces:

F. Forstneri¢: Minimal surfaces in Euclidean spaces by way of complex analysis.
European Congress of Mathematics, 9-43. EMS Press, Berlin, (©2023.


https://arxiv.org/abs/2308.12637

What is a minimal surface?

Euler 1744; Lagrange 1762 A smooth immersed surface F : X — R”

(n > 3) is a minimal surface if it is a stationary point of the area functional.
Any small enough piece of such a surface has the smallest area among all
surfaces with the same boundary.

Meusnier, 1776 A surface in R” is a minimal surface if and only if its
mean curvature vector vanishes at every point.

Let X be a smooth surface. An immersion F : X — IR” determines on X a
Riemannian metric g = F*ds2, which makes F an isometry, and hence a
conformal map. By Gauss, there are local isothermal coordinates (x, y) at
any point of X in which

g = A(dx?® + dy?) for some function A > 0.

Transition maps between isothermal charts are conformal diffeomorphisms of
plane domains, hence holomorphic or antiholomorphic. This endows X with the
structure of a conformal surface, and of a Riemann surface if X is oriented.



Minimal surfaces are given by conformal harmonic immersions

If F: X — IR" is a conformal immersion, then

F parameterizes a minimal surface <= F is a harmonic map
<= F is a stationary point of the energy functional.

In any isothermal coordinate z = x + iy on X, this is the Laplace equation

9*F
AF = Foct Fyy =45 —- =0. (1)

Write 9F = £dz — 1 (35 5) (dx +idy). Then, R(20F) = dF and

AF =0 <= 0dF =(dF1,...,0F,) is a holomorphic 1-form on X.

It is elementary see that an immersion F = (Fy,..., Fp) is conformal iff

Y (9F)? =o. )
i=1

Minimal surfaces are solutions of the nonlinear elliptic PDE (1), (2).



The Enneper—\Weierstrass representation of minimal surfaces

Let A C C" denote the null quadric
A={z=(z1,....20): 22+ 25 +---+22 =0},

and let A C CIP" denote its projective closure. Pick a nontrivial holomorphic
1-form 0 on X (possibly with zeros). If F: X — R" is a minimal surface then

20F = 10,

where f = (f1,..., fy) : X = A\ {0} is a holomorphic map such that
§R]{ o= % dF =0 for every closed curve C C X. 3)
C C

Conversely, given f as above such that f0 is a nowhere vanishing holomorphic
1-form on X satisfying (3), the map F : X — R" given by

Fo) =% [ ro

is a conformal harmonic immersion.



Symmetries and G-equivariant maps

A smooth map T : R" — R” maps minimal surfaces to minimal surfaces iff T
is a rigid map — a composition of orthogonal maps, dilations, and translations.

Let G be a group acting on R” by rigid transformations. A surface S C R" is
G-invariant if

g(5) =S forevery g € G.

If F: X — S = F(X) CR"is an injective conformal immersion, then G also
acts on X by conformal diffeomorphisms such that F is G-equivariant:

Fog=goF forevery geG.

If X is a Riemann surface and every g € G preserves the orientation on
S = F(X), then G acts on X by holomorphic automorphisms.

Conversely, the image of a G-equivariant immersion is a G-invariant surface.

* % % Which groups arise in this way for minimal surfaces? x x x



Most classical minimal surfaces have symmetries

Euler 1744 The only minimal surfaces of rotation in IR? are planes and

catenoids.

x2 4+ y? =cosh’®z

(t,z) — (cost-coshz,sint-coshz, z)

The symmetry group consist of
rotations in the (x, y)-plane and the
reflection z — —z.



The helicoid (Archimedes’ screw)

Meusnier 1776 The helicoid is a ruled minimal surface.
It is obtained by rotating a line and displacing it along the axis of rotation.

= pecos(az),
= psin(az), (z,p) € RZ

The group Z acts on the helicoid by
translations z — z 4+ k27 /a, k € Z.

Also, R acts by translations and
simultaneous rotations.




Scherk’s first surface

Scherk, 1835 The first Scherk’s surface is doubly periodic, with the symmetry
group Z2 of translations.

Its main branch is a graph over the
square P = (—7/2, m/2)? given by

COS X2

x3 = log
COSs X1

Finn and Osserman, 1964

Sherk’s surface S has the biggest
absolute Gaussian curvature at

0 € R3 over all minimal graphs over
P tangent to S at 0.




Riemann’s minimal examples

Bernhard Riemann 1867: A family Ry, A > 0, of periodic planar domains,
properly embedded as minimal surfaces in R3 such that every horizontal plane
intersects each R, in a circle or a line. As A — 0 his surfaces converge to a
vertical catenoid, and as A — oo they converge to a vertical helicoid.

The symmetry group is Z acting by translations.



The main theorem

Let X be a connected open Riemann surface and G C Aut(X) be a
finite group of holomorphic automorphisms. The stabiliser of x € X is

Gx={g € G:gx=x}.
This is a cyclic group of rotations in a local holomorphic coordinate at x.

Assume that G also acts on R” by orthogonal transformations in O(n, R).

Theorem

The following are equivalent:

@ For every nontrivial stabiliser Gy (x € X) there is a Gy-invariant 2-plane
Ax CRR" on which Gy acts effectively by rotations.

@ There exists a G-equivariant conformal minimal immersion F : X — R":

F(gx) =gF(x), x€ X, g€ G.

In particular, such F exists if the group G acts freely on X.




Two generalizations

The same holds if G is an infinite group which acts on a connected open
Riemann surface X properly discontinuously by holomorphic automorphisms
such that X/G is open, and G acts on IR" by rigid transformations, i.e.,
compositions of orthogonal maps, translations, and dilations.

The result also holds if the differential dF has poles. The poles of dF are
proper ends of the minimal surface F : X — IR" with finite total curvature:

/K - dArea > —o0,

where K : X — (—o0,0] is the Gaussian curvature function.



Every finite group is a symmetry group of a minimal surface

Greenberg 1960, 1974 Every countable group G is the automorphism group
of a Riemann surface X. If G is finite then X can be taken compact.

It is elementary to see that every finite group G of order n = |G| acts on R2"
by orthogonal maps such that for every g € G there is a 2-plane A C R2" on
which g acts by a rotation for the angle 271/ k, where k is the order of g.

For every finite group G of order n > 1 there exist an open connected Riemann
surface X, effective actions of G by holomorphic automorphisms on X and by
orthogonal transformations on R2", and a G-equivariant conformal minimal
immersion X — R?".

Hurwitz 1893, Maskit 1968 If X is a Riemann surface of genus g > 2 then
|Aut(X)| < 84(g—1).

Most such surfaces have no nontrivial automorphisms.



Proof of (b) = (a)

Let x € X be a point with a nontrivial stabiliser Gy of order k = |G| > 1.

There is a local holomorphic coordinate z on X around x, with z(x) = 0, in
which a generator of Gy = (g) is the rotation

gz = ei?z ¢ =2m/k. (4)

Assume that G acts on R” by orthogonal maps and F : X — R" is a
G-equivariant immersion. Differentiating g o F = F o g gives

godF, = dFcodgy: TuX = Ax:=dF(T«X) CR".

Since dFy : Ty X — Ay is a linear isomorphism, we see that Ay C R" is a
Gx-invariant plane on which g acts as the rotation Ry, so condition (a) holds.

Taking the C-linear part of the above equation gives
godFy, = dFy odgy. (5)

Conversely, if condition (a) holds at x € X for the 2-plane A, C R” then the
conformal linear map from the z-neighbourhood of x € X as in (4) to
Ax C IR™is a Gy-equivariant conformal minimal immersion.



The h-principle for G-equivariant minimal surfaces

Corollary

Assume that G is a finite subgroup of the orthogonal group O(n,R), n > 3.

Let X C R" be a smoothly embedded, oriented, noncompact G-invariant
surface such that every g € G preserves the orientation on X.

Then, X endowed with the complex structure induced by the embedding
X — R" admits a G-equivariant conformal minimal immersion F : X — R".

Condition (a) in the Theorem holds by the argument on the previous page. [




The setup used in the proof of (a) = (b)

Let G be a finite group acting on an open Riemann surface X by holomorphic
automorphisms. The set

Xo={x€ X:Gx#{1}}
is a closed, discrete, G-invariant subset of X, and G acts freely on
X1=X\Xo={xeX:gx#xforall ge G\ {1}}.
The orbit space X/ G is an open Riemann surface,

T: X — X/G is a holomorphic map which branches precisely on Xp
7t : X1 — X1/ G is a holomorphic covering projection of degree |G|.

Choose a holomorphic immersion h: X/G — C. The holomorphic map
h=hom:X —=C
is G-invariant (ho g = h), and the holomorphic 1-form 6 = dh satisfies

Ogx 0 dgx =0 forall x € X, {6=0}=Xo. (6)



Notation

A = {z=(z1,...,20) €C": 22 + 22 +---+ 22 =0} the null quadric
A. = A\ {0} the punctured null quadric

A = the closure of Ain CIP" =C"UCP" !

Y = A\{0}=A.UYp

Yo = Y\A={lz1: 1z eCP" iz} +23+ - +22 =0}

The actions of O(n,R) C O(n,C) on C" extends to CPP”, with A, C Y and
the hyperplane at infinity CIP" \ C" 22 CIP"~! being invariant submanifolds.

To any oriented 2-plane 0 € A C R" we associate a complex line LC AC C"
by choosing an oriented basis (u, v) of A such that ||ul| = ||v|| # 0 and
u-v =0 (a conformal frame) and setting

L=L(A)=C(u—iv)CACC"

A rotation Ry on A corresponds to the multiplication by e on L(A).



Weierstrass representation of G-equivariant minimal surfaces

Assume that X and G are as in the Theorem.

Every G-equivariant conformal minimal immersion F : X — R” is of the form
X
F(x)=v+®R [ f0 forxp,x€ Xandv=F(x), )]
X0

where
f=20F/0: X Y =A,UYy

is a G-equivariant holomorphic map satisfying f~1(Yy) = Xp such that 8 has
no zeros or poles, and it satisfies the period conditions

3%(/(:1‘6 — 0 forevery [C] € Hi(X,Z), (8)

8X0
v+ R fo forall g€ G. (9)

X0

8v



Proof

Suppose that F : X — R” (7) is a G-equivariant conformal minimal immersion.
Then, 20F = f0 is holomorphic, conditions (8) hold, and f : X — Y is
G-equivariant:

20Fy  20Fiodg.  g2dF.

f(gX) = ng = ng o ng - 9)( - gf(X) (10)

The G-equivariance condition on F at xg gives (9) with v = F(xp):

8Xo
gv=gF(x)=F(go)=v+R fo forall g€ G.
X0
Conversely, assume that f : X — Y is a G-equivariant holomorphic map
satisfying the stated conditions. Then, the map F given by (7) is a conformal
minimal immersion. Given a path 7 : [0,1] — X, we have for any g € G:

1 1
[ 0= [ Fla7(6) 0,0 gy (1)) e © [ ((8)) 0,0 (i(2)) ot =5 [ .

8X 8X0 8X
F(gx) v+ R f9:(v+§R f9)+8%/ o

X0 X0 8X0

—~
o

) gv-i—?Rg/ fo = gF(x).

X0



Proof of the Theorem, 1

Step 1: We find a G-equivariant conformal minimal immersion
Fo: V — R” from a neighbourhood of the closed discrete subset Xy C X.

Fix xo € Xo and set k = |Gy, | > 1. Let Gy, = (go). There is a holomorphic
coordinate z on a disc xg € A C X, with z(xg) = 0, such that

g0z = ei‘pz, ¢ =2m/k.

Let A CIR" be a Gx,-invariant plane on which gg acts as the rotation Ry.
Then, go acts on the null line L = L(A) as multiplication by e'?.

The conformal linear map Fg : A = A is Gy,-equivariant, and 20Fy = fpf where

fo(z) = % for some yp € L and all z € A.

We extend Fy and fy by G-equivariance to the orbit G- A and perform the same
construction on all G-orbits of Xp.

This defines a G-equivariant map fy : V — Y on a G-invariant neighbourhood
V C X of X, with £ 1(Yp) = Xo.



Proof of the Theorem, 2

Step 2: We find a G-equivariant holomorphic map f : X — Y which agrees
with fy on X, it satisfies f(X;) C A, and the period conditions (8) and
(9) hold. The map F : X — IR" given by (7) then solves the problem.

Consider the action of G on X X Y by
g(xy) = (ex.gy), x€X, g€G.
The projection X X Y — X is then G-equivariant, so it induces a projection
p:Z=(XxY)/G— X/G.

Note that Z is a reduced complex space, the map p is holomorphic, it is
branched over the closed discrete subset Xo/ G of X /G, and the restriction

p:Z1=p1(X1/G) = X1/G
is a holomorphic G-bundle with fibre Y = A, U Yp. The subset
0= (X1><A*)/GC21CZ

is a G-invariant Zariski open domain without singularities.



Proof of the Theorem, 3

© The restricted projection
p:Q:(Xle*)/G—>X1/G (11)
is a holomorphic G-bundle with fibre A,.

@ A G-equivariant map f : X — Y is the same thing as a section
F:X/G%Zofp:Z—)X/G.

@ The map fy from step 1 gives a local holomorphic section ) of Z — X/ G
on a neighbourhood V /G C X /G of Xp/G such that

f((V\X0)/G)) C Q.

Q The fibre A, of (11) is O(n, C)-homogeneous, hence an Oka manifold.
Therefore, sections of p: Z = (X x Y)/G — X /G mapping X1/G to Q
satisfy the Oka principle (F. 2003). This gives a global holomorphic

section f : X/G — Z with f(X1/G) C Q which agrees with f on X5/G.

@ f can be chosen such that the corresponding G-equivariant map
f : X — Y integrates to a G-equivariant conformal minimal immersion.



The main reference

Springer Monographs in Mathematics

Antonio Alarcon
Franc Forstneri¢
Francisco J. Lopez

Minimal Surfaces
froma Complex
Analytic Viewpoint

@ Springer

Our book (2021) includes proofs of
the Runge/Mergelyan approximation
theorem, the Weierstrass interpolation
theorem, and related results in the
classical theory of minimal surfaces in
Euclidean spaces. They are obtained
by combining Oka-theoretic methods
with convex integration theory.

Since the convex hull of the null
quadric A C C" equals C", the
holomorphic map f : X — A, U Yy
can be chosen such that the value of
the integral f’y f0 on any given curve
7y C X assumes an arbitrary value in
C". Hence, we can arrange the
desired period conditions.



In a galaxy of minimal surfaces

Thank your for your attention

© Katja Bidovec & Arne Hodali¢



