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Abstract

It was proved by Gromov 1989 that every elliptic complex manifold Y satisfies
the parametric h-principle for holomorphic maps from any Stein manifolds X .
A manifold Y satisfying the conclusion of his theorem is now called an

Oka manifold

Gromov asked whether the converse also holds. The first counterexamples (for
noncompact manifolds) were found only recently by Kusakabe.

In this work, we show that the converse holds for projective manifolds.
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Flexibility versus rigidity in complex geometry

A central question of complex geometry is to understand the space O(X ,Y ) of
holomorphic maps X → Y between a pair of complex manifolds. Are there many
maps, or few maps? Which properties can they have?

There are many holomorphic maps C→ C and C→ C∗ = C \ {0}, but there are no
nonconstant algebraic maps C→ C∗ or holomorphic maps C→ C \ {0, 1}. Manifolds
with the latter property are called hyperbolic. They have been studied since 1960s
when Kobayashi introduced his intrinsic pseudometric on complex manifolds.
Hyperbolicity is a major obstruction to solving global complex analytic problems.

On the opposite side, Oka theory studies special complex manifolds, Oka manifolds,
which admit many holomorphic maps from all Stein manifolds, i.e., closed complex
submanifolds of affine spaces CN . Oka theory gives solutions to a variety of complex
analytic problems in the absence of topological obstructions.

OKA THEORY ∼= h-PRINCIPLE IN COMPLEX GEOMETRY



Kiyoshi Oka, 1901–1978

Kiyoshi Oka was a Japanese
mathematician who, during 1937–53,
solved several major foundational
problems of complex analysis,
including the Levi problem.

One of his works from 1939 marks the
beginning of Oka theory.

In his homeland, Oka is also known as
a poet and a philosopher.



First instances of the Oka principle

Oka 1939 For complex line bundles on domains of holomorphy, the holomorphic
classification agrees with the topological classification.

Grauert 1958 The same holds for principal and their associated fibre bundles (e.g. for
vector bundles) on Stein manifolds and Stein spaces.

Every vector bundle on a Stein manifold X is the pullback of a universal bundle on a
suitable Grassmann manifold Y (the classifying space) by a map X → Y .
Holomorphic maps give rise to holomorphic bundles on X , and homotopies of maps
induce isomorphic bundles. Hence, Grauert’s results follow from the fact, proved by
him, that every complex Lie group and, more generally, every complex homogeneous
manifold admits many holomorphic maps from any Stein space X .

What is the right way to interpret the phrase many maps?



Oka manifolds

A complex manifold Y is called an Oka manifold if maps X → Y from any Stein
space X satisfy all forms of the Oka principle:

(a) Every continuous map f : X → Y is homotopic to a holomorphic map.

(b) If f : X → Y is holomorphic on a compact O(X )-convex subset K ⊂ X and on a
closed complex subvariety X ′ of X , there is a homotopy from f to a holomorphic
map F : X → Y consisting of maps with the same properties which approximate
f on K and agree with f on X ′.

(c) A similar statement holds for families of maps depending continuously on a
parameter in a compact Hausdorff space.

For Y = C, these properties hold by the parametric Oka–Weil–Cartan theorem.

Theorem (F. 2005-9)

A complex manifold Y is an Oka manifold iff it satisfies the
Convex Approximation Property (CAP): Every holomorphic map f : K → Y from a
compact convex set K ⊂ Cn is a uniform limit of entire maps Cn → Y .



Elliptic manifolds

Gromov 1989 A complex manifold Y is said to be elliptic if it admits a dominating
holomorphic spray, i.e., a holomorphic map s : E → Y from the total space of a
holomorphic vector bundle π : E → Y such that for all y ∈ Y , we have

s(0y ) = y and s : Ey = π−1(y)→ Y is a submersion at 0y ∈ Ey .

Example
1. Let G be a complex Lie group acting holomorphically transitively on a complex
manifold Y . If g is the Lie algebra of G then the map

s : Y × g → Y , s(y , v) = evy

is a dominating spray on Y .

2. If Vi (i = 1, . . . , k) are complete holomorphic vector fields on Y spanning TY at
every point and φi

t (t ∈ C) is the flow of Vi then the map

Y ×Ck → Y , (y , t1, . . . , tk ) 7→ φ1
t1 ◦ · · · ◦ φk

tk (y)

is a dominating holomorphic spray.



Gromov’s theorem

Theorem (Gromov 1989)

Every elliptic complex manifold is an Oka manifold.

By Example 1, Gromov’s result generalises Grauert’s Oka principle. A detailed proof
was given by Jasna Prezelj and myself (2000 & 2002). I also proved that a weaker
condition, subellipticity (the existence of a finite dominating family of sprays) implies
that the manifold is Oka.

The modern proof consists of two parts. The first part is the implication

(sub)elliptic =⇒ h-Runge approximation =⇒ CAP

This is fairly elementary by using dominating sprays and the Oka–Weil theorem.

The implication CAP =⇒ OKA is highly nontrivial, while the converse is a tautology.



The main result

Problem (Gromov 1989)

Is every Oka manifold elliptic?

Andrist, Shcherbina, Wold, 2016 If n ≥ 3 and K ⊂ Cn is a compact set with infinite
limit set, then Cn \K is not elliptic or subelliptic.

Kusakabe 2020 If K ⊂ Cn is polynomially convex set and n ≥ 2 then Cn \K is Oka.

These results give examples of noncompact Oka manifolds of any dimension ≥ 3
which fail to be elliptic. Kusakabe also proved that the Oka property is Zariski local,
while no such result is known for ellipticity.

Theorem (Lárusson & F., 2025)

Every projective Oka manifold is elliptic.

Problem: Is there a compact nonprojective Oka manifold which fails to be elliptic?



Scheme of proof

Let Y ⊂ CPn be a projective manifold and π : E → Y a holomorphic vector bundle.
Along the zero section E (0) ∼= Y of E we have a natural splitting

TE |E (0) ∼= E ⊕TY .

Let V be a holomorphic vector field on E that vanishes on E (0). There is a
neighbourhood Ω ⊂ E of E (0) such that for any e ∈ Ω, the flow φτ(e) of V with
φ0(e) = e exists for all 0 ≤ τ ≤ 1. The holomorphic map

s = π ◦ φ1 : Ω→ Y

is then a local spray on Y . We shall construct s whose vertical derivative

Vdsy : T0yEy
∼= Ey → TyY

is surjective for every y ∈ Y , that is, s is dominating.

If E is negative, it is a 1-convex manifold with the exceptional subvariety E (0). The
Oka principle (Prezelj 2010, 2016 and Stopar 2013) gives a global holomorphic spray
s̃ : E → Y which agrees with s to the second order along E (0). Hence, Y is elliptic.



Proof, 1

Let Y ⊂ CPn be a smooth projective variety. Denote by z = [z0 : z1 : · · · : zn] the
homogeneous coordinates on CPn. Set Λα = {zα = 0} for α = 0, 1, . . . , n, and let
Uα = CPn \Λα

∼= Cn with affine coordinates (z0/zα, . . . , zn/zα). Let
x = (x1, . . . , xn) with xi = zi/z0 be affine coordinates on U0. There are finitely many
polynomial vector fields

Wj (x) =
n

∑
i=1

Vi ,j (x)∂xi , j = 1, . . . ,m

on U0
∼= Cn, tangent to Y0 = Y ∩U0 and spanning TyY at every point y ∈ Y0.

To this collection we associate the polynomial vector field V on the total space
U0 ×Cm ∼= Cn+m of the trivial vector bundle π : U0 ×Cm → U0, defined by

V (x , t) =
m

∑
j=1

tj Wj (x) =
n

∑
i=1

m

∑
j=1

tj Vi ,j (x)∂xi

where x ∈ U0 and t = (t1, . . . , tm) ∈ Cm. Note that V is horizontal, it vanishes on
the zero section U0 × {0}m = {t = 0}, and for every (x , t) ∈ Y0 ×Cm we have

dπ(x ,t)V (x , t) =
m

∑
j=1

tj Wj (x) ∈ TxY .



Proof, 2

Let U = OCPn (−1) denote the universal line bundle on CPn.

Lemma
For every k ≥ k0 := maxi ,j degVi ,j the vector field V extends to an algebraic vector
field on the total space E of the vector bundle

π : E = (CPn ×Cm)⊗Uk = mUk → CPn

which vanishes on the zero section E (0) and on E |Λ0
.

Proof. We have vector bundle trivialisations θα : E |Uα
∼=→ Uα ×Cm with transition

maps θα,β = θα ◦ θ−1β on (Uα ∩Uβ)×Cm given by

θα,β([z ], t) =
(
[z ], (zα/zβ)

k t
)
, t ∈ Cm, 0 ≤ α, β ≤ n.

In particular,
θα,0([z ], t) =

(
[z ], (zα/z0)k t

)
.



Proof, 3

We shall find the explicit expression for V on E |Uα for any α = 1, . . . , n. For
simplicity, we make the calculation for m = 1, so E = Uk and V = t ∑n

i=1 Vi (x)∂xi
on E |U0

∼= Cn ×C. It suffices to consider the case α = 1.

In the first step, we express V in the fibre coordinate t ′ on E |U1
∼= Cn ×C over

U0 ∩U1 = {x = (x1, . . . , xn) ∈ U0
∼= Cn : x1 6= 0}.

Recall that θ1,0(x , t) =
(
x , xk1 t

)
, so t ′ = xk1 t. We have

Dθ1,0(x , t) =

(
In 0

B xk1

)
where In is the n× n identity matrix and B = (kxk−11 t, 0, . . . , 0).
It follows that the vector field V ′ = Dθ1,0 ·V equals

V ′ = t
n

∑
i=1

Vi (x)∂xi + kt2xk−11 V1(x)∂t ′ = t ′x−k1

n

∑
i=1

Vi (x)∂xi + (t ′)2kx−k−11 V1(x)∂t ′

where we used that t = x−k1 t ′.



Proof, 4

In the second step, we express the vector field V ′ in the affine coordinates
x ′ = (x ′1, x ′2, . . . , x ′n) on U1. Note that

x ′1 =
z0
z1

=
1

x1
,

x ′i =
zi
z1

=
xi
x1

, i = 2, . . . , n.

Write x ′ = ψ(x) and (x ′, t ′) = ψ̃(x , t ′) = (ψ(x), t ′). We have

Dψ(x) =


− 1

x2
1

0 0 · · · 0

− x2
x2
1

1
x1

0 · · · 0

· · · · · · · · · · · · · · ·
− xn

x2
1

0 0 · · · 1
x1

 .

Recall that

V ′ = t ′x−k1

n

∑
i=1

Vi (x)∂xi + (t ′)2kx−k−11 V1(x)∂t ′ .



Proof, 5

Hence, the vector field Ṽ = Dψ̃ ·V ′ equals

Ṽ (x , t ′) = − t ′

xk+2
1

V1(x)∂x ′1 +
n

∑
i=2

[
− xi

xk+2
1

V1(x) +
1

xk+1
1

Vi (x)

]
t ′∂x ′i

+
k(t ′)2

xk+1
1

V1(x)∂t ′ .

Note that
x = ψ−1(x ′) = (1/x ′1, x ′2/x ′1, · · · , x ′n/x ′1).

Inserting in the above expression gives

Ṽ (x ′, t ′) = −t ′(x ′1)k+2V1(ψ
−1(x ′))∂x ′1

+
n

∑
i=2

t ′(x ′1)
k+1

[
−x ′iV1(ψ

−1(x ′)) + Vi (ψ
−1(x ′))

]
∂x ′i

+ k(t ′)2(x ′1)
k+1V1(ψ

−1(x ′))∂t ′ .



Proof, 6

Note that the affine hyperplane {z0 = 0, z1 6= 0} corresponds to {x ′1 = 0}.

Since ψ−1 is a fractional linear map with a simple pole along x ′1 = 0, the functions
Vi (ψ

−1(x ′)) have a pole of degree at most k0 along x ′1 = 0 and no other singularities.

It follows that for k ≥ k0 the vector field Ṽ (x ′, t ′) is polynomial in (x ′, t ′) and it
vanishes on {x ′1 = 0} ∪ {t ′ = 0}.

The calculation is similar for arbitrary m ∈N. This proves the lemma.



Proof, 7

Since the vector field V vanishes on the zero section E (0) of E , there is a
neighbourhood Ω ⊂ E of E (0) such that the flow φτ(e) of V , starting at time τ = 0
in any point e ∈ Ω, exists for all τ ∈ [0, 1]. The map

s := π ◦ φ1 : Ω→ CPn

is then a local holomorphic spray on CPn. On E (0) ∼= CPn we have
TE |E (0) = E ⊕TCPn. Identifying a vector e ∈ Ex = π−1(x) with e ∈ T0xEx , we let

(Vds)x (e) = (ds)0x (e) ∈ TxCPn

denote the vertical derivative of s at 0x applied to the vector e.
We claim that for every e = (x , t) ∈ Ω, with x ∈ U0, we have

(Vds)x (t1, . . . , tm) = dπ(x ,t)V (x , t) =
m

∑
j=1

tj Wj (x). (1)



Proof, 8

To see this, note that in the vector bundle chart on E |U0 the vector field V is
horizontal and its coefficients are linear in the fibre variable t. Hence,

π ◦ φτ(x , δt) = π ◦ φδτ(x , t)

holds for every (x , t) ∈ E |U0 ∩Ω and 0 ≤ δ, τ ≤ 1. At τ = 1 we obtain

s(x , δt) = π ◦ φ1(x , δt) = π ◦ φδ(x , t), 0 ≤ δ ≤ 1.

Differentiating with respect to δ at δ = 0 and noting that
d

dδ

∣∣∣
δ=0

φδ(x , t) = V (x , t)

and dπ(x ,t)V (x , t) = ∑m
j=1 tj Wj (x) gives (1).

Set E |Y = π−1(Y ). Since dπ(x ,t)V (x , t) ∈ TxY for x ∈ Y , the spray s = π ◦ φ1

maps the domain Ω ∩ E |Y to Y . Since the vector fields W1, . . . ,Wm generate the
tangent space TxY every point x ∈ Y0 = Y ∩U0, the restricted spray
s : Ω ∩ E |Y → Y is dominating on Y0. On the other hand, since V vanishes on
E |Λ0, φ1 is the identity on this set and the spray s = π is trivial over Λ0.



Proof, 9

In order to find a local dominating spray on Y , we proceed as follows. For
α ∈ {0, 1, . . . , n} set Yα = Y ∩Uα. Choose m ∈N big enough that for every α the
tangent bundle TYα is generated by m polynomial vector fields

W α
j (x) =

n

∑
i=1

V α
i ,j (x)∂xi

in the affine coordinates x = (x1, . . . , xn) = (z0/zα, . . . , zn/zα) on Uα. Let

k0 := max
α,i ,j

degV α
i ,j .

For every k ≥ k0 the above argument gives an algebraic vector field V α on the vector
bundle E α = mUk that vanishes on the zero section E α

0 and is of the form

V α(x , tα) =
n

∑
i=1

m

∑
j=1

tα
j V α

i ,j (x)∂xi

in the chart E α|Uα
∼= Uα ×Cm. In other charts E α|Uβ for β 6= α, V α is of the same

form but also has a vertical component of size |t|2.



Proof, 10

Set
π : E = E0 ⊕ E1 ⊕ · · · ⊕ En = (n+ 1)mUk0 → CPn.

The algebraic vector field V α on E α extends to an algebraic vector field on E by first
extending it trivially (horizontally) to each of the summands E β|Uα of E |Uα for β 6= α
(these are trivial bundles), and then observing that the resulting vector field on E |Uα

extends to an algebraic vector field on E . With these extensions in place, we consider
the vector field V = ∑n

α=0 V
α on E . The construction implies that

dπeV (e) ∈ TyY for every y ∈ Y and e ∈ Ey = π−1(y).

Since each V α vanishes on the zero section of E0 of E , so does V . Hence, there is a
neighbourhood Ω ⊂ E of E0 such that the flow φτ(e) of V exists for any initial point
e ∈ Ω and every τ ∈ [0, 1]. Consider the holomorphic spray

s = π ◦ φ1 : Ω→ CPn.

We claim that the restricted spray s : Ω ∩ π−1(Y )→ Y is dominating. To see this,
consider V on a chart E |Uα. Let α = 0 for simplicity of notation.



Proof, 11

In the affine coordinates x = (z1/z0, . . . , zn/z0) on U0 and fibre coordinates
t = (t0, t1, . . . , tn) on E |U0, where tα = (tα

1 , . . . , tα
m) are fibre coordinates on the

direct summand E α|U0 of E |U0, we have

V (x , t) =
n

∑
α=0

n

∑
i=1

m

∑
j=1

tα
j V α

i ,j (x)∂xi + Ṽ (x , t) = Θ(x , t) + Ṽ (x , t)

where |Ṽ (x , t)| = O(|t|2). Since Θ(x , t) is linear in t, its flow ψτ satisfies

π ◦ ψ1(x , δt) = π ◦ ψδ(x , t),

and hence the vertical derivative of the spray s̃ = π ◦ ψ1 : Ω→ CPn equals

Vds̃x (t) =
n

∑
α=0

m

∑
j=1

tα
j W α

j (x).

Since the vectors W 0
j (x) for j = 1, . . . ,m span TxY for every x ∈ Y0, s̃ is dominating

over Y0. Since |Ṽ (x , t)| = O(|t|2), the flow φτ of V satisfies

φτ(x , t) = ψτ(x , t) +O(|t|2) as |t| → 0 and τ ∈ [0, 1].



Proof, 12

Hence, the spray s = π ◦ φ1 : Ω→ CPn satisfies

Vdsx (t) = Vds̃x (t) for x ∈ U0,

so it is dominating on Y0 = Y ∩U0. The same argument holds on every chart E |Uα,
which proves that the spray s : Ω ∩ π−1(Y )→ Y is dominating.

So far, we have not used the hypothesis that Y is an Oka manifold.
Set X = E |Y = π−1(Y )→ Y and replace s by its restriction s : X ∩Ω→ Y .
Since X → Y is a Griffiths negative vector bundle, X is a 1-convex manifold with the
exceptional subset X (0) ∼= Y .

Assuming that Y is an Oka manifold, the Oka principle of Prezelj 2010, 2016 and
Stopar 2013 gives a holomorphic map s̃ : X → Y which agrees with the spray s to the
second order along the zero section X (0) ∼= Y . Hence, s̃ is dominating, so Y is
elliptic. This completes the proof.

Remark. Our proof gives holomorphic sprays. There exist projective Oka manifolds
which are not algebraically elliptic; for example, abelian varieties.



Local dominating sprays on positive vector bundles

Proposition
Assume that Y is a compact complex manifold and the vector bundle π : E → Y is
generated by global holomorphic sections (this holds if E is sufficiently positive). If
there is a local dominating holomorphic spray s : U → Y defined on a neighbourhood
U ⊂ E of the zero section E (0), then Y is a complex homogeneous manifold.

Proof. The vertical derivative Vds |E (0) : E → TY is a vector bundle epimorphism.
Given a holomorphic section ξ : Y → E , the map

Y 3 y 7→ Vξ(y) := Vdsy (ξ(y)) ∈ TyY

is a holomorphic vector field on Y .

Applying this argument to sections ξ1, . . . , ξm : Y → E generating E gives
holomorphic vector fields V1, . . . ,Vm on Y spanning the tangent bundle TY .

Since Y is compact, their flows are complex 1-parameter subgroups of the
holomorphic automorphism group Aut(Y ), a finite-dimensional complex Lie group.
The spanning property implies that Aut(Y ) acts transitively on Y .
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