The nonhomogeneous Cauchy–Riemann equation on families of open Riemann surfaces

Seminar for Complex Analysis Ljubljana, 4 November 2025

Franc Forstnerič

Abstract

We show that on any smoothly bounded relatively compact domain Ω in a smooth open surface X, the nonhomogeneous Cauchy–Riemann equation (the $\bar{\partial}$ -equation) can be solved for very general families of complex structures $\{J_b\}_{b\in B}$ on $\bar{\Omega}$ of some Hölder class, with a gain of one derivative in the space variable and without any loss of regularity in the parameter $b\in B$.

Abstract

We show that on any smoothly bounded relatively compact domain Ω in a smooth open surface X, the nonhomogeneous Cauchy–Riemann equation (the $\bar{\partial}$ -equation) can be solved for very general families of complex structures $\{J_b\}_{b\in B}$ on $\bar{\Omega}$ of some Hölder class, with a gain of one derivative in the space variable and without any loss of regularity in the parameter $b\in B$.

An application is the Oka principle for complex line bundles on families of open Riemann surfaces.

http://arxiv.org/abs/2508.13660, August 2025

An almost complex structure on a smooth orientable manifold X is an endomorphism J of the tangent bundle TX satisfying $J^2 = -Id$.

An almost complex structure on a smooth orientable manifold X is an endomorphism J of the tangent bundle TX satisfying $J^2 = -Id$.

A differentiable function $f: X \to \mathbb{C}$ is said to be J-holomorphic if the Cauchy–Riemann equation $df_X \circ J_X = \sqrt{-1} \, df_X$ holds for every $x \in X$.

An almost complex structure on a smooth orientable manifold X is an endomorphism J of the tangent bundle TX satisfying $J^2 = -Id$.

A differentiable function $f: X \to \mathbb{C}$ is said to be *J*-holomorphic if the Cauchy–Riemann equation $df_X \circ J_X = \sqrt{-1} df_X$ holds for every $x \in X$.

Assuming that X is a surface and J is of local Hölder class $\mathfrak{C}^{(k,\alpha)}$ $(k \in \mathbb{Z}_+, \ 0 < \alpha < 1)$, there is an atlas $\{(U_i, \phi_i)\}$ of open sets $U_i \subset X$ with $\bigcup_i U_i = X$ and J-holomorphic charts $\phi_i : U_i \to \phi_i(U_i) \subset \mathbb{C}$ of class $\mathfrak{C}^{(k+1,\alpha)}(U_i)$.

Hence, J determines on X the structure of a Riemann surface, denoted (X, J), whose underlying smooth structure is $\mathfrak{C}^{(k+1,\alpha)}$ compatible with the given smooth structure on X.

An almost complex structure on a smooth orientable manifold X is an endomorphism J of the tangent bundle TX satisfying $J^2 = -Id$.

A differentiable function $f:X\to\mathbb{C}$ is said to be *J*-holomorphic if the Cauchy–Riemann equation $df_X\circ J_X=\sqrt{-1}\,df_X$ holds for every $x\in X$.

Assuming that X is a surface and J is of local Hölder class $\mathcal{C}^{(k,\alpha)}$ $(k \in \mathbb{Z}_+, \ 0 < \alpha < 1)$, there is an atlas $\{(U_i, \phi_i)\}$ of open sets $U_i \subset X$ with $\bigcup_i U_i = X$ and J-holomorphic charts $\phi_i : U_i \to \phi_i(U_i) \subset \mathbb{C}$ of class $\mathcal{C}^{(k+1,\alpha)}(U_i)$.

Hence, J determines on X the structure of a Riemann surface, denoted (X, J), whose underlying smooth structure is $\mathfrak{C}^{(k+1,\alpha)}$ compatible with the given smooth structure on X.

On a smooth manifold X of dimension $2n \geq 4$, the same is true if J is formally integrable and of Hölder class $\mathfrak{C}^{(k,\alpha)}$ for some $k=1,2,\ldots$ and $0<\alpha<1$ (Newlander and Nirenberg 1957, Nijenhuis and Woolf 1963, Kohn 1963, Malgrange 1969, Webster 1989, Hörmander 1990...).

Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal structure, and hence a complex structure $J=J_g$ if X is oriented. Conversely, every complex structure J arises in this way. Metrics g, g' determine the same conformal structure iff $g'=\lambda g$ for a positive function $\lambda:X\to(0,\infty)$.

Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal structure, and hence a complex structure $J=J_g$ if X is oriented. Conversely, every complex structure J arises in this way. Metrics g, g' determine the same conformal structure iff $g'=\lambda g$ for a positive function $\lambda:X\to(0,\infty)$.

In a smooth local coordinate z = x + iy $(i = \sqrt{-1})$ on $U \subset X$ we have

$$g = Edx^2 + 2Fdxdy + Gdy^2 = \lambda |dz + \mu d\bar{z}|^2$$

where $\lambda>0$ and $\mu:U\to\mathbb{D}=\{|\zeta|<1\}$ is the Beltrami coefficient.

Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal structure, and hence a complex structure $J=J_g$ if X is oriented. Conversely, every complex structure J arises in this way. Metrics g, g' determine the same conformal structure iff $g'=\lambda g$ for a positive function $\lambda:X\to(0,\infty)$.

In a smooth local coordinate z = x + iy $(i = \sqrt{-1})$ on $U \subset X$ we have

$$g = Edx^2 + 2Fdxdy + Gdy^2 = \lambda |dz + \mu d\bar{z}|^2$$

where $\lambda>0$ and $\mu:U\to\mathbb{D}=\{|\zeta|<1\}$ is the Beltrami coefficient. Then,

$$[J] = \frac{1}{\sqrt{EG - F^2}} \begin{pmatrix} -F & -G \\ E & F \end{pmatrix} = \begin{pmatrix} -b & -c \\ (b^2 + 1)/c & b \end{pmatrix}$$

where

$$\delta=EG-F^2>0,\quad b=F/\sqrt{\delta},\quad c=G/\sqrt{\delta}>0,$$

$$\mu=\frac{1-c+\imath b}{1+c+\imath b}.$$

Isothermal coordinates

Let $U \subset X$ be an open set. A local diffeomorphism $f: U \to \mathbb{C}$ is conformal from the g-structure on X to the standard conformal structure on \mathbb{C} iff

 $g = h|df|^2$ holds for a positive function h > 0.

Isothermal coordinates

Let $U \subset X$ be an open set. A local diffeomorphism $f: U \to \mathbb{C}$ is conformal from the g-structure on X to the standard conformal structure on \mathbb{C} iff

$$g = h|df|^2$$
 holds for a positive function $h > 0$.

A chart f with this property is said to be isothermal for g. Such f is J-holomorphic or J-antiholomorphic. Assume that f is in the same orientation class as $z:U\to\mathbb{C}$, which amounts to $|f_{\overline{z}}|>|f_{\overline{z}}|$. Note that

$$|df|^2 = |f_z dz + f_{\bar{z}} d\bar{z}|^2 = |f_z|^2 \cdot \left| dz + \frac{f_{\bar{z}}}{f_{\tau}} d\bar{z} \right|^2.$$

Isothermal coordinates

Let $U \subset X$ be an open set. A local diffeomorphism $f: U \to \mathbb{C}$ is conformal from the g-structure on X to the standard conformal structure on \mathbb{C} iff

$$g = h|df|^2$$
 holds for a positive function $h > 0$.

A chart f with this property is said to be isothermal for g. Such f is J-holomorphic or J-antiholomorphic. Assume that f is in the same orientation class as $z:U\to\mathbb{C}$, which amounts to $|f_{\overline{z}}|>|f_{\overline{z}}|$. Note that

$$|df|^2 = |f_z dz + f_{\bar{z}} d\bar{z}|^2 = |f_z|^2 \cdot \left| dz + \frac{f_{\bar{z}}}{f_z} d\bar{z} \right|^2.$$

A comparison with

$$g = \lambda |dz + \mu d\bar{z}|^2$$

shows that f is isothermal iff it satisfies the Beltrami equation

$$f_{\bar{z}} = \mu f_z$$
.

In a reference complex structure

The situation is especially simple if we fix a reference complex structure J_0 on X, so

 (X, J_0) is an open Riemann surface.

In a reference complex structure

The situation is especially simple if we fix a reference complex structure J_0 on X, so (X, J_0) is an open Riemann surface.

By Gunning and Narasimhan 1967, X admits a J_0 -holomorphic immersion $z=u+\iota v:X\to\mathbb{C}$. Its differential $dz=du+\iota dv$ is a nowhere vanishing holomorphic 1-form on X trivialising the canonical bundle $T^*X=K_X$, $|dz|^2=du^2+dv^2$ is a Riemannian metric on X determining J_0 , $\frac{\iota}{2}dz\wedge d\bar{z}=du\wedge dv$ is the associated area form, and $d\sigma=du\,dv$ is the surface measure on X.

In a reference complex structure

The situation is especially simple if we fix a reference complex structure J_0 on X, so (X, J_0) is an open Riemann surface.

By Gunning and Narasimhan 1967, X admits a J_0 -holomorphic immersion $z=u+\imath v:X\to\mathbb{C}$. Its differential $dz=du+\imath dv$ is a nowhere vanishing holomorphic 1-form on X trivialising the canonical bundle $T^*X=K_X$, $|dz|^2=du^2+dv^2$ is a Riemannian metric on X determining $J_0, \ \frac{\imath}{2}dz\wedge d\bar{z}=du\wedge dv$ is the associated area form, and $d\sigma=du\,dv$ is the surface measure on X.

The function z provides a local holomorphic coordinate on X at every point. Any Riemannian metric g on X is globally of the form

$$g = \lambda |dz + \mu d\bar{z}|^2$$

for some functions $\lambda: X \to (0, \infty)$ and $\mu: X \to \mathbb{D}$. Conversely, any function $\mu: X \to \mathbb{D}$ determines a Riemannian metric $g_{\mu} = |dz + \mu d\bar{z}|^2$, and hence a complex structure J_{μ} on X, with J_0 the given reference structure.

A version of Ahlfors–Bers–Hamilton theorem

the associated complex structure on Ω , with J_0 the initial structure.

Assume that (X, J_0) is an open Riemann surface and $z: X \to \mathbb{C}$ is a holomorphic immersion. Given a domain $\Omega \subseteq X$ and a function $\mu \in \mathcal{C}^{(k,\alpha)}(\Omega, \mathbb{D})$, we denote by J_{μ}

A version of Ahlfors-Bers-Hamilton theorem

Assume that (X,J_0) is an open Riemann surface and $z:X\to\mathbb{C}$ is a holomorphic immersion. Given a domain $\Omega\subseteq X$ and a function $\mu\in\mathfrak{C}^{(k,\alpha)}(\Omega,\mathbb{D})$, we denote by J_μ the associated complex structure on Ω , with J_0 the initial structure.

Theorem (the mapping theorem)

Let Ω be a relatively compact domain in X with $\mathfrak{C}^{(k+1,\alpha)}$ boundary $(k \in \mathbb{Z}_+, \ 0 < \alpha < 1)$. There exists $c = c(k,\alpha) > 0$ such that for every $\mu \in \mathfrak{C}^{(k,\alpha)}(\Omega,\mathbb{D})$ with $\|\mu\|_{k,\alpha} < c$ there is function $f = f(\mu) \in \mathfrak{C}^{(k+1,\alpha)}(\Omega)$ solving the Beltrami equation $f_{\bar{z}} = \mu f_z$, depending analytically on μ , with $f(0) = z|_{\Omega}$.

Note that $f(\mu): \Omega \to \mathbb{C}$ is J_{μ} -holomorphic, and an immersion if μ is small enough.

A version of Ahlfors-Bers-Hamilton theorem

Assume that (X,J_0) is an open Riemann surface and $z:X\to \mathbb{C}$ is a holomorphic immersion. Given a domain $\Omega \subseteq X$ and a function $\mu\in \mathfrak{C}^{(k,\alpha)}(\Omega,\mathbb{D})$, we denote by J_μ the associated complex structure on Ω , with J_0 the initial structure.

Theorem (the mapping theorem)

Let Ω be a relatively compact domain in X with $\mathfrak{C}^{(k+1,\alpha)}$ boundary $(k \in \mathbb{Z}_+, \ 0 < \alpha < 1)$. There exists $c = c(k,\alpha) > 0$ such that for every $\mu \in \mathfrak{C}^{(k,\alpha)}(\Omega,\mathbb{D})$ with $\|\mu\|_{k,\alpha} < c$ there is function $f = f(\mu) \in \mathfrak{C}^{(k+1,\alpha)}(\Omega)$ solving the Beltrami equation $f_{\overline{z}} = \mu f_z$, depending analytically on μ , with $f(0) = z|_{\Omega}$.

Note that $f(\mu): \Omega \to \mathbb{C}$ is J_{μ} -holomorphic, and an immersion if μ is small enough.

Corollary

For every complex structure J of class $\mathfrak{C}^{(k,\alpha)}$ on Ω which is sufficiently close to J_0 there is a (J,J_0) -biholomorphic map $\Phi_J:\Omega\to\Phi_J(\Omega)\subset X$ of class $\mathfrak{C}^{(k+1,\alpha)}(\Omega)$ depending analytically on J, with $\Phi_{J_0}=\mathrm{Id}_\Omega$.

The tools: Cauchy kernel and Cauchy-Green formula

Let X be an open Riemann surface and $z = u + \iota v : X \to \mathbb{C}$ a holomorphic immersion. Set $D_X = \{(x,x) : x \in X\} \subset X \times X$.

Scheinberg 1978 There is a meromorphic 1-form on $X \times X$ of the form

$$\omega(q, x) = \xi(q, x)dz(x)$$
 for $q, x \in X$

which is holomorphic on $X \times X \setminus D_X$ and for each $q \in X$, $\omega(q, \cdot)$ has a simple pole at q with residue 1.

The tools: Cauchy kernel and Cauchy-Green formula

Let X be an open Riemann surface and $z = u + \iota v : X \to \mathbb{C}$ a holomorphic immersion. Set $D_X = \{(x,x) : x \in X\} \subset X \times X$.

Scheinberg 1978 There is a meromorphic 1-form on $X \times X$ of the form

$$\omega(q, x) = \xi(q, x)dz(x)$$
 for $q, x \in X$

which is holomorphic on $X \times X \setminus D_X$ and for each $q \in X$, $\omega(q, \cdot)$ has a simple pole at q with residue 1. In a neighbourhood $U \subset X \times X$ of D_X we have

$$\xi(q,x) = \frac{1}{z(x) - z(q)} + h(q,x),$$
 h holomorphic on U .

The tools: Cauchy kernel and Cauchy-Green formula

Let X be an open Riemann surface and $z = u + \iota v : X \to \mathbb{C}$ a holomorphic immersion. Set $D_X = \{(x,x) : x \in X\} \subset X \times X$.

Scheinberg 1978 There is a meromorphic 1-form on $X \times X$ of the form

$$\omega(q, x) = \xi(q, x)dz(x)$$
 for $q, x \in X$

which is holomorphic on $X \times X \setminus D_X$ and for each $q \in X$, $\omega(q, \cdot)$ has a simple pole at q with residue 1. In a neighbourhood $U \subset X \times X$ of D_X we have

$$\xi(q,x) = \frac{1}{z(x) - z(q)} + h(q,x), \quad h \text{ holomorphic on } U.$$

Given a relatively compact smoothly bounded domain $\Omega \in X$, $f \in \mathcal{C}^1(\overline{\Omega})$ and $q \in \Omega$, we have the Cauchy–Green formula

$$\begin{split} f(q) &= \frac{1}{2\pi i} \int_{x \in b\Omega} f(x) \, \omega(q,x) - \frac{1}{2\pi i} \int_{x \in \Omega} \overline{\partial} f(x) \wedge \omega(q,x) \\ &= \frac{1}{2\pi i} \int_{x \in b\Omega} f(x) \, \xi(q,x) dz(x) - \frac{1}{\pi} \int_{x \in \Omega} f_{\overline{z}}(x) \xi(q,x) d\sigma(x). \end{split}$$

The Cauchy-Green and the Beurling operator

We have the Cauchy-Green operator

$$P(\phi)(q) = -\frac{1}{\pi} \int_{x \in \Omega} \phi(x) \xi(q, x) d\sigma(x)$$

solving the $\bar{\partial}$ -equation

$$\partial_{\bar{z}}P(\phi)=\phi$$

and the Beurling operator (a Calderón-Zygmund type singular integral operator)

$$S(\phi)(q) = \partial_z P(\phi)(q) = -\frac{1}{\pi} P.V. \int_{\Omega} \phi(x) \partial_{z(q)} \xi(q, x) d\sigma(x).$$

The Cauchy-Green and the Beurling operator

We have the Cauchy-Green operator

$$P(\phi)(q) = -\frac{1}{\pi} \int_{x \in \Omega} \phi(x) \xi(q, x) d\sigma(x)$$

solving the $ar{\partial}$ -equation

$$\partial_{\bar{z}}P(\phi)=\phi$$

and the Beurling operator (a Calderón–Zygmund type singular integral operator)

$$S(\phi)(q) = \partial_z P(\phi)(q) = -\frac{1}{\pi} P.V. \int_{\Omega} \phi(x) \partial_{z(q)} \xi(q, x) d\sigma(x).$$

For every $k \in \mathbb{Z}_+$ and $0 < \alpha < 1$,

$$P: \mathfrak{C}^{(k,\alpha)}(\Omega) \to \mathfrak{C}^{(k+1,\alpha)}(\Omega) \quad \text{and} \quad \mathcal{S}: \mathfrak{C}^{(k,\alpha)}(\Omega) \to \mathfrak{C}^{(k,\alpha)}(\Omega)$$

are bounded linear operators. (In S, we use a bounded linear extension operator $\mathfrak{C}^{(k,\alpha)}(\Omega) \to \mathfrak{C}^{(k,\alpha)}_0(\Omega')$ with $\Omega \in \Omega' \in X$.) In any local holomorphic coordinate, they differ from the standard operators on \mathbb{C} by a smoothing operator.

Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation $f_{\overline{z}} = \mu f_{\overline{z}}$ on Ω in the form

$$f = f(\mu) = z|_{\Omega} + P(\phi), \quad \phi \in \mathcal{C}^{(k,\alpha)}(\Omega).$$

Thus, $\phi = 0$ corresponds to $f(0) = z|_{\Omega}$.

Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation $f_{\overline{z}} = \mu f_{\overline{z}}$ on Ω in the form

$$f = f(\mu) = z|_{\Omega} + P(\phi), \quad \phi \in \mathfrak{C}^{(k,\alpha)}(\Omega).$$

Thus, $\phi = 0$ corresponds to $f(0) = z|_{\Omega}$. We have

$$f_{\bar{z}} = \partial_{\bar{z}} P(\phi) = \phi, \qquad f_z = 1 + \partial_z P(\phi) = 1 + S(\phi).$$

Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation $f_{\overline{z}}=\mu f_{z}$ on Ω in the form

$$f = f(\mu) = z|_{\Omega} + P(\phi), \quad \phi \in \mathfrak{C}^{(k,\alpha)}(\Omega).$$

Thus, $\phi = 0$ corresponds to $f(0) = z|_{\Omega}$. We have

$$f_{\bar{z}} = \partial_{\bar{z}} P(\phi) = \phi, \qquad f_z = 1 + \partial_z P(\phi) = 1 + S(\phi).$$

Inserting in the Beltrami equation $f_{\bar{z}} = \mu f_z$ gives

$$\phi = \mu(S(\phi) + 1) = \mu S(\phi) + \mu \iff (I - \mu S)\phi = \mu.$$

Proof of the mapping theorem, 2

Assuming that $\|\mu S\| \leq \|\mu\|_{(k,\alpha)} \|S\| < 1$, the operator $I - \mu S$ is invertible on $\mathfrak{C}^{(k,\alpha)}(\Omega)$, with the bounded inverse

$$\Theta(\mu) = (I - \mu S)^{-1} = \sum_{j=0}^{\infty} (\mu S)^{j}.$$

Proof of the mapping theorem, 2

Assuming that $\|\mu S\| \leq \|\mu\|_{(k,\alpha)} \|S\| < 1$, the operator $I - \mu S$ is invertible on $\mathbb{C}^{(k,\alpha)}(\Omega)$, with the bounded inverse

$$\Theta(\mu) = (I - \mu S)^{-1} = \sum_{j=0}^{\infty} (\mu S)^{j}.$$

For such μ , the equation $(I - \mu S)\phi = \mu$ has the unique solution $\phi = \Theta(\mu)\mu$, and hence the Beltrami equation $f_{\bar{z}} = \mu f_z$ has the solution

$$f(\mu) = z|_{\Omega} + P(\Theta(\mu)\mu) \in \mathcal{C}^{(k+1,\alpha)}(\Omega).$$

It follows that $f(\mu)$ is analytic in μ .

Proof of the mapping theorem, 2

Assuming that $\|\mu S\| \leq \|\mu\|_{(k,\alpha)} \|S\| < 1$, the operator $I - \mu S$ is invertible on $\mathcal{C}^{(k,\alpha)}(\Omega)$, with the bounded inverse

$$\Theta(\mu) = (I - \mu S)^{-1} = \sum_{j=0}^{\infty} (\mu S)^{j}.$$

For such μ , the equation $(I - \mu S)\phi = \mu$ has the unique solution $\phi = \Theta(\mu)\mu$, and hence the Beltrami equation $f_{\bar{z}} = \mu f_z$ has the solution

$$f(\mu) = z|_{\Omega} + P(\Theta(\mu)\mu) \in \mathcal{C}^{(k+1,\alpha)}(\Omega).$$

It follows that $f(\mu)$ is analytic in μ .

If μ is close to 0 then $f(\mu):\Omega\to\mathbb{C}$ is a J_μ -holomorphic immersion. Lifting $f(\mu)$ with respect to the immersion $z:X\to\mathbb{C}$ gives (J_μ,J_0) -biholomorphisms $\Phi_\mu:\Omega\to\Phi_\mu(\Omega)$ with $z\circ\Phi_\mu=f_\mu$ and Φ_0 the identity map on Ω .

The $\bar{\partial}$ -equation for a family of complex structures

Theorem (main)

Assume that (X,\overline{J}) is an open Riemann surface and $\Omega \subseteq X$ is a relatively compact domain with $\mathbb{C}^{(k+1,\alpha)}$ boundary for some $k \in \mathbb{Z}_+$ and $0 < \alpha < 1$.

The $\bar{\partial}$ -equation for a family of complex structures

Theorem (main)

Assume that (X,J) is an open Riemann surface and $\Omega \subseteq X$ is a relatively compact domain with $\mathbb{C}^{(k+1,\alpha)}$ boundary for some $k \in \mathbb{Z}_+$ and $0 < \alpha < 1$. For $\mu \in \mathbb{C}^{(k,\alpha)}(\overline{\Omega},\mathbb{D})$ let J_μ denote the associated complex structure on $\overline{\Omega}$, with $J_0 = J|_{\overline{\Omega}}$. For c > 0 set

$$B_c = \{ \mu \in \mathfrak{C}^{(k,\alpha)}(\overline{\Omega}) : \|\mu\|_{k,\alpha} < c \}.$$

The $ar\partial$ -equation for a family of complex structures

Theorem (main)

Assume that (X,J) is an open Riemann surface and $\Omega \subseteq X$ is a relatively compact domain with $\mathfrak{C}^{(k+1,\alpha)}$ boundary for some $k \in \mathbb{Z}_+$ and $0 < \alpha < 1$. For $\mu \in \mathfrak{C}^{(k,\alpha)}(\overline{\Omega},\mathbb{D})$ let J_μ denote the associated complex structure on $\overline{\Omega}$, with $J_0 = J|_{\overline{\Omega}}$. For c > 0 set

$$B_c = \{ \mu \in \mathcal{C}^{(k,\alpha)}(\overline{\Omega}) : \|\mu\|_{k,\alpha} < c \}.$$

There exists c > 0 such that for any map

$$B_c \ni \mu \mapsto \beta_{\mu} \in \Gamma^{(k,\alpha)}(\overline{\Omega}, T_{J_u}^{*(0,1)}\overline{\Omega})$$

of class \mathcal{C}^l , $l \in \{0, 1, \ldots, \infty, \omega\}$, there is a function $f \in \mathcal{C}^{l,(k+1,\alpha)}(B_c \times \overline{\Omega})$ such that for every $\mu \in B_c$ the function $f_{\mu} = f(\mu, \cdot) : \overline{\Omega} \to \mathbb{C}$ satisfies

$$\bar{\partial}_{J_{\mu}}f_{\mu}=\beta_{\mu}.$$

Proof, 1

Let $z:X \to \mathbb{C}$ be a J-holomorphic immersion. By the mapping theorem, there is c>0 and a function $h:B_c \times \overline{\Omega} \to \mathbb{C}$ such that for every $\mu \in B_c$,

$$h_{\mu} = h(\mu, \cdot) : \overline{\Omega} \to \mathbb{C}$$

is a J_{μ} -holomorphic immersion of class $\mathfrak{C}^{(k+1,\alpha)}(\overline{\Omega})$, analytic in μ , with $h_0=z$. The differentials dh_{μ} and $\overline{dh_{\mu}}=d\overline{h_{\mu}}$ span the bundles $T_{J_{\mu}}^{*(1,0)}(X)$ and $T_{J_{\nu}}^{*(0,1)}(X)$.

Proof, 1

Let $z:X \to \mathbb{C}$ be a J-holomorphic immersion. By the mapping theorem, there is c>0 and a function $h:B_c \times \overline{\Omega} \to \mathbb{C}$ such that for every $\mu \in B_c$,

$$h_{\mu} = h(\mu, \cdot) : \overline{\Omega} \to \mathbb{C}$$

is a J_{μ} -holomorphic immersion of class $\mathfrak{C}^{(k+1,\alpha)}(\overline{\Omega})$, analytic in μ , with $h_0=z$. The differentials dh_{μ} and $\overline{dh_{\mu}}=d\overline{h_{\mu}}$ span the bundles $\mathcal{T}^{*(1,0)}_{J_u}(X)$ and $\mathcal{T}^{*(0,1)}_{J_u}(X)$.

We shall express the equation $\bar{\partial}_{J_{\mu}}f_{\mu}=\beta_{\mu}$ as a nonhomogeneous Beltrami equation.

Proof, 1

Let $z:X\to \mathbb{C}$ be a J-holomorphic immersion. By the mapping theorem, there is c>0 and a function $h:B_c\times\overline{\Omega}\to\mathbb{C}$ such that for every $\mu\in B_c$,

$$h_{\mu} = h(\mu, \cdot) : \overline{\Omega} \to \mathbb{C}$$

is a J_{μ} -holomorphic immersion of class $\mathcal{C}^{(k+1,\alpha)}(\overline{\Omega})$, analytic in μ , with $h_0=z$. The differentials dh_{μ} and $\overline{dh_{\mu}}=d\overline{h_{\mu}}$ span the bundles $\mathcal{T}^{*(1,0)}_{J_{\mu}}(X)$ and $\mathcal{T}^{*(0,1)}_{J_{\mu}}(X)$.

We shall express the equation $\bar{\partial}_{J_{\mu}}f_{\mu}=\beta_{\mu}$ as a nonhomogeneous Beltrami equation.

For $\mu \in \mathcal{B}_{\mathsf{c}}$ we can uniquely express any complex 1-form β on $\overline{\Omega}$ as

$$eta = Adz + Bdar{z} = A_{\mu}dh_{\mu} + B_{\mu}d\overline{h_{\mu}}.$$

We now express A_{μ} and B_{μ} in terms of the functions A, B, μ , and

$$g_{\mu}:=(h_{\mu})_{z}\in \mathfrak{C}^{(k,\alpha)}(\overline{\Omega}),\quad g_{\mu}
eq 0.$$

We have that

$$dh_{\mu} = (h_{\mu})_{z} dz + (h_{\mu})_{\bar{z}} d\bar{z} = g_{\mu} dz + \mu g_{\mu} d\bar{z},$$

where the second identity follows from $(h_\mu)_{\bar z}=\mu(h_\mu)_z.$

We have that

$$dh_{\mu} = (h_{\mu})_{z} dz + (h_{\mu})_{\bar{z}} d\bar{z} = g_{\mu} dz + \mu g_{\mu} d\bar{z},$$

where the second identity follows from $(h_{\mu})_{\bar{z}} = \mu(h_{\mu})_{z}$. Hence

$$\begin{array}{rcl} Adz + Bd\bar{z} & = & A_{\mu}dh_{\mu} + B_{\mu}d\overline{h_{\mu}} \\ & = & A_{\mu}(g_{\mu}dz + \mu g_{\mu}d\bar{z}) + B_{\mu}(\overline{\mu g_{\mu}}dz + \overline{g_{\mu}}d\bar{z}) \\ & = & (A_{\mu}g_{\mu} + B_{\mu}\overline{\mu g_{\mu}})dz + (A_{\mu}\mu g_{\mu} + B_{\mu}\overline{g_{\mu}})d\bar{z}. \end{array}$$

We have that

$$dh_{\mu} = (h_{\mu})_{z} dz + (h_{\mu})_{\bar{z}} d\bar{z} = g_{\mu} dz + \mu g_{\mu} d\bar{z},$$

where the second identity follows from $(h_{\mu})_{\bar{z}} = \mu(h_{\mu})_z$. Hence

$$Adz + Bd\bar{z} = A_{\mu}dh_{\mu} + B_{\mu}d\overline{h_{\mu}}$$

$$= A_{\mu}(g_{\mu}dz + \mu g_{\mu}d\bar{z}) + B_{\mu}(\overline{\mu g_{\mu}}dz + \overline{g_{\mu}}d\bar{z})$$

$$= (A_{\mu}g_{\mu} + B_{\mu}\overline{\mu g_{\mu}})dz + (A_{\mu}\mu g_{\mu} + B_{\mu}\overline{g_{\mu}})d\bar{z}.$$

Equating the coefficients gives

$$A = A_{\mu}g_{\mu} + B_{\mu}\overline{\mu}g_{\mu}, \qquad B = A_{\mu}\mu g_{\mu} + B_{\mu}\overline{g_{\mu}}.$$

We have that

$$dh_{\mu} = (h_{\mu})_{z} dz + (h_{\mu})_{\bar{z}} d\bar{z} = g_{\mu} dz + \mu g_{\mu} d\bar{z},$$

where the second identity follows from $(h_{\mu})_{\bar{z}} = \mu(h_{\mu})_{z}$. Hence

$$\begin{array}{rcl} Adz + Bd\bar{z} & = & A_{\mu}dh_{\mu} + B_{\mu}d\overline{h_{\mu}} \\ & = & A_{\mu}(g_{\mu}dz + \mu g_{\mu}d\bar{z}) + B_{\mu}(\overline{\mu g_{\mu}}dz + \overline{g_{\mu}}d\bar{z}) \\ & = & (A_{\mu}g_{\mu} + B_{\mu}\overline{\mu g_{\mu}})dz + (A_{\mu}\mu g_{\mu} + B_{\mu}\overline{g_{\mu}})d\bar{z}. \end{array}$$

Equating the coefficients gives

$$A = A_{\mu}g_{\mu} + B_{\mu}\overline{\mu}g_{\mu}, \qquad B = A_{\mu}\mu g_{\mu} + B_{\mu}\overline{g_{\mu}}.$$

Solving these equations on A_{μ} and B_{μ} we obtain

$$A_{\mu} = rac{A - ar{\mu}B}{(1 - |\mu|^2)g_{\mu}}, \qquad B_{\mu} = rac{B - \mu A}{(1 - |\mu|^2)\overline{g_{\mu}}}.$$

For the 1-form $\overline{df}=f_z dz+f_{ar{z}} dar{z}=f_{h_\mu} dh_\mu+\overline{f_{ar{h_\mu}}} d\overline{h_\mu}$ we have

$$A=f_z$$
, $B=f_{\overline{z}}$, $A_\mu=f_{h_\mu}$, $B_\mu=f_{\overline{h_u}}$.

For the 1-form $df=f_zdz+f_{\bar z}d\bar z=f_{h_\mu}dh_\mu+f_{\overline{h_\mu}}d\overline{h_\mu}$ we have

$$A=f_z$$
, $B=f_{\overline{z}}$, $A_\mu=f_{h_\mu}$, $B_\mu=f_{\overline{h_\mu}}$.

Inserting these quantities in the above expression for B_{μ} shows that the nonhomogeneous Cauchy–Riemann equation

$$\bar{\partial}_{J_{\mu}}f = u_{\mu}d\overline{h_{\mu}} \iff f_{\overline{h_{\mu}}} = \frac{f_{\overline{z}} - \mu f_{z}}{(1 - |\mu|^{2})\overline{g_{\mu}}} = u_{\mu}$$

is equivalent to the nonhomogeneous Beltrami equation

$$f_{\overline{z}} - \mu f_z = (1 - |\mu|^2) \overline{g_{\mu}} \, u_{\mu}. \tag{1}$$

Note that the right hand side is of class $\mathfrak{C}^{l,(k,\alpha)}$ on $B_c \times \overline{\Omega}$.

For the 1-form $df=f_Z dz+f_{\bar{z}} d\bar{z}=f_{h_\mu} dh_\mu+f_{\overline{h_\mu}} d\overline{h_\mu}$ we have

$$A=f_z,~~B=f_{\overline{z}},~~A_\mu=f_{h_\mu},~~B_\mu=f_{\overline{h_\mu}}.$$

Inserting these quantities in the above expression for B_μ shows that the nonhomogeneous Cauchy–Riemann equation

$$ar{\partial}_{J_{\mu}}f=u_{\mu}d\overline{h_{\mu}}\iff f_{\overline{h_{\mu}}}=rac{f_{ar{z}}-\mu f_{z}}{(1-|\mu|^{2})\overline{g_{\mu}}}=u_{\mu}$$

is equivalent to the nonhomogeneous Beltrami equation

$$f_{\bar{z}} - \mu f_z = (1 - |\mu|^2) \overline{g_{\mu}} u_{\mu}.$$
 (1)

Note that the right hand side is of class $\mathcal{C}^{l,(k,\alpha)}$ on $B_c \times \overline{\Omega}$.

Let P and S be the Cauchy–Green and the Beurling operator associated to the immersion $z:X\to\mathbb{C}$.

We look for a solution of (1) in the form

$$f = f(\mu) = P(\phi)$$

with $\phi \in \overline{\mathbb{C}^{(k,\alpha)}(\overline{\Omega})}$ to be determined.

We look for a solution of (1) in the form

$$f = f(\mu) = P(\phi)$$

with $\phi \in \mathcal{C}^{(k,\alpha)}(\overline{\Omega})$ to be determined.

Inserting $f_{\bar{z}}=P(\phi)_{\bar{z}}=\phi$ and $f_z=P(\phi)_z=S(\phi)$ into (1) gives

$$f_{\overline{z}} - \mu f_z = (I - \mu S)\phi = (1 - |\mu|^2)\overline{g_{\mu}} u_{\mu}.$$

We look for a solution of (1) in the form

$$f = f(\mu) = P(\phi)$$

with $\phi \in \mathfrak{C}^{(oldsymbol{k},lpha)}(\overline{\Omega})$ to be determined.

Inserting $f_{\bar{z}}=P(\phi)_{\bar{z}}=\phi$ and $f_z=P(\phi)_z=S(\phi)$ into (1) gives

$$f_{\overline{z}} - \mu f_z = (I - \mu S)\phi = (1 - |\mu|^2)\overline{g_\mu} u_\mu.$$

For $\|\mu\|_{k,\alpha}$ small enough the operator $I-\mu S$ is invertible and we obtain

$$\phi = \phi_{\mu} = (I - \mu S)^{-1} \left((1 - |\mu|^2) \overline{g_{\mu}} \, u_{\mu}
ight).$$

We look for a solution of (1) in the form

$$f = f(\mu) = P(\phi)$$

with $\phi \in \overline{\mathbb{C}^{(k,\alpha)}(\overline{\Omega})}$ to be determined.

Inserting $f_{\bar{z}}=P(\phi)_{\bar{z}}=\phi$ and $f_z=P(\phi)_z=S(\phi)$ into (1) gives

$$f_{\bar{z}} - \mu f_z = (I - \mu S)\phi = (1 - |\mu|^2)\overline{g_{\mu}} u_{\mu}.$$

For $\|\mu\|_{k,\alpha}$ small enough the operator $I - \mu S$ is invertible and we obtain

$$\phi = \phi_{\mu} = (I - \mu S)^{-1} \left((1 - |\mu|^2) \overline{g_{\mu}} u_{\mu} \right).$$

Since $(I-\mu S)^{-1}\in \operatorname{Lin}(\mathfrak{C}^{k,\alpha}(\overline{\Omega}))$ is analytic in μ and $(1-|\mu|^2)\overline{g_{\mu}}\,u_{\mu}\in \mathfrak{C}^{l,(k,\alpha)}(B_c\times\overline{\Omega})$, the map $(\mu,x)\mapsto \phi_{\mu}(x)$ belongs to $\mathfrak{C}^{l,(k,\alpha)}(B_c\times\overline{\Omega})$. Finally, the solution of (1) is

$$f_{\mu} = P(\phi_{\mu}),$$

and the map $(\mu, x) \to f_{\mu}(x)$ belongs to $\mathfrak{C}^{l,(k+1,\alpha)}(B_c \times \overline{\Omega})$.

Solution of the global $\bar{\partial}$ -equation in families

Corollary

Assume that

- B is a paracompact Hausdorff space if l = 0 and a \mathcal{C}^l manifold if $l \in \mathbb{N}$,
- X is a smooth open orientable surface, and
- $\{J_b\}_{b\in B}$ is a family of complex structures of class $\mathcal{C}^{l,(k,\alpha)}$ on a smooth open orientable surface X, where $l,k\in \mathbb{Z}_+$, $l\leq k+1$, $0<\alpha<1$.

Solution of the global $\bar{\partial}$ -equation in families

Corollary

Assume that

- B is a paracompact Hausdorff space if l = 0 and a \mathcal{C}^l manifold if $l \in \mathbb{N}$,
- X is a smooth open orientable surface, and
- $\{J_b\}_{b\in B}$ is a family of complex structures of class $\mathfrak{C}^{l,(k,\alpha)}$ on a smooth open orientable surface X, where $l,k\in \mathbb{Z}_+$, $l\leq k+1$, $0<\alpha<1$.

Given a family $\{\beta_b\}_{b\in B}$ of (0,1)-forms $\beta_b\in\Gamma(X,T_{J_b}^{*(0,1)}X)$ of class $\mathfrak{C}^{I,(k,\alpha)}$, there is a function $f:B\times X\to\mathbb{C}$ of class $\mathfrak{C}^{I,(k+1,\alpha)}$ satisfying

$$\bar{\partial}_{J_b}f(b,\cdot)=eta_b$$
 on X for every $b\in B$.

Solution of the global $\bar{\partial}$ -equation in families

Corollary

Assume that

- B is a paracompact Hausdorff space if l=0 and a \mathfrak{C}^l manifold if $l\in\mathbb{N}$,
- X is a smooth open orientable surface, and
- $\{J_b\}_{b\in B}$ is a family of complex structures of class $\mathfrak{C}^{l,(k,\alpha)}$ on a smooth open orientable surface X, where $l,k\in \mathbb{Z}_+$, $l\leq k+1$, $0<\alpha<1$.

Given a family $\{\beta_b\}_{b\in B}$ of (0,1)-forms $\beta_b\in \Gamma(X,T_{J_b}^{*(0,1)}X)$ of class $\mathfrak{C}^{l,(k,\alpha)}$, there is a function $f:B\times X\to \mathbb{C}$ of class $\mathfrak{C}^{l,(k+1,\alpha)}$ satisfying

$$ar{\partial}_{J_b} f(b,\cdot\,) = eta_b \;\; ext{on X for every } b \in B.$$

The condition $l \leq k+1$ in the corollary is due to the use of the Runge approximation theorem for fibrewise holomorphic functions on families of open Riemann surfaces, which was proved in my paper Runge and Mergelyan theorems on families of open Riemann surfaces (2024).

Vanishing of Dolbeault cohomology

Assume that B, X, and $\mathcal{J} = \{J_b\}_{b \in B}$ are as above, where \mathcal{J} is of class $\mathcal{C}^{l,(k,\alpha)}$ for some $0 \le l \le k+1$ and $0 < \alpha < 1$. Denote by \mathcal{O} the sheaf of germs of \mathcal{J} -holomorphic functions f of class \mathcal{C}^l on $Z = B \times X$.

Vanishing of Dolbeault cohomology

Assume that B, X, and $\mathcal{J}=\{J_b\}_{b\in B}$ are as above, where \mathcal{J} is of class $\mathcal{C}^{l,(k,\alpha)}$ for some $0\leq l\leq k+1$ and $0<\alpha<1$. Denote by \mathcal{O} the sheaf of germs of \mathcal{J} -holomorphic functions f of class \mathcal{C}^l on $Z=B\times X$.

Theorem

 $H^{q}(Z, 0) = 0$ for all q = 1, 2, ...

Vanishing of Dolbeault cohomology

Assume that B, X, and $\overline{J}=\{J_b\}_{b\in B}$ are as above, where \overline{J} is of class $\mathbb{C}^{l,(k,\alpha)}$ for some $0\leq l\leq k+1$ and $0<\alpha<1$. Denote by $\mathbb O$ the sheaf of germs of \overline{J} -holomorphic functions f of class $\mathbb C^l$ on $Z=B\times X$.

Theorem

$$H^{q}(Z, 0) = 0$$
 for all $q = 1, 2, ...$

Proof. Consider the sequence of homomorphisms of sheaves of abelian groups

$$0\longrightarrow \mathfrak{O} \longrightarrow \mathfrak{C}^{I,(k+1,lpha)} \stackrel{ar{\delta}}{\longrightarrow} \mathfrak{C}^{I,(k,lpha)}_{(0,1)} \longrightarrow 0$$

where $\bar{\partial}$ equals $\bar{\partial}_{J_b}$ on $Z_b=(X,J_b)$ for every $b\in B$. By the main theorem, the sequence is exact. The second and the third sheaf are fine sheaves, so their cohomology groups of order ≥ 1 vanish. It follows that

$$H^{1}(Z, \mathcal{O}) = \Gamma(Z, \mathcal{C}_{(0,1)}^{I,(k,\alpha)}) / \bar{\partial} \Gamma(Z, \mathcal{C}^{I,(k+1,\alpha)}) = 0$$

by the Corollary, and $H^q(Z, 0) = 0$ for $q \ge 2$.

The Oka principle for line bundles on families

Let B, X and $\mathcal{J} = \{J_b\}_{b \in B}$ be as above. Denote by

$$Pic(Z) \cong H^1(Z, \mathbb{O}^*)$$

the set of isomorphism classes of fibrewise holomorphic line bundles on $Z = B \times X$. We have the following Oka principle.

The Oka principle for line bundles on families

Let B, X and $\mathcal{J} = \{J_b\}_{b \in B}$ be as above. Denote by

$$Pic(Z) \cong H^1(Z, \mathbb{O}^*)$$

the set of isomorphism classes of fibrewise holomorphic line bundles on $Z = B \times X$. We have the following Oka principle.

Theorem

Every topological complex line bundle on $Z = B \times X$ is isomorphic to a fibrewise holomorphic line bundle, and any two fibrewise holomorphic line bundles on Z which are topologically isomorphic are also isomorphic as fibrewise holomorphic line bundles. Furthermore,

$$Pic(Z) \cong H^2(Z, \mathbb{Z}).$$

Let $\sigma(f) = e^{2\pi i f}$. Consider the following commutative diagram:

Let $\sigma(f)=e^{2\pi\imath f}$. Consider the following commutative diagram:

Since $\mathbb C$ is a fine sheaf, we have $H^q(Z,\mathbb C)=0$ for all $q\in\mathbb N$. We proved that $H^q(Z,\mathbb C)=0$ for all $q\in\mathbb N$. Hence, the relevant part of the associated long exact sequence of cohomology groups gives

Thus, all arrows in the central square are isomorphisms. Since $Pic(Z) \cong H^1(Z, \mathbb{O}^*)$ and $H^1(Z, \mathbb{C}^*)$ is the set of isomorphisms classes of topological line bundles on Z, the theorem follows.

