Minimal metric on domains in real Euclidean spaces

Franc Forstnerič

Invariant metrics in complex analysis Villa Mondragone, Frascati, 18–20 September 2024

(日) (四) (日) (日) (日)

The talk is based on the following papers:

F. Forstnerič & D. Kalaj, Schwarz–Pick lemma for harmonic maps which are conformal at a point. Anal. PDE, **17(3)**:981–1003, 2024.

B. Drinovec Drnovšek and F. Forstnerič: Hyperbolic domains in real Euclidean spaces. Pure Appl. Math. Q., **19:6** (2023) 2689–2735.

Both papers were available as preprints in 2021.

Since 2023, Gaussier and Sukhov have been developing the subject of the minimal pseudometric on general Riemannian manifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The minimal pseudometric

Let \mathbb{D} denote the unit disc in \mathbb{C} and Ω be a domain in \mathbb{R}^n , $n \ge 3$. We denote by $CH(\mathbb{D}, \Omega)$ the space of (not necessarily immersed) conformal harmonic discs $\mathbb{D} \to \Omega$. Such a disc is a **minimal surface**. Let z = x + iy be the complex coordinate on \mathbb{D} and $\mathbf{x} = (x_1, \dots, x_n)$ be the coordinate on \mathbb{R}^n .

We define a Finsler pseudometric (called the **minimal metric**) on the tangent bundle $T\Omega = \Omega \times \mathbb{R}^n$ by

 $g_{\Omega}(\mathbf{x},\mathbf{v}) = \inf\{1/r > 0 : \exists f \in CH(\mathbb{D},\Omega), f(0) = \mathbf{x}, f_{X}(0) = r\mathbf{v}\}.$

Clearly, g_{Ω} is upper-semicontinuous and absolutely homogeneous:

 $g_{\Omega}(\mathbf{x}, t\mathbf{v}) = |t|g_{\Omega}(\mathbf{x}, \mathbf{v}) \text{ for } t \in \mathbb{R}.$

The minimal pseudodistance $\rho_{\Omega}: \Omega \times \Omega \rightarrow \mathbb{R}_+$ is defined by

$$ho_\Omega(\mathbf{x},\mathbf{y}) = \inf_\gamma \int_0^1 g_\Omega(\gamma(t),\dot{\gamma}(t)) \, dt, \quad \mathbf{x},\mathbf{y}\in\Omega.$$

The infimum is over all piecewise smooth paths $\gamma : [0, 1] \to \Omega$ with $\gamma(0) = x$ and $\gamma(1) = y$. Obviously, ρ_{Ω} satisfies the triangle inequality, but it need not be a distance function. In particular, $\rho_{\mathbb{R}^n}$ vanishes identically.

The distance decreasing property

For every conformal harmonic disc $f:\mathbb{D}\to\Omega$ we have

$$g_{\Omega}(f(z), df_z(\xi)) \leq rac{|\xi|}{1-|z|^2} = \mathscr{P}_{\mathbb{D}}(z, \xi), \quad z \in \mathbb{D}, \ \xi \in \mathbb{R}^2,$$

and g_{Ω} is the biggest pseudometric on Ω with this property. For z = 0 this follows from the definition of g_{Ω} . For an arbitrary point $z \in \mathbb{D}$ it is obtained by replacing f by a conformal harmonic disc $f \circ \phi$, where $\phi \in \operatorname{Aut}(\mathbb{D})$ is a holomorphic automorphism of the disc interchanging 0 and z.

It follows that conformal harmonic maps $M \to \Omega$ (minimal surfaces) from any conformal surface M are distance-decreasing in the Poincaré (pseudo) metric on M and the minimal metric on Ω :

$\rho_{\Omega}(f(x), f(x')) \leq \operatorname{dist}_{\mathcal{P}_{M}}(x, x'), \quad x, x' \in M;$

furthermore, ρ_{Ω} is the biggest pseudodistance on Ω having this property.

If $R : \mathbb{R}^n \to \mathbb{R}^m$ $(m \ge n \ge 3)$ is a *rigid transformation* (a composition of orthogonal maps, dilations, and translations) and $R(\Omega) \subset \Omega' \subset \mathbb{R}^m$, then

 $g_{\Omega'}(R(\mathbf{x}), dR_{\mathbf{x}}(\mathbf{u})) \leq g_{\Omega}(\mathbf{x}, \mathbf{u}), \quad \mathbf{x} \in \Omega, \ \mathbf{u} \in \mathbb{R}^{n}.$

The minimal metric is defined by chains of conformal harmonic discs

Fix a pair of points $\mathbf{x}, \mathbf{y} \in \Omega \subset \mathbb{R}^n$. Given a chain of conformal harmonic discs $f_i : \mathbb{D} \to \Omega$ and points $a_i \in \mathbb{D}$ (i = 1, ..., k) such that

 $f_1(0) = \mathbf{x}, \quad f_{i+1}(0) = f_i(a_i) \text{ for } i = 1, \dots, k-1, \quad f_k(a_k) = \mathbf{y},$

we define the length of the chain to be the number

$$\sum_{i=1}^k {
m dist}_{\mathcal{P}_{\mathbb{D}}}(0, a_i) = \sum_{i=1}^k rac{1}{2} \log rac{1+|a_i|}{1-|a_i|} \geq 0$$

The *i*-th summand on the right hand side is the Poincaré distance from 0 to a_i in \mathbb{D} . It is easily seen that $\rho_{\Omega}(\mathbf{x}, \mathbf{y})$ is the infimum of the lengths of such chains.

The Kobayashi pseudodistance on a complex manifold X is defined in the same way by using chains of holomorphic discs $\mathbb{D} \to X$.

Definition

A domain $\Omega \subset \mathbb{R}^n$ $(n \geq 3)$ is hyperbolic if ρ_Ω is a distance function on Ω , and is complete hyperbolic if (Ω, ρ_Ω) is a complete metric space.

Theorem (Kalaj & F., 2024)

Let $f : \mathbb{D} \to \mathbb{B}^n$ is a harmonic map for some $n \ge 2$ which is conformal at a point $z \in \mathbb{D}$. Denote by $\theta \in [0, \pi/2]$ the angle between the vector f(z) and the plane $df_z(\mathbb{R}^2)$. Then:

$$\|df_z\| \leq \frac{1 - |f(z)|^2}{1 - |z|^2} \frac{1}{\sqrt{1 - |f(z)|^2 \sin^2 \theta}}$$

Equality holds if and only if f is a conformal diffeomorphism onto the affine disc

 $\Sigma = (f(z) + df_z(\mathbb{R}^2)) \cap \mathbb{B}^n.$

The number $R = \sqrt{1 - |f(z)|^2 \sin^2 \theta}$ is the radius of the disc Σ . If f(z) = 0 or $df_z = 0$ then the angle θ is not defined, but it is irrelevant.

If n = 2 then $\theta = 0$, R = 1, so the result generalises the classical Schwarz–Pick lemma to harmonic maps $f : \mathbb{D} \to \mathbb{D}$ which are conformal only at the point z where we are estimating the differential df_z .

The extremal holomorphic discs in the complex ball $\mathbb{B}^n_{\mathbb{C}} \subset \mathbb{C}^n$ are the holomorphic parametrizations of complex affine discs in $\mathbb{B}^n_{\mathbb{C}}$. The proof uses the fact that the group of holomorphic automorphisms of $\mathbb{B}^n_{\mathbb{C}}$ acts transitively.

Comparison with our result shows that, up to the orientation:

The extremal holomorphic discs in $\mathbb{B}^n_{\mathbb{C}}$ are precisely those extremal conformal minimal discs whose images are complex.

The biggest group preserving the set of all conformal minimal discs in \mathbb{B}^n under postcomposition is the orthogonal group, which does not act transitively. Our proof also gives a new proof of the complex Schwarz lemma without using the Möbius group $\operatorname{Aut}(\mathbb{B}^n_{\mathbb{C}})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary

The minimal metric $g_{\mathbb{B}^n}$ on the ball $\mathbb{B}^n \subset \mathbb{R}^n$ is

$$g_{\mathbb{B}^n}(\mathbf{x}, \mathbf{v})^2 = \frac{1 - |\mathbf{x}|^2 \sin^2 \phi}{(1 - |\mathbf{x}|^2)^2} |\mathbf{v}|^2$$

= $\frac{(1 - |\mathbf{x}|^2)|\mathbf{v}|^2 + |\mathbf{x} \cdot \mathbf{v}|^2}{(1 - |\mathbf{x}|^2)^2} = \frac{|\mathbf{v}|^2}{1 - |\mathbf{x}|^2} + \frac{|\mathbf{x} \cdot \mathbf{v}|^2}{(1 - |\mathbf{x}|^2)^2}.$

where $\mathbf{x} \in \mathbb{B}^n$, $\mathbf{v} \in \mathbb{R}^n$, and ϕ is the angle between \mathbf{v} and the line $\mathbb{R}\mathbf{x} \subset \mathbb{R}^n$.

This is the **Beltrami–Cayley–Klein metric** on \mathbb{B}^n .

The Beltrami-Cayley-Klein model of hyperbolic geometry was introduced by Arthur Cayley (1859) and Eugenio Beltrami (1868), and it was developed by Felix Klein (1871, 1873). The underlying space is the *n*-dimensional unit ball, geodesics are straight line segments with endpoints on the boundary sphere, and the distance between points on a geodesic is given by the cross ratio. This is a special case of the Hilbert metric on convex domains in \mathbb{R}^n , introduced by David Hilbert in 1895.

The Cayley–Klein metric is the restriction of the Kobayashi metric on the unit ball $\mathbb{B}^n_{\mathbb{C}} \subset \mathbb{C}^n$ to points $\mathbf{x} \in \mathbb{B}^n = \mathbb{B}^n_{\mathbb{C}} \cap \mathbb{R}^n$ and vectors in $\mathcal{T}_{\mathbf{x}}\mathbb{R}^n \cong \mathbb{R}^n$.

It also equals $1/\sqrt{n+1}$ times the Bergman metric on $\mathbb{B}^n_{\mathbb{C}}$, restricted to \mathbb{B}^n and real tangent vectors.

Lempert (1993) showed that on any convex domain $D \subset \mathbb{R}^n$ (or in \mathbb{RP}^n), the Hilbert metric is the restriction to D of the Kobayashi metric on the elliptic tube $D^* \subset \mathbb{C}^n$ over D. However, the minimal metric on a convex domain does not equal the Hilbert metric in general, not even on ellipsoids.

For $n \ge 3$, the Cayley–Klein metric is not conformally equivalent to the Euclidean metric on \mathbb{B}^n . We have that

$$rac{|{f v}|}{\sqrt{1-|{f x}|^2}} \ \le \ g_{{\mathbb B}^n}({f x},{f v}) \ \le \ rac{|{f v}|}{1-|{f x}|^2}.$$

The upper bound is reached for $\measuredangle(\mathbf{x}, \mathbf{v}) = 0$ (in the radial direction) and the lower bound for $\measuredangle(\mathbf{x}, \mathbf{v}) = \pi/2$ (in the tangential direction).

Recall that

 $g_{\mathbb{B}^n}(\mathbf{x}, \mathbf{v}) = \inf \left\{ 1/r > 0 : \exists f \in \operatorname{CH}(\mathbb{D}, \mathbb{B}^n), \ f(0) = \mathbf{x}, \ f_{\mathsf{X}}(0) = r\mathbf{v} \right\}.$

Let $\Lambda = \mathbf{x} + df_0(\mathbb{R}^2)$ and $\Delta = \Lambda \cap \mathbb{B}^n$. The Theorem implies

$$|\mathbf{r}|\mathbf{v}| = |f_x(0)| = |df_0| \le (1 - |\mathbf{x}|^2)/R$$

where

$$R = \sqrt{1 - |\mathbf{x}|^2 \sin^2 \theta} = \operatorname{radius}(\Delta), \quad \theta = \measuredangle(\mathbf{x}, \Lambda) \in [0, \pi/2].$$

Equality is achieved when $f : \mathbb{D} \to \Delta$ is a conformal diffeomorphism. Thus:

$$\inf_{f} \frac{1}{r} = \frac{\inf_{f} R}{1 - |\mathbf{x}|^{2}} |\mathbf{v}| = \frac{\sqrt{1 - |x|^{2} \sin^{2} \phi}}{1 - |\mathbf{x}|^{2}} |\mathbf{v}|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\phi = \sup_f \theta = \measuredangle(\mathbb{R}\mathbf{x}, \mathbf{v}).$

The maximum is reached when $\Lambda = \text{Span}(\mathbf{v}, \mathbf{w})$ where $\mathbf{w} \perp \text{Span}(\mathbf{x}, \mathbf{v})$.

Proof of the Theorem, 1

It suffices to consider the case z = 0. Indeed, with f and z as in the theorem, let $\phi_z \in \operatorname{Aut}(\mathbb{D})$ be such that $\phi_z(0) = z$. The harmonic map $\tilde{f} = f \circ \phi_z : \mathbb{D} \to \mathbb{B}^n$ is then conformal at the origin. Since $|\phi'_z(0)| = 1 - |z|^2$, the estimate for f at z follows from the estimate for \tilde{f} at z = 0.

We find an explicit conformal parameterization of affine discs in \mathbb{B}^n . Fix a point $\mathbf{q} \in \mathbb{B}^n$ and a 2-plane $0 \in \Lambda \subset \mathbb{R}^n$, and consider the affine disc $\Sigma = (\mathbf{q} + \Lambda) \cap \mathbb{B}^n$. Let $\mathbf{p} \in \Sigma$ be the closest point to the origin.

If n = 2 then $\mathbf{p} = 0$ and $\Sigma = \mathbb{D}$. Suppose now that n = 3; the case n > 3 will be the same. By an orthogonal rotation on \mathbb{R}^3 we may assume that

$$\mathbf{p} = (0, 0, p)$$
 and $\Sigma = \left\{ (x, y, p) : x^2 + y^2 < 1 - p^2 \right\}.$

Let $\mathbf{q} = (b_1, b_2, p) \in \Sigma$, and let θ denote the angle between \mathbf{q} and Σ . Set

$$R = \sqrt{1 - p^2} = \sqrt{1 - |\mathbf{q}|^2 \sin^2 \theta}, \quad a = \frac{b_1 + ib_2}{R} \in \mathbb{D}, \quad |a| = \frac{|\mathbf{q}| \cos \theta}{R}.$$

We orient Σ by the pair of tangent vectors ∂_x , ∂_y .

Every orientation preserving conformal parameterization $f : \mathbb{D} \to \Sigma$ with $f(0) = \mathbf{q}$ is then of the form

$$f(z) = \left(R \cdot \Re \frac{e^{it}z + a}{1 + \bar{a}e^{it}z}, R \cdot \Im \frac{e^{it}z + a}{1 + \bar{a}e^{it}z}, p\right) = \left(R \frac{e^{it}z + a}{1 + \bar{a}e^{it}z}, p\right)$$

for $z \in \mathbb{D}$ and some $t \in \mathbb{R}$. (If n = 2 then p = 0 and R = 1.)

Recall that $R^2 = 1 - |\mathbf{q}|^2 \sin^2 \theta$ and $R^2 |\mathbf{a}|^2 = |\mathbf{q}|^2 \cos^2 \theta$. Hence:

$$\begin{aligned} \|df_0\| &= R\left(1-|a|^2\right) = \frac{R^2 - R^2|a|^2}{R} = \frac{(1-|\mathbf{q}|^2\sin^2\theta) - |\mathbf{q}|^2\cos^2\theta}{R} \\ &= \frac{1-|\mathbf{q}|^2}{\sqrt{1-|\mathbf{q}|^2\sin^2\theta}} = \frac{1-|f(0)|^2}{\sqrt{1-|f(0)|^2\sin^2\theta}}. \end{aligned}$$

This shows that the conformal parameterizations of the proper affine discs in the ball satisfy the equality in the theorem at every point.

Let $f : \mathbb{D} \to \mathbb{B}^3$ be as above, where we may assume that t = 0.

Suppose that $g: \mathbb{D} \to \mathbb{B}^3$ is a harmonic map such that g(0) = f(0), g is conformal at 0, and $dg_0(\mathbb{R}^2) = df_0(\mathbb{R}^2)$. Up to replacing g by $g(e^{it}z)$ or $g(e^{it}\bar{z})$ for some $t \in \mathbb{R}$, we may assume that

 $dg_0 = r df_0$ for some r > 0.

We must prove that $r \leq 1$, and that r = 1 if and only if g = f.

Consider the holomorphic map $F: \mathbb{D} \to \Omega = \mathbb{B}^3 \times i\mathbb{R}^3$ with $f = \Re F$, given by

$$F(z) = \left(R \cdot \frac{z+a}{1+\bar{a}z}, -R \cdot i\frac{z+a}{1+\bar{a}z}, p\right), \quad z \in \mathbb{D}.$$

Let $G: \mathbb{D} \to \Omega$ be the holomorphic map with $\Re G = g$ and G(0) = F(0).

By the Cauchy–Riemann equations, the condition $dg_0 = r df_0$ implies

$$G'(0)=r\,F'(0).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It follows that the map (F(z) - G(z))/z is holomorphic on \mathbb{D} and

$$\lim_{z \to 0} \frac{F(z) - G(z)}{z} = F'(0) - G'(0) = (1 - r)F'(0).$$

Since $g : \mathbb{D} \to \mathbb{B}^3$ is a bounded harmonic map, it has a nontangential boundary value at almost every point of the circle $\mathbb{T} = b\mathbb{D}$. Since the Hilbert transform is an isometry on the Hilbert space $L^2(\mathbb{T})$, the same is true for G.

Denote by $\langle \cdot, \cdot \rangle$ the complex bilinear form on \mathbb{C}^n given by

$$\langle z, w \rangle = \sum_{i=1}^{n} z_i w_i$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

for $z, w \in \mathbb{C}^n$.

For each $z = e^{it} \in b\mathbb{D}$ the vector $f(z) \in b\mathbb{B}^3$ is the unit normal vector to the sphere $b\mathbb{B}^3$ at the point f(z). Since \mathbb{B}^3 is strongly convex, we have that

$$\Re \langle F(z) - G(z), f(z) \rangle = \langle f(z) - g(z), f(z) \rangle \ge 0$$
 a.e. $z \in b\mathbb{D}$,

and the value is positive for almost every $z \in b\mathbb{D}$ if and only if $g \neq f$.

Consider the map $\tilde{f}: b\mathbb{D} \to \mathbb{C}^3$ given by

$$\tilde{f}(z) = z|1 + \bar{a}z|^2 f(z), \quad |z| = 1$$

A calculation, taking into account $z\bar{z} = 1$ on $b\mathbb{D}$, gives

$$\tilde{f}(z) = \begin{pmatrix} \frac{c}{2} \left(1 + a^2 + 4(\Re a)z + (1 + \bar{a}^2)z^2 \right) \\ \frac{c}{2} \left(i(1 - a^2) + 4(\Im a)z + i(\bar{a}^2 - 1)z^2 \right) \\ p(z + a)(1 + \bar{a}z) \end{pmatrix}, \quad |z| = 1.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Conclusion of the proof

We extend \tilde{f} to all $z \in \mathbb{C}$ by letting it equal the holomorphic polynomial map on the right hand side above. Since $|1 + \bar{a}z|^2 > 0$ for $z \in \overline{\mathbb{D}}$, we have

$$\begin{aligned} h(z) &:= \Re \left\langle F(z) - G(z), |1 + \bar{a}z|^2 f(z) \right\rangle \\ &= \left\langle f(z) - g(z), |1 + \bar{a}z|^2 f(z) \right\rangle \geq 0 \quad a.e. \ z \in b\mathbb{D}, \end{aligned}$$

and h > 0 almost everywhere on $b\mathbb{D}$ if and only if $g \neq f$.

From the definition of \tilde{f} we see that

$$h(z) = \Re \left\langle \frac{F(z) - G(z)}{z}, \tilde{f}(z) \right\rangle$$
 a.e. $z \in b\mathbb{D}$

Since the maps (F(z) - G(z))/z and $\tilde{f}(z)$ are holomorphic on \mathbb{D} , *h* extends to a nonnegative harmonic function on \mathbb{D} which is positive on \mathbb{D} unless f = g. At z = 0 we have

 $h(0) = \Re \left\langle F'(0) - G'(0), \tilde{f}(0) \right\rangle = (1-r) \Re \left\langle F'(0), \tilde{f}(0) \right\rangle \ge 0,$

with equality if and only if g = f. Applying this to the constant map g(z) = f(0) (so r = 0) gives $\Re \langle F'(0), \tilde{f}(0) \rangle > 0$. It follows that $r \leq 1$, with equality if and only if g = f. This completes the proof.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Discussion

Our proof is motivated by the seminal work of László Lempert (1981) on Kobayashi extremal holomorphic discs in bounded strongly convex domains $\Omega \subset \mathbb{C}^n$ with smooth boundaries.

In Lempert's terminology, a proper holomorphic disc $F : \mathbb{D} \to \Omega$ extending continuously to $\overline{\mathbb{D}}$ is said to be a **stationary disc** if, denoting by $\nu(z)$ the unit normal to $b\Omega$ along the circle $F(b\mathbb{D})$, there is a positive function q > 0 on $b\mathbb{D}$ such that the map

 $b\mathbb{D} \ni z \mapsto z q(z)\overline{\nu(z)} \in \mathbb{C}^n$

extends to a holomorphic map $\tilde{f} : \mathbb{D} \to \mathbb{C}^n$. The use of such a map, along with the convexity of the domain, enables the arguments used above to show that a stationary disc F is the unique Kobayashi extremal disc in Ω through the point F(a) in the tangent direction F'(a) for every $a \in \mathbb{D}$.

In our case, v(z) = f(z) is real-valued, and a suitable map is

$$\tilde{f}(z) = z |1 + \bar{a}z|^2 f(z), \quad |z| = 1.$$

The fact that $\Omega = \mathbb{B}^n \times i\mathbb{R}^n$ is unbounded does not matter.

Strongly 2-convex domains are complete hyperbolic

The following result is an analogue of Graham's theorem on complete Kobayashi hyperbolicity of bounded strongly pseudoconvex domains in \mathbb{C}^n .

Theorem (B. Drinovec Drnovšek & F. 2023)

Let Ω be a bounded domain in \mathbb{R}^n $(n \ge 3)$ with smooth boundary $b\Omega$ whose principal curvatures $\nu_1 \le \nu_2 \le \ldots \le \nu_{n-1}$ at any point $p \in b\Omega$ satisfy $\nu_1 + \nu_2 > 0$. Then, Ω is complete hyperbolic.

The proof relies on the localization principle for the minimal metric and on a lower bound in terms of a **Sibony-type metric**, defined in terms of minimal plurisubharmonic functions.

Theorem (Fiacchi 2023)

Every domain in the previous theorem is Gromov hyperbolic.

Problem

Is the minimal distance to an embedded minimal surface in \mathbb{R}^3 infinite?

Theorem (F. 2023)

Let $M \subset \mathbb{R}^3$ be an embedded minimal surface of finite total Gaussian curvature. Then, there are no parabolic minimal surfaces in $\mathbb{R}^3 \setminus M$.

A minimal surface is called **parabolic** if it is the image M = f(R) of a conformal harmonic map from a Riemann surface of the form $R = \overline{R} \setminus P$, where P is a finite set in a compact Riemann surface \overline{M} .

Idea of proof. There is an $\epsilon > 0$ such that every point **x** in the ϵ -tube $M(\epsilon)$ around M has a unique nearest point $\pi(\mathbf{x}) \in M$.

It follows that the signed distance function $\delta: M(\epsilon) \to \mathbb{R}$ is smooth and minimal plurisubharmonic on $M_{-}(\epsilon) = \{\delta < 0\}.$

Let Ω be the connected component of $\mathbb{R}^3 \setminus M$ containing $M_-(\epsilon)$. We can find a negative minimal psh function $\rho: \Omega \to \mathbb{R}_-$ which agrees with δ on $M_-(\epsilon')$ for some $0 < \epsilon' < \epsilon$.

The restriction of ρ to any minimal surface $\Sigma \subset \Omega$ is subharmonic. If Σ is parabolic then $\rho|_{\Sigma}$ is constant. Applying this to translates of Σ , we see that such a surface cannot exist.

Theorem (B. Drinovec Drnovšek & F. 2023)

The following are equivalent for a convex domain $\Omega \subset \mathbb{R}^n$, $n \geq 3$.

- (Ω is complete hyperbolic.
- Ω is hyperbolic.
- **(**) Ω does not contain any 2-dimensional affine subspaces.
- Ω is contained in the intersection of n 1 halfspaces determined by independent linear functionals.

Note: A convex domain in \mathbb{C}^n is Kobayashi hyperbolic iff if it does not contain any affine complex line (Barth 1980, Harris 1979, Bracci and Saracco 2009).

The implications (i) \Rightarrow (ii) \Rightarrow (iii) are obvious, and (iii) \Rightarrow (iv) is seen by elementary convexity theory. We now explain the proof of (iv) \Rightarrow (i).

We first show that the minimal distance to an affine hyperplane is infinite. The Schwarz lemma for positive harmonic functions $f : \mathbb{D} \to (0, +\infty)$ gives

 $|\nabla f(0)| \leq 2f(0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $\mathbb{H}^n = \{x_1 > 0\}$ this implies

$$g_{\mathbb{H}^n}((x_1,\ldots,x_n),(v_1,\ldots,v_n)) \geq |v_1|/2x_1.$$

For any path $\gamma(t)=(\gamma_1(t),\ldots,\gamma_n(t))\in \mathbb{H}^n,\ t\in [0,1)$ it follows that

$$\int_0^1 g_{\mathrm{H}^n}(\gamma(t),\dot{\gamma}(t))\,dt\geq \int_0^1 rac{|\dot{\gamma}_1(t)|}{2\gamma_1(t)}\,dt.$$

If $\gamma(t) \to 0$ or $\gamma(t) \to +\infty$ as $t \to 1$ then the integral equals $+\infty$.

At any boundary point $\mathbf{p} \in b\Omega$ of a convex domain there is a supporting affine hyperplane $\Sigma \subset \mathbb{R}^n$ passing through \mathbf{p} such that Ω is contained in a half-space of $\mathbb{R}^n \setminus \Sigma$. Hence, any path $\mathbf{x}(t) \in \Omega$ $(t \in [0, 1))$ which clusters at some point $\mathbf{p} \in \mathbf{b}\Omega$ as $t \to 1$ has infinite g_{Ω} -length. This gives:

Corollary

A convex domain $\Omega \subset \mathbb{R}^n \ (n \geq 3)$ is locally complete hyperbolic at any boundary point $\mathbf{p} \in b\Omega$.

Assume now that Ω satisfies condition (iv). For simplicity, assume that

 $\Omega \subset \{x_1 \ge 0, \ldots, x_{n-1} \ge 0\}.$

Let $\mathbf{x}(t) = (x_1(t), \dots, x_n(t)), t \in [0, 1)$, be a divergent path in Ω .

If $\mathbf{x}(t)$ clusters at some point $\mathbf{p} \in b\Omega$ as $t \to 1$, then $\mathbf{x}(t)$ has infinite length. Likewise, if one of the functions $x_i(t)$ (i = 1, ..., n - 1) clusters at $+\infty$, then $\mathbf{x}(t)$ has infinite minimal length in the halfspace $\mathbb{H}_i = \{x_i \ge 0\}$, and hence also in $\Omega \subset \mathbb{H}_i$.

It remains to consider the case when

$$x_i(t) \leq c_1, \quad t \in [0, 1), \ i = 1, \dots, n-1,$$

and $\mathbf{x}(t)$ does not cluster anywhere on $b\Omega$. In this case, $x_n(t) \in \mathbb{R}$ clusters at $\pm \infty$, and hence $\int_0^1 |\dot{x}_n(t)| dt = +\infty$. It remains to show that

 $g_{\Omega}(\mathbf{x}(t), \dot{\mathbf{x}}(t)) \geq c_2 |\dot{\mathbf{x}}_n(t)|$

for some $c_2 > 0$ depending only on c_1 .

Hyperbolicity of convex domains, 4

Fix a point $\mathbf{x} = \mathbf{x}(t)$ and a unit vector $\mathbf{v} = (\mathbf{v}', \mathbf{v}_n) \in \mathbb{R}^n$, and consider a conformal harmonic map $f = (f_1, f_2, \dots, f_n) : \mathbb{D} \to \Omega$ such that

$$f(0) = \mathbf{x}$$
 and $f_{\mathbf{x}}(0) = r\mathbf{v}$ for some $r > 0$.

Then, $f_v(0) = r\mathbf{w} = r(\mathbf{w}', w_n)$ where (\mathbf{v}, \mathbf{w}) is an orthonormal frame:

$$0 = \mathbf{v} \cdot \mathbf{w} = \mathbf{v}' \cdot \mathbf{w}' + v_n w_n, \quad |\mathbf{v}| = |\mathbf{w}| = 1.$$

From this and the Cauchy-Schwarz inequality it follows that

$$v_n^2(1-|\mathbf{w}'|^2) = v_n^2 w_n^2 = |\mathbf{v}' \cdot \mathbf{w}'|^2 \le |\mathbf{v}'|^2 |\mathbf{w}'|^2 = (1-v_n^2) |\mathbf{w}'|^2,$$

and hence

$$|v_n| \leq |\mathbf{w}'| \leq \sqrt{n-1} \max_{i=1,\dots,n-1} |w_i|.$$

Therefore,

$$r|v_n| \leq \sqrt{n-1} \max_{i=1,\dots,n-1} r|w_i| \leq 2\sqrt{n-1} \max_{i=1,\dots,n-1} x_i.$$

The last inequality is seen by applying the Schwarz lemma to the conformal harmonic disc $z \mapsto \tilde{f}(z) = f(iz)$ in each of the half-spaces $\mathbb{H}_i = \{x_i > 0\}$. Note that $\tilde{f}(0) = f(0) = x$ and $\tilde{f}_{x}(0) = f_{y}(0) = rw$. (日本本語を本書を本書を入事)の(の)

Hyperbolicity of convex domains, 5

This gives

$$\frac{1}{r} \geq \frac{|v_n|}{2\sqrt{n-1}\max_{i=1,\dots,n-1}x_i} \geq \frac{|v_n|}{2c_1\sqrt{n-1}} = c_2|v_n|$$

for any r > 0 as above, with $c_2 = 1/4c_1\sqrt{N-1} > 0$.

Taking the infimum of the left hand side gives

 $g_{\Omega}(\mathbf{x},\mathbf{v}) \geq c_2|v_n|.$

Applying this with $\mathbf{x} = \mathbf{x}(t)$ and $\mathbf{v} = \dot{\mathbf{x}}(t)$ yields

 $g_{\Omega}(\mathbf{x}(t), \dot{\mathbf{x}}(t)) \geq c_2 |\dot{\mathbf{x}}_n(t)|.$

This proves that $\int_0^1 g_{\Omega}(\mathbf{x}(t), \dot{\mathbf{x}}(t)) dt = +\infty$.

Hence, every divergent path in Ω has infinite g_{Ω} -length, so Ω is complete hyperbolic.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 \sim Thank you for your attention \sim

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?