
Minimal metric on domains in real Euclidean spaces

Franc Forstnerič
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The minimal pseudometric

Let D denote the unit disc in C and Ω be a domain in Rn, n ≥ 3. We denote
by CH(D, Ω) the space of (not necessarily immersed) conformal harmonic
discs D→ Ω. Such a disc is a minimal surface. Let z = x + iy be the
complex coordinate on D and x = (x1, . . . , xn) be the coordinate on Rn.

We define a Finsler pseudometric (called the minimal metric) on the tangent
bundle TΩ = Ω×Rn by

gΩ(x, v) = inf
{

1/r > 0 : ∃f ∈ CH(D, Ω), f (0) = x, fx (0) = rv
}

.

Clearly, gΩ is upper-semicontinuous and absolutely homogeneous:

gΩ(x, tv) = |t|gΩ(x, v) for t ∈ R.

The minimal pseudodistance ρΩ : Ω×Ω→ R+ is defined by

ρΩ(x, y) = inf
γ

∫ 1

0
gΩ(γ(t), γ̇(t)) dt, x, y ∈ Ω.

The infimum is over all piecewise smooth paths γ : [0, 1]→ Ω with γ(0) = x
and γ(1) = y. Obviously, ρΩ satisfies the triangle inequality, but it need not be
a distance function. In particular, ρRn vanishes identically.



The distance decreasing property

For every conformal harmonic disc f : D→ Ω we have

gΩ(f (z), dfz (ξ)) ≤
|ξ|

1− |z |2 = PD(z , ξ), z ∈ D, ξ ∈ R2,

and gΩ is the biggest pseudometric on Ω with this property. For z = 0 this
follows from the definition of gΩ. For an arbitrary point z ∈ D it is obtained by
replacing f by a conformal harmonic disc f ◦ φ, where φ ∈ Aut(D) is a
holomorphic automorphism of the disc interchanging 0 and z .

It follows that conformal harmonic maps M → Ω (minimal surfaces) from any
conformal surface M are distance-decreasing in the Poincaré (pseudo) metric
on M and the minimal metric on Ω:

ρΩ(f (x), f (x ′)) ≤ distPM
(x , x ′), x , x ′ ∈ M;

furthermore, ρΩ is the biggest pseudodistance on Ω having this property.

If R : Rn → Rm (m ≥ n ≥ 3) is a rigid transformation (a composition of
orthogonal maps, dilations, and translations) and R(Ω) ⊂ Ω′ ⊂ Rm, then

gΩ′ (R(x), dRx(u)) ≤ gΩ(x, u), x ∈ Ω, u ∈ Rn.



The minimal metric is defined by chains of conformal harmonic discs

Fix a pair of points x, y ∈ Ω ⊂ Rn. Given a chain of conformal harmonic discs
fi : D→ Ω and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk (ak ) = y,

we define the length of the chain to be the number

k

∑
i=1

distPD
(0, ai ) =

k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

≥ 0.

The i-th summand on the right hand side is the Poincaré distance from 0 to ai
in D. It is easily seen that ρΩ(x, y) is the infimum of the lengths of such chains.

The Kobayashi pseudodistance on a complex manifold X is defined in the same
way by using chains of holomorphic discs D→ X .

Definition

A domain Ω ⊂ Rn (n ≥ 3) is hyperbolic if ρΩ is a distance function on Ω,
and is complete hyperbolic if (Ω, ρΩ) is a complete metric space.



Schwarz–Pick lemma for harmonic maps from the disc to the ball

Theorem (Kalaj & F., 2024)

Let f : D→ Bn is a harmonic map for some n ≥ 2 which is conformal at a
point z ∈ D. Denote by θ ∈ [0, π/2] the angle between the vector f (z) and
the plane dfz (R2). Then:

‖dfz‖ ≤
1− |f (z)|2

1− |z |2
1√

1− |f (z)|2 sin2 θ
.

Equality holds if and only if f is a conformal diffeomorphism onto the affine disc

Σ = (f (z) + dfz (R
2)) ∩Bn.

The number R =
√

1− |f (z)|2 sin2 θ is the radius of the disc Σ.

If f (z) = 0 or dfz = 0 then the angle θ is not defined, but it is irrelevant.

If n = 2 then θ = 0, R = 1, so the result generalises the classical Schwarz–Pick
lemma to harmonic maps f : D→ D which are conformal only at the point z
where we are estimating the differential dfz .



Comparison with the Schwarz lemma in the complex ball

The extremal holomorphic discs in the complex ball Bn
C ⊂ Cn are the

holomorphic parametrizations of complex affine discs in Bn
C. The proof uses the

fact that the group of holomorphic automorphisms of Bn
C acts transitively.

Comparison with our result shows that, up to the orientation:

The extremal holomorphic discs in Bn
C are precisely those extremal

conformal minimal discs whose images are complex.

The biggest group preserving the set of all conformal minimal discs in Bn under
postcomposition is the orthogonal group, which does not act transitively. Our
proof also gives a new proof of the complex Schwarz lemma without using the
Möbius group Aut(Bn

C).



The minimal metric on the ball

Corollary

The minimal metric gBn on the ball Bn ⊂ Rn is

gBn (x, v)2 =
1− |x|2 sin2 φ

(1− |x|2)2
|v|2

=
(1− |x|2)|v|2 + |x · v|2

(1− |x|2)2
=

|v|2
1− |x|2 +

|x · v|2
(1− |x|2)2

.

where x ∈ Bn, v ∈ Rn, and φ is the angle between v and the line Rx ⊂ Rn.

This is the Beltrami–Cayley–Klein metric on Bn.

The Beltrami–Cayley–Klein model of hyperbolic geometry was introduced by Arthur

Cayley (1859) and Eugenio Beltrami (1868), and it was developed by Felix Klein

(1871, 1873). The underlying space is the n-dimensional unit ball, geodesics are

straight line segments with endpoints on the boundary sphere, and the distance

between points on a geodesic is given by the cross ratio. This is a special case of the

Hilbert metric on convex domains in Rn, introduced by David Hilbert in 1895.



Comments on the Cayley–Klein metric

The Cayley–Klein metric is the restriction of the Kobayashi metric on the unit
ball Bn

C ⊂ Cn to points x ∈ Bn = Bn
C ∩Rn and vectors in TxRn ∼= Rn.

It also equals 1/
√
n+ 1 times the Bergman metric on Bn

C, restricted to Bn and
real tangent vectors.

Lempert (1993) showed that on any convex domain D ⊂ Rn (or in RPn), the
Hilbert metric is the restriction to D of the Kobayashi metric on the elliptic
tube D∗ ⊂ Cn over D. However, the minimal metric on a convex domain
does not equal the Hilbert metric in general, not even on ellipsoids.

For n ≥ 3, the Cayley–Klein metric is not conformally equivalent to the
Euclidean metric on Bn. We have that

|v|√
1− |x|2

≤ gBn (x, v) ≤ |v|
1− |x|2 .

The upper bound is reached for ](x, v) = 0 (in the radial direction) and the
lower bound for ](x, v) = π/2 (in the tangential direction).



Proof of the Corollary

Recall that

gBn (x, v) = inf
{

1/r > 0 : ∃f ∈ CH(D, Bn), f (0) = x, fx (0) = rv
}

.

Let Λ = x + df0(R
2) and ∆ = Λ ∩Bn. The Theorem implies

r |v| = |fx (0)| = |df0| ≤ (1− |x|2)/R

where

R =
√

1− |x|2 sin2 θ = radius(∆), θ = ](x, Λ) ∈ [0, π/2].

Equality is achieved when f : D→ ∆ is a conformal diffeomorphism. Thus:

inf
f

1

r
=

inff R

1− |x|2 |v| =

√
1− |x |2 sin2 φ

1− |x|2 |v|

where φ = supf θ = ](Rx, v).

The maximum is reached when Λ = Span(v, w) where w ⊥ Span(x, v).



Proof of the Theorem, 1

It suffices to consider the case z = 0. Indeed, with f and z as in the theorem,
let φz ∈ Aut(D) be such that φz (0) = z . The harmonic map
f̃ = f ◦ φz : D→ Bn is then conformal at the origin. Since |φ′z (0)| = 1− |z |2,
the estimate for f at z follows from the estimate for f̃ at z = 0.

We find an explicit conformal parameterization of affine discs in Bn.
Fix a point q ∈ Bn and a 2-plane 0 ∈ Λ ⊂ Rn, and consider the affine disc
Σ = (q + Λ) ∩Bn. Let p ∈ Σ be the closest point to the origin.

If n = 2 then p = 0 and Σ = D. Suppose now that n = 3; the case n > 3 will
be the same. By an orthogonal rotation on R3 we may assume that

p = (0, 0, p) and Σ =
{
(x , y , p) : x2 + y2 < 1− p2

}
.

Let q = (b1, b2, p) ∈ Σ, and let θ denote the angle between q and Σ. Set

R =
√

1− p2 =
√

1− |q|2 sin2 θ, a =
b1 + ib2

R
∈ D, |a| = |q| cos θ

R
.

We orient Σ by the pair of tangent vectors ∂x , ∂y .



Proof, 2

Every orientation preserving conformal parameterization f : D→ Σ with
f (0) = q is then of the form

f (z) =

(
R · < eitz + a

1 + āeitz
,R · = eitz + a

1 + āeitz
, p

)
=

(
R

eitz + a

1 + āeitz
, p

)
for z ∈ D and some t ∈ R. (If n = 2 then p = 0 and R = 1.)

Recall that R2 = 1− |q|2 sin2 θ and R2|a|2 = |q|2 cos2 θ. Hence:

‖df0‖ = R (1− |a|2) = R2 − R2|a|2
R

=
(1− |q|2 sin2 θ)− |q|2 cos2 θ

R

=
1− |q|2√

1− |q|2 sin2 θ
=

1− |f (0)|2√
1− |f (0)|2 sin2 θ

.

This shows that the conformal parameterizations of the proper affine discs in
the ball satisfy the equality in the theorem at every point.



Proof, 3

Let f : D→ B3 be as above, where we may assume that t = 0.

Suppose that g : D→ B3 is a harmonic map such that g(0) = f (0), g is
conformal at 0, and dg0(R

2) = df0(R
2). Up to replacing g by g(eitz) or

g(eit z̄) for some t ∈ R, we may assume that

dg0 = r df0 for some r > 0.

We must prove that r ≤ 1, and that r = 1 if and only if g = f .

Consider the holomorphic map F : D→ Ω = B3 × iR3 with f = <F , given by

F (z) =

(
R · z + a

1 + āz
,−R · i z + a

1 + āz
, p

)
, z ∈ D.

Let G : D→ Ω be the holomorphic map with <G = g and G (0) = F (0).

By the Cauchy–Riemann equations, the condition dg0 = r df0 implies

G ′(0) = r F ′(0).



Proof, 4

It follows that the map (F (z)− G (z))/z is holomorphic on D and

lim
z→0

F (z)− G (z)

z
= F ′(0)− G ′(0) = (1− r)F ′(0).

Since g : D→ B3 is a bounded harmonic map, it has a nontangential
boundary value at almost every point of the circle T = bD. Since the Hilbert
transform is an isometry on the Hilbert space L2(T), the same is true for G .

Denote by 〈·, ·〉 the complex bilinear form on Cn given by

〈z ,w〉 =
n

∑
i=1

ziwi

for z ,w ∈ Cn.



Proof, 5

For each z = eit ∈ bD the vector f (z) ∈ bB3 is the unit normal vector to the
sphere bB3 at the point f (z). Since B3 is strongly convex, we have that

<
〈
F (z)− G (z), f (z)

〉
=
〈
f (z)− g(z), f (z)

〉
≥ 0 a.e. z ∈ bD,

and the value is positive for almost every z ∈ bD if and only if g 6= f .

Consider the map f̃ : bD→ C3 given by

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

A calculation, taking into account zz̄ = 1 on bD, gives

f̃ (z) =


c
2

(
1 + a2 + 4(<a)z + (1 + ā2)z2

)
c
2

(
i(1− a2) + 4(=a)z + i(ā2 − 1)z2

)
p (z + a)(1 + āz)

 , |z | = 1.



Conclusion of the proof

We extend f̃ to all z ∈ C by letting it equal the holomorphic polynomial map
on the right hand side above. Since |1 + āz |2 > 0 for z ∈ D, we have

h(z) := <
〈
F (z)− G (z), |1 + āz |2f (z)

〉
=

〈
f (z)− g(z), |1 + āz |2f (z)

〉
≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g 6= f .

From the definition of f̃ we see that

h(z) = <
〈
F (z)− G (z)

z
, f̃ (z)

〉
a.e. z ∈ bD

Since the maps (F (z)− G (z))/z and f̃ (z) are holomorphic on D, h extends
to a nonnegative harmonic function on D which is positive on D unless f = g .

At z = 0 we have

h(0) = <
〈
F ′(0)− G ′(0), f̃ (0)

〉
= (1− r)<

〈
F ′(0), f̃ (0)

〉
≥ 0,

with equality if and only if g = f . Applying this to the constant map
g(z) = f (0) (so r = 0) gives < 〈F ′(0), f̃ (0)〉 > 0. It follows that r ≤ 1, with
equality if and only if g = f . This completes the proof.



Discussion

Our proof is motivated by the seminal work of László Lempert (1981) on
Kobayashi extremal holomorphic discs in bounded strongly convex domains
Ω ⊂ Cn with smooth boundaries.

In Lempert’s terminology, a proper holomorphic disc F : D→ Ω extending
continuously to D is said to be a stationary disc if, denoting by ν(z) the unit
normal to bΩ along the circle F (bD), there is a positive function q > 0 on bD

such that the map
bD 3 z 7→ z q(z)ν(z) ∈ Cn

extends to a holomorphic map f̃ : D→ Cn. The use of such a map, along with
the convexity of the domain, enables the arguments used above to show that a
stationary disc F is the unique Kobayashi extremal disc in Ω through the point
F (a) in the tangent direction F ′(a) for every a ∈ D.

In our case, ν(z) = f (z) is real-valued, and a suitable map is

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

The fact that Ω = Bn × iRn is unbounded does not matter.



Strongly 2-convex domains are complete hyperbolic

The following result is an analogue of Graham’s theorem on complete
Kobayashi hyperbolicity of bounded strongly pseudoconvex domains in Cn.

Theorem (B. Drinovec Drnovšek & F. 2023)

Let Ω be a bounded domain in Rn (n ≥ 3) with smooth boundary bΩ whose
principal curvatures ν1 ≤ ν2 ≤ . . . ≤ νn−1 at any point p ∈ bΩ satisfy
ν1 + ν2 > 0. Then, Ω is complete hyperbolic.

The proof relies on the localization principle for the minimal metric and on a
lower bound in terms of a Sibony-type metric, defined in terms of minimal
plurisubharmonic functions.

Theorem (Fiacchi 2023)

Every domain in the previous theorem is Gromov hyperbolic.

Problem

Is the minimal distance to an embedded minimal surface in R3 infinite?



Complement of an embedded FTC minimal surface is weakly hyperbolic

Theorem (F. 2023)

Let M ⊂ R3 be an embedded minimal surface of finite total Gaussian
curvature. Then, there are no parabolic minimal surfaces in R3 \M.

A minimal surface is called parabolic if it is the image M = f (R) of a conformal

harmonic map from a Riemann surface of the form R = R \ P, where P is a finite set

in a compact Riemann surface M.

Idea of proof. There is an ε > 0 such that every point x in the ε-tube M(ε)
around M has a unique nearest point π(x) ∈ M.

It follows that the signed distance function δ : M(ε)→ R is smooth and
minimal plurisubharmonic on M−(ε) = {δ < 0}.

Let Ω be the connected component of R3 \M containing M−(ε). We can find
a negative minimal psh function ρ : Ω→ R− which agrees with δ on M−(ε′)
for some 0 < ε′ < ε.

The restriction of ρ to any minimal surface Σ ⊂ Ω is subharmonic. If Σ is
parabolic then ρ|Σ is constant. Applying this to translates of Σ, we see that
such a surface cannot exist.



Hyperbolicity of convex domains

Theorem (B. Drinovec Drnovšek & F. 2023)

The following are equivalent for a convex domain Ω ⊂ Rn, n ≥ 3.

(i) Ω is complete hyperbolic.

(ii) Ω is hyperbolic.

(iii) Ω does not contain any 2-dimensional affine subspaces.

(iv) Ω is contained in the intersection of n− 1 halfspaces determined by
independent linear functionals.

Note: A convex domain in Cn is Kobayashi hyperbolic iff if it does not contain
any affine complex line (Barth 1980, Harris 1979, Bracci and Saracco 2009).

The implications (i)⇒(ii)⇒(iii) are obvious, and (iii)⇒(iv) is seen by
elementary convexity theory. We now explain the proof of (iv)⇒(i).

We first show that the minimal distance to an affine hyperplane is infinite.
The Schwarz lemma for positive harmonic functions f : D→ (0,+∞) gives

|∇f (0)| ≤ 2f (0).



Hyperbolicity of convex domains, 2

For Hn = {x1 > 0} this implies

gHn ((x1, . . . , xn), (v1, . . . , vn)) ≥ |v1|/2x1.

For any path γ(t) = (γ1(t), . . . , γn(t)) ∈Hn, t ∈ [0, 1) it follows that∫ 1

0
gHn (γ(t), γ̇(t)) dt ≥

∫ 1

0

|γ̇1(t)|
2γ1(t)

dt.

If γ(t)→ 0 or γ(t)→ +∞ as t → 1 then the integral equals +∞.

At any boundary point p ∈ bΩ of a convex domain there is a supporting affine
hyperplane Σ ⊂ Rn passing through p such that Ω is contained in a half-space
of Rn \ Σ. Hence, any path x(t) ∈ Ω (t ∈ [0, 1)) which clusters at some point
p ∈ bΩ as t → 1 has infinite gΩ-length. This gives:

Corollary

A convex domain Ω ⊂ Rn (n ≥ 3) is locally complete hyperbolic at any
boundary point p ∈ bΩ.



Hyperbolicity of convex domains, 3

Assume now that Ω satisfies condition (iv). For simplicity, assume that

Ω ⊂ {x1 ≥ 0, . . . , xn−1 ≥ 0}.

Let x(t) = (x1(t), . . . , xn(t)), t ∈ [0, 1), be a divergent path in Ω.

If x(t) clusters at some point p ∈ bΩ as t → 1, then x(t) has infinite length.
Likewise, if one of the functions xi (t) (i = 1, . . . , n− 1) clusters at +∞, then
x(t) has infinite minimal length in the halfspace Hi = {xi ≥ 0}, and hence
also in Ω ⊂Hi .

It remains to consider the case when

xi (t) ≤ c1, t ∈ [0, 1), i = 1, . . . , n− 1,

and x(t) does not cluster anywhere on bΩ. In this case, xn(t) ∈ R clusters at

±∞, and hence
∫ 1

0 |ẋn(t)|dt = +∞. It remains to show that

gΩ(x(t), ẋ(t)) ≥ c2|ẋn(t)|

for some c2 > 0 depending only on c1.



Hyperbolicity of convex domains, 4

Fix a point x = x(t) and a unit vector v = (v′, vn) ∈ Rn, and consider a
conformal harmonic map f = (f1, f2, . . . , fn) : D→ Ω such that

f (0) = x and fx (0) = rv for some r > 0.

Then, fy (0) = rw = r(w′,wn) where (v, w) is an orthonormal frame:

0 = v ·w = v′ ·w′ + vnwn, |v| = |w| = 1.

From this and the Cauchy–Schwarz inequality it follows that

v2
n (1− |w′|2) = v2

nw
2
n = |v′ ·w′|2 ≤ |v′|2|w′|2 = (1− v2

n )|w′|2,

and hence
|vn| ≤ |w′| ≤

√
n− 1 max

i=1,...,n−1
|wi |.

Therefore,

r |vn| ≤
√
n− 1 max

i=1,...,n−1
r |wi | ≤ 2

√
n− 1 max

i=1,...,n−1
xi .

The last inequality is seen by applying the Schwarz lemma to the conformal
harmonic disc z 7→ f̃ (z) = f (iz) in each of the half-spaces Hi = {xi > 0}.
Note that f̃ (0) = f (0) = x and f̃x (0) = fy (0) = rw.



Hyperbolicity of convex domains, 5

This gives

1

r
≥ |vn|

2
√
n− 1 maxi=1,...,n−1 xi

≥ |vn|
2c1
√
n− 1

= c2|vn|

for any r > 0 as above, with c2 = 1/4c1

√
N − 1 > 0.

Taking the infimum of the left hand side gives

gΩ(x, v) ≥ c2|vn|.

Applying this with x = x(t) and v = ẋ(t) yields

gΩ(x(t), ẋ(t)) ≥ c2|ẋn(t)|.

This proves that
∫ 1

0 gΩ(x(t), ẋ(t)) dt = +∞.

Hence, every divergent path in Ω has infinite gΩ-length, so Ω is complete
hyperbolic.



∼ Thank you for your attention ∼


