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Abstract

It was proved by Gromov 1989 that every elliptic complex manifold Y satisfies
the parametric h-principle for holomorphic maps from any Stein manifolds X . A
manifold Y satisfying the conclusion of his theorem is now called an

Oka manifold

Gromov asked whether the converse also holds. The first counterexamples
among open (non-compact) complex manifolds were found only recently.

In this work, we show that the converse holds for every projective manifold.

F. F., F. Lárusson, Every projective Oka manifold is elliptic. March 2025.
https://arxiv.org/abs/2502.20028

https://arxiv.org/abs/2502.20028


Motivation: Flexibility versus rigidity in complex geometry

A central question of complex geometry is to understand the space O(X ,Y ) of
holomorphic maps X → Y between a pair of complex manifolds. Are there many
maps, or few maps? Which properties can they have?

There are many holomorphic maps C→ C and C→ C∗ = C \ {0}, but there are no
nonconstant algebraic maps C→ C∗ (fundamental theorem of algebra) or
holomorphic maps C→ C \ {0, 1} (Picard’s theorem). Manifolds with the latter
property are called hyperbolic. Similarly, the complement of five lines in general
position in CP2 is hyperbolic. A very generic projective hypersurface of high enough
degree is hyperbolic. Hyperbolic manifolds have been studied since 1967 when S.
Kobayashi introduced his intrinsic pseudometric on complex manifold. A vast majority
of complex manifolds are close to hyperbolic. Hyperbolicity is a major obstruction to
solving global complex analytic problems.

On the opposite side, Oka theory studies special complex manifolds, Oka manifolds,
which admit many holomorphic maps from all Stein manifolds, i.e., closed complex
submanifolds of affine spaces CN . Oka theory gives solutions to a variety of complex
analytic problems in the absence of topological obstructions.

OKA THEORY = h-PRINCIPLE IN COMPLEX GEOMETRY
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First instances of the Oka principle

Oka 1939 For complex line bundles on domains of holomorphy, the holomorphic
classification agrees with the topological classification.

Grauert 1958 The same holds for principal and their associated fibre bundles (e.g. for
vector bundles) on Stein manifolds and Stein spaces.

Every vector bundle on a Stein manifold X is the pullback of a universal bundle on a
suitable Grassmann manifold Y (the classifying space) by a map X → Y .
Holomorphic maps give rise to holomorphic bundles on X , and homotopies of maps
induce isomorphic bundles. Hence, Grauert’s results essentially follow from:

Grauert 1958 Every complex Lie group and, more generally, every complex
homogeneous manifold admits many holomorphic maps from any Stein space X .

What is the right way to interpret the phrase many maps?
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Enter Oka manifolds

A complex manifold Y is called an Oka manifold if maps X → Y from any Stein
space X satisfy all forms of the Oka principle:

(a) Every continuous map f : X → Y is homotopic to a holomorphic map.

(b) If in addition f is holomorphic on a compact O(X )-convex subset K ⊂ X and on
a closed complex subvariety X ′ of X , then the homotopy from f to a
holomorphic map F : X → Y can be chosen to consist of maps with the same
properties which approximate f on K and agree with f on X ′.

(c) A similar statement holds for families of maps depending continuously on a
parameter in a compact Hausdorff space.

For Y = C, these properties hold by the Oka–Weil–Cartan theorem.

F., 2005-9 A complex manifold Y is an Oka manifold iff it satisfies the
Convex Approximation Property (CAP): Every holomorphic map f : K → Y from a
compact convex set K ⊂ Cn is a uniform limit of entire maps Cn → Y .
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Basic properties of Oka manifolds

For every Stein manifold X and Oka manifold Y , the inclusion

O(X ,Y ) ↪−→ C(X ,Y )

is a weak homotopy equivalence. It is a homotopy equivalence if X of finite
geometric type (Lárusson 2015).

An Oka manifold Y admits a dominating holomorphic map f : CdimY → Y with
any given centre f (0) = y ∈ Y . Domination means that df0 maps CdimY onto
TyY . Hence, f is locally biholomorphic at most points.

A Riemann surface is Oka iff it is not hyperbolic.

Every Oka manifold is Liouville (every bounded psh function is constant).

Kobayashi & Ochiai 1977 A compact complex manifold Y of Kodaira dimension
κ(Y ) = dimY is not dominable by CdimY , so it is not Oka.

Recall that κ(Y ) ∈ {−∞, 0, 1, . . . , dimY } is the smallest integer k such that
dimH0(Y ,Kd

Y ) ≤ cdk for some c > 0. Here, KY = ∧dimYT ∗Y .
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Examples of Oka manifolds

Oka–Weil–Cartan Cn is Oka; Oka 1939 C∗ is Oka.

Grauert 1957 Every complex homogeneous manifold is Oka.

Gromov 1989 Every elliptic complex manifold is Oka.

F. 2002 Every subelliptic complex manifold is Oka.

F. 2006 The class of Oka manifolds is invariant under holomorphic fibre bundle
projections with Oka fibres.

Kusakabe 2021 If a complex manifold Y is a union of Zariski open Oka domains,
then Y is Oka.

Kusakabe 2024 The complement Cn \K of any compact polynomially convex set
K ⊂ Cn for n > 1 is Oka. The same holds in any Stein manifold Y with
Varolin’s density property.

Kaliman & Zaidenberg, 2024 Every smooth cubic projective hypersurface is
A-elliptic, and hence Oka.

Banecki 2024 Every rational projective manifold is A-elliptic, hence Oka.



Elliptic manifolds

Gromov 1989 A complex manifold Y is elliptic if it admits a dominating holomorphic
spray, i.e., a holomorphic map s : E → Y from the total space of a holomorphic
vector bundle E → Y such that for all y ∈ Y ,

s(0y ) = y and s : Ey → Y is a submersion at 0y ∈ Ey .

Gromov 1989: Every elliptic complex manifold is an Oka manifold.

A detailed proof was given by Jasna Prezelj & F., Math. Ann. 2000 & 2002.

The modern proof consists of two parts. The first one is the implication

elliptic =⇒ h-Runge approximation =⇒ CAP

This uses dominating sprays and the Oka–Weil theorem.

The second and main part is the implication CAP =⇒ OKA (F. 2006).



Problem (Gromov 1989)

Is every Oka manifold elliptic?

Consider complements Cn \K of compacts sets K ⊂ Cn.

Andrist, Shcherbina, Wold, 2016 If n ≥ 3 and K has infinite limit set, then Cn \K is
not elliptic.

Kusakabe 2020 If K is polynomially convex set and n ≥ 2, then Cn \K is Oka.

These two results together give examples of noncompact Oka manifolds of any
dimension ≥ 3 which fail to be elliptic.

Theorem (Lárusson & F., 2025)

Every projective Oka manifold is elliptic.



Problem (Gromov 1989)

Is every Oka manifold elliptic?

Consider complements Cn \K of compacts sets K ⊂ Cn.

Andrist, Shcherbina, Wold, 2016 If n ≥ 3 and K has infinite limit set, then Cn \K is
not elliptic.

Kusakabe 2020 If K is polynomially convex set and n ≥ 2, then Cn \K is Oka.

These two results together give examples of noncompact Oka manifolds of any
dimension ≥ 3 which fail to be elliptic.

Theorem (Lárusson & F., 2025)

Every projective Oka manifold is elliptic.



Problem (Gromov 1989)

Is every Oka manifold elliptic?

Consider complements Cn \K of compacts sets K ⊂ Cn.

Andrist, Shcherbina, Wold, 2016 If n ≥ 3 and K has infinite limit set, then Cn \K is
not elliptic.

Kusakabe 2020 If K is polynomially convex set and n ≥ 2, then Cn \K is Oka.

These two results together give examples of noncompact Oka manifolds of any
dimension ≥ 3 which fail to be elliptic.

Theorem (Lárusson & F., 2025)

Every projective Oka manifold is elliptic.



Problem (Gromov 1989)

Is every Oka manifold elliptic?

Consider complements Cn \K of compacts sets K ⊂ Cn.

Andrist, Shcherbina, Wold, 2016 If n ≥ 3 and K has infinite limit set, then Cn \K is
not elliptic.

Kusakabe 2020 If K is polynomially convex set and n ≥ 2, then Cn \K is Oka.

These two results together give examples of noncompact Oka manifolds of any
dimension ≥ 3 which fail to be elliptic.

Theorem (Lárusson & F., 2025)

Every projective Oka manifold is elliptic.



Scheme of proof

Let Y ⊂ CPn be a projective manifold and π : E → Y an algebraic vector bundle.
For y ∈ Y let Ey = π−1(y). Along the zero section E0 of E we have

TE |E0
∼= E ⊕TY .

Let V be an algebraic vector field on E which vanishes on E0. There is a
neighbourhood Ω ⊂ E of E0 such that for any e ∈ Ω, the flow φτ(e) of V with
φ0(e) = e exists for all 0 ≤ τ ≤ 1. The holomorphic map

s = π ◦ φ1 : Ω→ Y

is then a local spray on Y . We will show that Ω ⊂ E and V can be chosen such that
its vertical derivative

Vdsy : T0yEy
∼= Ey → TyY

is surjective for every y ∈ Y .

Since E is a 1-convex manifold with the exceptional subvariety E0, the Oka principle
proved by Jasna Prezelj gives a global holomorphic spray s̃ : E → Y which agrees with
s to the second order along E0. Hence, s̃ is a dominating holomorphic spray on Y .
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Proof, 1

Denote by z = [z0 : z1 : · · · : zn] the homogeneous coordinates on CPn.

Set Λα = {zα = 0} for α = 0, 1, . . . , n, and let Uα = CPn \Λα
∼= Cn be the affine

chart with coordinates (z0/zα, . . . , zn/zα). Let x = (x1, . . . , xn) with xi = zi/z0 be
affine coordinates on U0. Consider a polynomial vector field

W (x) =
n

∑
i=1

Vi (x)∂xi

on U0
∼= Cn which is tangential to Y ∩U0. By Serre’s Theorem A, finitely many such

vector fields span TY at every point x ∈ Y ∩U0.

We associate to W the horizontal vector field

V (x , t) =
n

∑
i=1

t Vi (x)∂xi

on the trivial line bundle U0 ×C ∼= Cn+1, where t ∈ C is the fibre coordinate.
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Proof, 2

Let U→ CPn be the universal bundle. We claim that, for all sufficiently large k > 0,
V extends to an algebraic vector field on the line bundle L = Uk .

For every α = 0, 1, . . . , n, we have a line bundle trivialisation θα : L|Uα
∼=→ Uα ×C with

transition maps θα,β = θα ◦ θ−1β on (Uα ∩Uβ)×C given by

θα,β([z ], t) =
(
[z ], (zα/zβ)

k t
)
, 0 ≤ α, β ≤ n.

In particular, θα,0([z ], t) =
(
[z ], (zα/z0)k t

)
.

We analyse the behaviour of V near the hyperplane Λ0 \Λα for α = 1, . . . , n.
Replacing the coordinate xα = zα/z0 by 1/xα = z0/zα, the vector field V has the
same form with rational coefficient Vi (x) having poles along the hyperplane
{xα = 0} = {z0 = 0}. In these coordinates, θα,0(x , t) =

(
x , x−kα t

)
and

D θα,0(x , t) =

(
In 0

b x−kα

)
,

where In is the identity n× n matrix and b = (0, . . . ,−kx−k−1α t, . . . , 0).
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We analyse the behaviour of V near the hyperplane Λ0 \Λα for α = 1, . . . , n.
Replacing the coordinate xα = zα/z0 by 1/xα = z0/zα, the vector field V has the
same form with rational coefficient Vi (x) having poles along the hyperplane
{xα = 0} = {z0 = 0}. In these coordinates, θα,0(x , t) =

(
x , x−kα t

)
and

D θα,0(x , t) =

(
In 0

b x−kα

)
,

where In is the identity n× n matrix and b = (0, . . . ,−kx−k−1α t, . . . , 0).



Proof, 3

Hence, the vector field V ′ = (θα,0)∗V on the chart L|Uα for x ∈ U0 ∩Uα equals

V ′(x , t) = D θα,0(x , t)V (x , t) =
n

∑
i=1

tVi (x)∂xi + (−k)t2x−k−1α Vα(x)∂t ′ .

In terms of the new fibre variable t ′ = x−kα t (so t = x k
α t ′) we have

V ′(x , t ′) =
n

∑
i=1

t ′x k
α Vi (x)∂xi − k(t ′)2x k−1

α Vα(x)∂t ′ .

By choosing k > 0 big enough, V ′ extends to the points of L = Uk over the
hyperplane Λ0 \Λα = {xα = 0} and it vanishes there.

Applying this argument for every α = 1, . . . , n, we see that for k > 0 big enough the
vector field V extends to the line bundle L = Uk and it vanishes on L0 ∪ (L|Λ0).
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Proof, 4

Since V vanishes on the zero section L0 of L, there is a neighbourhood Ω ⊂ L of L0
such that the flow φτ(e) of V with φ0(e) = e ∈ Ω exists for all τ ∈ [0, 1]. The map

s = π ◦ φ1 : Ω→ CPn

is a local holomorphic spray on CPn.

Set L|Y = π−1(Y ). For every e = (x , t) ∈ L|Y we have dπeV (e) = tW (x) ∈ TxY .
Hence, s : Ω ∩ L|Y → Y is a local holomorphic spray on Y .

Since V is linear in the fibre variable t, we have

s(x , δt) = π ◦ φ1(x , δt) = π ◦ φδ(x , t)

for every (x , t) ∈ Ω and 0 ≤ δ ≤ 1. Differentiating on δ at δ = 0 and noting that
d
dδ

∣∣∣
δ=0

φδ(x , t) = V (x , t) and dπ(x ,t)V (x , t) = tW (x) gives

Vdsx (t) :=
d

dδ

∣∣∣
δ=0

s(x , δt) = tW (x) ∈ TxY , x ∈ Y ∩U0, t ∈ C.
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Proof, 5

In order to find a local dominating spray on Y , we proceed as follows. For
α ∈ {0, 1, . . . , n}, set Yα = Y ∩Uα. Choose m ∈N such that the tangent bundle
TYα is pointwise generated by m polynomial vector fields

W α
j (x) =

n

∑
i=1

V α
i ,j (x)∂xi , j = 1, . . . ,m

on Uα for every α ∈ {0, 1, . . . , n}.

For k ∈N big enough, this gives an algebraic
vector field V α on the vector bundle E α = mUk of the form

V α(x , t) =
n

∑
i=1

m

∑
j=1

tj V
α
i ,j (x)∂xi ,

where x = (z0/zα, . . . , zn/zα) and t = (t1, . . . , tm) are coordinates on the chart
E α|Uα

∼= Cn ×Cm.

In other charts E α|Uβ for β 6= α, V α is of the same form but also has a vertical

component of size |t|2.
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Proof, 6

Consider the vector bundle

π : E = E0 ⊕ E1 ⊕ · · · ⊕ En = (n+ 1)mUk → CPn.

The polynomial vector field V α on E α extends to a regular algebraic vector field on E
which vanishes on E0. Indeed, we first extend it horizontally to each summand E β|Uα

of E |Uα for β 6= α. As seen before, for k big enough the resulting vector field on E |Uα

extends to an algebraic vector field V α on E .

Consider the algebraic vector field V = ∑n
α=0 V

α on E . Since V vanishes on E0, there
is a neighbourhood Ω ⊂ E of E0 with convex fibres such that the flow φτ(e) of V
exists for any e ∈ Ω and τ ∈ [0, 1]. Consider the holomorphic spray

s = π ◦ φ1 : Ω→ CPn.

We claim that s : Ω ∩ π−1(Y )→ Y is dominating. To see this, consider V on a
chart E |Uα. Let α = 0 for simplicity of notation.



Proof, 7

In the affine coordinates x = (z1/z0, . . . , zn/z0) on U0 and fibre coordinates
t = (t0, t1, . . . , tn) on E |U0, where tα = (tα

1 , . . . , tα
m) are fibre coordinates on the

direct summand E α|U0 of E |U0, we have

V (x , t) =
n

∑
α=0

n

∑
i=1

m

∑
j=1

tα
j V α

i ,j (x)∂xi + Ṽ (x , t) = Θ(x , t) + Ṽ (x , t)

where |Ṽ (x , t)| = O(|t|2). Since Θ(x , t) is linear in t, its flow ψτ satisfies

π ◦ ψ1(x , δt) = π ◦ ψδ(x , t),

and hence the vertical derivative of the spray s̃ = π ◦ ψ1 : Ω→ CPn equals

Vds̃x (t) =
n

∑
α=0

m

∑
j=1

tα
j W α

j (x).

Since the vectors W 0
j (x) for j = 1, . . . ,m span TxY for every x ∈ Y0, s̃ is dominating

over Y0. Since |Ṽ (x , t)| = O(|t|2), the flow φτ of V satisfies

φτ(x , t) = ψτ(x , t) +O(|t|2) as |t| → 0 and τ ∈ [0, 1].
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Hence, the spray s = π ◦ φ1 : Ω→ CPn satisfies

Vdsx (x , t) = Vds̃x (x , t) for x ∈ U0,

so it is dominating on Y0 = Y ∩U0. The same argument holds on every chart E |Uα,
which proves that the spray s : Ω ∩ π−1(Y )→ Y is dominating.

We now replace the bundle E → CPn by E |Y = π−1(Y )→ Y , and we replace the
spray s by its restriction s : E |Y ∩Ω→ Y .

Note that E = (n+ 1)mUk |Y is a Griffiths negative bundle,
hence a 1-convex manifold with the exceptional subset E0

∼= Y (Grauert 1962).

If Y is an Oka manifold, the Oka principle of Prezelj 2010, 2016 gives a holomorphic
map s̃ : E → Y which agrees with the spray s to the second order along the zero
section E0 of E . Hence, s̃ is dominating, so Y is elliptic.

Remark. Our proof gives holomorphic sprays. This is the best possible since there
exist projective Oka manifolds which are not algebraically elliptic.



Local dominating sprays on positive vector bundles

Proposition
Assume that Y is a compact complex manifold and the vector bundle π : E → Y is
generated by global holomorphic sections (this holds if E is sufficiently positive). If
there is a local dominating holomorphic spray s : U → Y defined on a neighbourhood
U ⊂ E of the zero section E0, then Y is a complex homogeneous manifold.

Proof. The vertical derivative Vds |E0 : E → TY is a vector bundle epimorphism.
Given a holomorphic section ξ : Y → E , the map

Y 3 y 7→ Vξ(y) := Vdsy (ξ(y)) ∈ TyY

is a holomorphic vector field on Y .

Applying this argument to sections ξ1, . . . , ξm : Y → E generating E gives
holomorphic vector fields V1, . . . ,Vm on Y spanning the tangent bundle TY .

Since Y is compact, their flows are complex 1-parameter subgroups of the
holomorphic automorphism group Aut(Y ), a finite-dimensional complex Lie group.
The spanning property implies that Aut(Y ) acts transitively on Y .



A commercial

The main results on the
Oka–Grauert–Gromov theory up to 2017
are presented in my monograph.

Subsequent developments up to 2023 are
summarised in my survey

Recent developments on Oka manifolds.
Indag. Math., 34(2) (2023) 367–417.

There have been many developments
since 2023, the story is ongoing...
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