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Abstract

We show that on any smoothly bounded relatively compact domain Q) in a
smooth open surface X, the nonhomogeneous Cauchy—Riemann equation (the
d-equation) can be solved for very general families of complex structures
{Jp}bes on Q) of some Holder class, with a gain of one derivative in the space
variable and without any loss of regularity in the parameter b € B.
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Abstract

We show that on any smoothly bounded relatively compact domain Q) in a
smooth open surface X, the nonhomogeneous Cauchy—Riemann equation (the
d-equation) can be solved for very general families of complex structures
{Jp}bes on Q of some Holder class, with a gain of one derivative in the space
variable and without any loss of regularity in the parameter b € B.

An application is the Oka principle for complex line bundles on families of open
Riemann surfaces.
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Almost complex structures

An almost complex structure on a smooth orientable manifold X is an endomorphism
J of the tangent bundle TX satisfying J2 = —Id.
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An almost complex structure on a smooth orientable manifold X is an endomorphism
J of the tangent bundle TX satisfying J2 = —/d.

A differentiable function f : X — C is said to be J-holomorphic if the
Cauchy-Riemann equation dfi o J, = +/—1 df; holds for every x € X.

Assuming that X is a surface and J is of local Holder class e(ka)
(k€ Zy, 0<a<1), thereis an atlas {(U;, ¢;)} of open sets U; C X with
U; U; = X and J-holomorphic charts ¢; : U; — ¢;(U;) C C of class elktla) ().

Hence, J determines on X the structure of a Riemann surface, denoted (X, J), whose

underlying smooth structure is E(k+1.a) compatible with the given smooth structure
on X.




Almost complex structures

An almost complex structure on a smooth orientable manifold X is an endomorphism
J of the tangent bundle TX satisfying J2 = —/d.

A differentiable function f : X — C is said to be J-holomorphic if the
Cauchy-Riemann equation dfi o J, = +/—1 df; holds for every x € X.

Assuming that X is a surface and J is of local Holder class e(ka)
(k€Z4+, 0 <wa<1),thereis an atlas {(U;, ¢;)} of open sets U; C X with
U; U; = X and J-holomorphic charts ¢; : U; — ¢;(U;) C C of class elktla) ().

Hence, J determines on X the structure of a Riemann surface, denoted (X, J), whose

underlying smooth structure is E(k+1.a) compatible with the given smooth structure
on X.

On a smooth manifold X of dimension 2n > 4, the same is true if J is formally
integrable and of Holder class e(k®) for some k = 1,2,...and 0<a <1
(Newlander and Nirenberg 1957, Nijenhuis and Woolf 1963, Kohn 1963, Malgrange
1969, Webster 1989, Hormander 1990...).




Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal
structure, and hence a complex structure J = J; if X is oriented. Conversely, every
complex structure J arises in this way. Metrics g, g’ determine the same conformal
structure iff g/ = Ag for a positive function A : X — (0, c0).
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complex structure J arises in this way. Metrics g, g’ determine the same conformal
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In a smooth local coordinate z = x +1y (1 = +/—1) on U C X we have
g = Edx? + 2Fdxdy + Gdy? = A|dz + udz|?

where A > 0 and p: U — D = {|| < 1} is the Beltrami coefficient.




Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal
structure, and hence a complex structure J = J; if X is oriented. Conversely, every
complex structure J arises in this way. Metrics g, g’ determine the same conformal
structure iff g/ = Ag for a positive function A : X — (0, c0).

In a smooth local coordinate z = x +1y (1 = +/—1) on U C X we have
g = Edx? + 2Fdxdy + Gdy? = A|dz + udz|?

where A > 0 and y: U — D = {|| < 1} is the Beltrami coefficient. Then,
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Isothermal coordinates

Let U C X be an open set. A local diffeomorphism f : U — C is conformal
from the g-structure on X to the standard conformal structure on C iff

g = h|df|? holds for a positive function h > 0.
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Isothermal coordinates

Let U C X be an open set. A local diffeomorphism f : U — C is conformal
from the g-structure on X to the standard conformal structure on C iff

g = h|df|? holds for a positive function h > 0.

A chart f with this property is said to be isothermal for g. Such f is
J-holomorphic or J-antiholomorphic. Assume that f is in the same orientation
class as z : U — C, which amounts to |f;| > |fz|. Note that

fz |2
|df[2 = |fdz + frd2|? = |£, 2 |dz + Zd2]
A comparison with
g = Aldz + udz|?

shows that f is isothermal iff it satisfies the Beltrami equation

fz = pfz.




In a reference complex structure

The situation is especially simple if we fix a reference complex structure Jy on X, so
(X, Jo) is an open Riemann surface.
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By Gunning and Narasimhan 1967, X admits a Jp-holomorphic immersion
z=u-+1v:X = C. Its differential dz = du + 1dv is a nowhere vanishing
holomorphic 1-form on X trivialising the canonical bundle T*X = Ky,

|dz|? = du? + dv? is a Riemannian metric on X determining Jo, 5dz A dz = du A dv
is the associated area form, and do = du dv is the surface measure on X.




In a reference complex structure

The situation is especially simple if we fix a reference complex structure Jy on X, so
(X, Jo) is an open Riemann surface.

By Gunning and Narasimhan 1967, X admits a Jp-holomorphic immersion
z=u-+1v:X = C. Its differential dz = du + 1dv is a nowhere vanishing
holomorphic 1-form on X trivialising the canonical bundle T*X = Ky,

|dz|? = du? + dv? is a Riemannian metric on X determining Jo, 5dz A dz = du A dv
is the associated area form, and do = du dv is the surface measure on X.

The function z provides a local holomorphic coordinate on X at every point. Any
Riemannian metric g on X is globally of the form

g = A|dz + pudz|?

for some functions A : X — (0,00) and p : X — D. Conversely, any function
pt : X — D determines a Riemannian metric g, = |dz + jdz|?, and hence a complex
structure Jy on X, with Jy the given reference structure.




A version of Ahlfors—Bers—Hamilton theorem

Assume that (X, Jp) is an open Riemann surface and z: X — C is a holomorphic
immersion. Given a domain () € X and a function u € gl (Q, D), we denote by J,
the associated complex structure on Q), with Jy the initial structure.




A version of Ahlfors—Bers—Hamilton theorem

Assume that (X, Jp) is an open Riemann surface and z: X — C is a holomorphic
immersion. Given a domain Q) € X and a function y € €K% (), D), we denote by Jy
the associated complex structure on (), with Jy the initial structure.

Theorem (the mapping theorem)

Let Q) be a relatively compact domain in X with elk+1a) boundary

(k€ Zy, 0<a<1). There exists ¢ = c(k, ) > 0 such that for every

p € €k (0, D) with |||k < c there is function f = f(u) € Ck+12)(Q) solving
the Beltrami equation f; = uf,, depending analytically on u, with f(0) = z|q.

Note that f(u) : QO — C is Jy-holomorphic, and an immersion if y is small enough.




A version of Ahlfors—Bers—Hamilton theorem

Assume that (X, Jp) is an open Riemann surface and z: X — C is a holomorphic
immersion. Given a domain Q) € X and a function y € €K% (), D), we denote by Jy
the associated complex structure on (), with Jy the initial structure.

Theorem (the mapping theorem)

Let Q) be a relatively compact domain in X with elk+1a) boundary
(k€eZ4, 0 <wa<1). There exists c = c(k,a) > 0 such that for every
p € €k (0, D) with |||k < c there is function f = f(u) € Ck+12)(Q) solving

the Beltrami equation f; = uf,, depending analytically on u, with f(0) = z|q.

Note that f(u) : QO — C is Jy-holomorphic, and an immersion if y is small enough.

Corollary

For every complex structure J of class k) on O which is sufficiently close to Jy
there is a (J, Jp)-biholomorphic map @ : Q — ®;(Q) C X of class CkT12) ()
depending analytically on J, with ® = Idg.




The tools: Cauchy kernel and Cauchy—Green formula

Let X be an open Riemann surface and z = u+1v : X — C a holomorphic
immersion. Set Dx = {(x,x) : x € X} C X x X.

Scheinberg 1978 There is a meromorphic 1-form on X x X of the form
w(q,x) = ¢&(q,x)dz(x) for g, x € X

which is holomorphic on X x X \ Dx and for each g € X, w(q, - ) has a simple pole
at g with residue 1.
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The tools: Cauchy kernel and Cauchy—Green formula

Let X be an open Riemann surface and z = u+1v : X — C a holomorphic
immersion. Set Dx = {(x,x) : x € X} C X x X.

Scheinberg 1978 There is a meromorphic 1-form on X x X of the form

w(qg,x) = &(q,x)dz(x) forgq,x € X
which is holomorphic on X x X \ Dx and for each g € X, w(q, - ) has a simple pole
at g with residue 1. In a neighbourhood U C X x X of Dx we have

1

&(g,x) = =209 + h(g,x), h holomorphic on U.

Given a relatively compact smoothly bounded domain Q € X, f € 61(5) and g € Q),
we have the Cauchy—Green formula

f@) = 5o [ fedw@x) -5 [ 50 Awla.x)
_ ﬁ/x'em Aol e s aEle) = %/XGQ () (. x)do(x).




The Cauchy—Green and the Beurling operator

We have the Cauchy—Green operator

solving the d-equation
0zP(¢) = ¢

and the Beurling operator (a Calderé6n—-Zygmund type singular integral operator)

S(9)(@) = 2:P(9)(a) = = P.V. [ ()0s(q)6(a.x)d0(x).




The Cauchy—Green and the Beurling operator

We have the Cauchy—Green operator

solving the d-equation
0zP(¢) = ¢
and the Beurling operator (a Calderén—Zygmund type singular integral operator)
S(9)(@) = 2:P(9)(a) = = P.V. [ ()0s(q)6(a.x)d0(x).
Forevery k€ Zy and 0 <a < 1,
P: ek () —» cktla) () and S: ek () - eka)(Q)

are bounded linear operators. (In S, we use a bounded linear extension operator

etka) () — G((Jk'“)(()') with Q @ ) € X.) In any local holomorphic coordinate,
they differ from the standard operators on C by a smoothing operator.




Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation f; = uf, on () in the form

f=f(u)=2zla+P(). ¢eehQ).

Thus, ¢ = 0 corresponds to (0) = z|q.
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Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation f; = uf, on () in the form
f=f(u)=zla+Pg), ¢eckd(Q).
Thus, ¢ = 0 corresponds to f(0) = z|n. We have
fz=0:P(¢) =¢, f=1+0P(¢)=1+5(¢).
Inserting in the Beltrami equation f; = uf, gives

P=u(S(p)+1)=uSP)+pu <= (I —uS)p=nmn




Proof of the mapping theorem, 2

Assuming that |[uS|| < ||l k) lIS]| < 1, the operator / — uS is invertible on
ek®)(Q)), with the bounded inverse

O(u) = (I —uS)~ i
j=0




Proof of the mapping theorem, 2

Assuming that |[uS|| < ||l k) lIS]| < 1, the operator / — uS is invertible on
ek®)(Q)), with the bounded inverse

010 = (1~ p5)™ = L, (15

For such 1, the equation (/ — 1S)¢ = p has the unique solution ¢ = O (u)u,
and hence the Beltrami equation fz = yuf, has the solution

f(1) = zlo + P@(u)p) € 19 ().

It follows that f () is analytic in .




Proof of the mapping theorem, 2

Assuming that |[uS|| < ||l k) lIS]| < 1, the operator / — uS is invertible on
ek®)(Q)), with the bounded inverse

O(u) = (I —uS)~ i

For such 1, the equation (/ — 1S)¢ = p has the unique solution ¢ = O (u)u,
and hence the Beltrami equation fz = yuf, has the solution

f(1) = zla + P(©(u)p) € eXF19(Q).
It follows that f () is analytic in .

If y¢ is close to O then f(y) : O — C is a J,-holomorphic immersion. Lifting
f(p) with respect to the immersion z : X — C gives (Jy, Jo)-biholomorphisms
Dy : Q= D, (Q) with zo Py = £, and Pg the identity map on Q.




The 0-equation for a family of complex structures

Theorem (main)

Assume that (X, J) is an open Riemann surface and Q) € X is a relatively
compact domain with C(k+1.4) boundary for some k € Z and 0 < a < 1.
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Assume that (X, J) is an open Riemann surface and Q) € X is a relatively
compact domain with C(k+1.4) boundary for some k € Z and 0 < a < 1.

For u € e(ka) (Q, D) let Jy denote the associated complex structure on Q,
with Jo = J|g. For ¢ > 0 set

Be = {p € ™ V(@) : [|ullka < c}-




The 0-equation for a family of complex structures

Theorem (main)

Assume that (X, J) is an open Riemann surface and Q) € X is a relatively

compact domain with C(k+1.4) boundary for some k € Z and 0 < a < 1.
For u € e(ka) (Q, D) let Jy denote the associated complex structure on Q,
with Jo = J|g. For ¢ > 0 set

Be = {p € ™ V(@) : [|ullka < c}-

There exists ¢ > 0 such that for any map
Be > s B € TR (@, T,V

of class €/, 1 € {0,1,...,00,w}, there is a function f € Ch(kT18) (B x ()
such that for every y € B the function f, = f(p,-) : Q) — C satisfies

aJ/u f.u = ﬁy'




Proof, 1

Let z: X — C be a J-holomorphic immersion. By the mapping theorem, there is
¢ > 0 and a function h: Bc x Q) — C such that for every u € B,

hy=h(u,-):Q—C

is a J,-holomorphic immersion of class e(k+1.a) (Q), analytic in p, with hg = z. The
differentials dh, and dhy, = dh, span the bundles TJ*V“'O) (X) and T};(O'I) (X).
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Proof, 1

Let z: X — C be a J-holomorphic immersion. By the mapping theorem, there is
¢ > 0 and a function h: Bc x Q) — C such that for every u € B,

hy=h(u,-):Q—C

is a J,-holomorphic immersion of class e(k+1a) (Q), analytic in p, with hg = z. The
differentials dh, and dhy, = dh, span the bundles TJ*V“'O) (X) and ij"'l) (X).

We shall express the equation 3_,}1 fu = By as a nonhomogeneous Beltrami equation.

For u € B we can uniquely express any complex 1-form 8 on Q as
B = Adz + Bdz = A,dhy + Byth,.

We now express Ay, and B, in terms of the functions A, B, y, and

8u = (hy)z e etk (ﬁ) gu # 0.




Proof, 2

We have that
dh, = (hy)z dz + (hy)z dz =g, dz + g, dz,

where the second identity follows from (hy)z = p(hy)z.




Proof, 2

We have that
dhy, = (hy)z dz + (hy)z dz = gy dz + gy dz,

where the second identity follows from (hy)z = p(hy,)z. Hence
Adz+ Bdz = Audh, + Budhy,
= Au(gudz+ pug,dz) + B, (figy dz + g, dz)
= (Augu + Bupigy)dz + (Aupigy + Bugy)dz.




Proof, 2

We have that
dhy, = (hy)z dz + (hy)z dz = gy dz + g, dz,

where the second identity follows from (hy)z = p(hy,)z. Hence
Adz+ Bdz = Audh, + Budhy,
= Au(gudz+ pug,dz) + B, (figy dz + g, dz)
= (Augu + Bupigy)dz + (Aupigy + Bugy)dz.

Equating the coefficients gives

A= Augu+ Buigy, B =Auugu+ Bugy.




Proof, 2

We have that
dhy = (hy)z dz + (hy)z dz = g, dz + pgy dz,
where the second identity follows from (hy)z = p(hy,)z. Hence
Adz+ Bdz = Audh, + Budhy,
= Au(gudz+ pug,dz) + B, (figy dz + g, dz)
= (Augu + Bupigy)dz + (Aupigy + Bugy)dz.

Equating the coefficients gives
A= Augu+ Buigy, B =Auugu+ Bugy.
Solving these equations on A, and B, we obtain

A _ A—QB 5 _ _B-uA
@ -1uP)e’ T A-pPe




Proof, 3

For the 1-form df = f,dz + fzdz = fhy dhy, + th,dE we have

A=f, B=f; Ay=fy, Bu=fr




Proof, 3

For the 1-form df = f,dz + fzdz = fhy dhy + fhjda we have
A=f, B=f A= fh,,v By = fh7

Inserting these quantities in the above expression for By, shows that the
nonhomogeneous Cauchy—Riemann equation

= . — e fz—]lfz .
dy,f = uudhy — fhu = O-PE WPE Uy

is equivalent to the nonhomogeneous Beltrami equation
AE—
fr —ufe = (1— |u|")8u uy. (1)

Note that the right hand side is of class el(ka) on B. x Q.




Proof, 3

For the 1-form df = f,dz + fzdz = fhy dhy + thdE we have
A=f, B=f A= fh,,v By = th

Inserting these quantities in the above expression for By, shows that the
nonhomogeneous Cauchy—Riemann equation

I , _  f—pf
f = wdhy = = T g~

is equivalent to the nonhomogeneous Beltrami equation
fr = nfy = (1= u|*)gu up- (1)
Note that the right hand side is of class el(ka) on B. x Q.

Let P and S be the Cauchy—Green and the Beurling operator associated to the
immersion z : X — C.




Proof, 4

We look for a solution of (1) in the form

with ¢ € (k%) (Q) to be determined.




Proof, 4

We look for a solution of (1) in the form

with ¢ € Ck®)(Q) to be determined.
Inserting fz = P(¢)z = ¢ and f, = P(¢), = S(¢) into (1) gives

fo—pufy = (1 —pS)p = (1— |u|*)gn uy.




Proof, 4

We look for a solution of (1) in the form

with ¢ € Ck®)(Q) to be determined.
Inserting fz = P(¢)z = ¢ and f, = P(¢), = S(¢) into (1) gives
fo—pfz = (1= pS)¢p = (1 — |u*)g uy.

For |||k, small enough the operator / — uS is invertible and we obtain

p=u=0-uS) (= IrP)gruy) .




Proof, 4

We look for a solution of (1) in the form

with ¢ € Ck®)(Q) to be determined.

Inserting fz = P(¢)z = ¢ and f, = P(¢), = S(¢) into (1) gives
fr—pufz = (I = pS)gp = (1~ |u|*) g uy.

For |||k, small enough the operator / — uS is invertible and we obtain
o =u=0—puS) (1= IuP)ga o).

Since (I — uS)~! € Lin(€%%(Q)) is analytic in u and
(1= |u?)gnuy € ek (B, x Q), the map (i, x) ¢u(x) belongs to
el (k) (B, x Q). Finally, the solution of (1) is

fy = P(Q”#)-

and the map (1, x) — f,(x) belongs to €/ (k+1.4) (B, x Q).




Solution of the global d-equation in families

Corollary

Assume that
® B is a paracompact Hausdorff space if | = 0 and a €' manifold if | € N,
® X is a smooth open orientable surface, and

o {Jp}pep is a family of complex structures of class el (k%) on a smooth open
orientable surface X, where l,k € Z4, | < k+1,0<a < 1.




Solution of the global d-equation in families

Corollary

Assume that
® B is a paracompact Hausdorff space if | = 0 and a €' manifold if | € N,
® X is a smooth open orientable surface, and

o {Jp}pep is a family of complex structures of class el (k%) on a smooth open
orientable surface X, where l,k € Z4, | < k+1,0<a < 1.

Given a family {Bp}pep of (0,1)-forms B, € T(X, ij(o’l)X) of class C'(K&) there is
a function f : B x X — C of class C/(kT1.0) satisfying

9

b

f(b,-) = pBp on X forevery b € B.




Solution of the global d-equation in families

Corollary

Assume that
® B is a paracompact Hausdorff space if | = 0 and a €' manifold if | € N,
® X is a smooth open orientable surface, and

o {Jp}pep is a family of complex structures of class el (k®) on a2 smooth open
orientable surface X, where |, k € Z1, | < k+1,0<a <1.

Given a family {Bp}pep of (0,1)-forms B, € T(X, ij(o’l)X) of class C'(K&) there is
a function f : B x X — C of class C/(kT1.0) satisfying

d,,f(b,-) =Py on X forevery b € B.

b

The condition / < k+ 1 in the corollary is due to the use of the Runge approximation
theorem for fibrewise holomorphic functions on families of open Riemann surfaces,
which was proved in my paper Runge and Mergelyan theorems on families of open
Riemann surfaces (2024).




Vanishing of Dolbeault cohomology

Assume that B, X, and J = {Jp}pcp are as above, where J is of class €/(K4) for

some 0 < /< k+1and 0 < a < 1. Denote by O the sheaf of germs of J-holomorphic
functions f of class € on Z = B x X.
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Theorem
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Vanishing of Dolbeault cohomology

Assume that B, X, and § = {Jp}pep are as above, where J is of class /(%) for
some 0 < /< k+1and 0 < a < 1. Denote by O the sheaf of germs of J-holomorphic
functions f of class @' on Z = B x X.

Theorem
HI(Z,0) =0 forallqg=1,2,....

Proof. Consider the sequence of homomorphisms of sheaves of abelian groups

0— 0 — ehlktle) 2, Géé Q—

where 9 equals d, on Z, = (X, Jp) for every b € B. By the main theorem, the
sequence is exact. The second and the third sheaf are fine sheaves, so their
cohomology groups of order > 1 vanish. It follows that

HY(Z,0) =T(z, eééﬁ’;‘))/ér(z, el (k1) — g

by the Corollary, and H9(Z,0) =0 for g > 2.




The Oka principle for line bundles on families

Let B, X and J = {Jp} e be as above. Denote by
Pic(Z) = HY(Z,0%)

the set of isomorphism classes of fibrewise holomorphic line bundles on
Z = B x X. We have the following Oka principle.




The Oka principle for line bundles on families

Let B, X and J = {Jp} e be as above. Denote by
Pic(Z) = HY(Z,0%)

the set of isomorphism classes of fibrewise holomorphic line bundles on
Z = B x X. We have the following Oka principle.

Theorem

Every topological complex line bundle on Z = B x X is isomorphic to a
fibrewise holomorphic line bundle, and any two fibrewise holomorphic line
bundles on Z which are topologically isomorphic are also isomorphic as
fibrewise holomorphic line bundles. Furthermore,

Pic(Z) = H?>(Z,Z).




Proof

Let o(f) = e2™ . Consider the following commutative diagram:

0 — Z — 0 %L or — 1

l l l

0 — Z — €6 L e — 1




Proof

Let o(f) = e2™ . Consider the following commutative diagram:

0 — Z — 0 L of — 1

l l l

0 — Z — €6 L e — 1

Since € is a fine sheaf, we have H9(Z, €) = 0 for all g € IN. We proved that
H9(Z,0) =0 for all g € IN. Hence, the relevant part of the associated long exact
sequence of cohomology groups gives

0 — HY(z,0°) — H*(Z;,Z) — O

I

0 — HYZz,e") — H(z;Z) — O

Thus, all arrows in the central square are isomorphisms. Since Pic(Z) = H'(Z, 0*)
and Hl(Z, C*) is the set of isomorphisms classes of topological line bundles on Z, the
theorem follows.
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