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Abstract

We show that on any smoothly bounded relatively compact domain Ω in a
smooth open surface X , the nonhomogeneous Cauchy–Riemann equation (the
∂̄-equation) can be solved for very general families of complex structures
{Jb}b∈B on Ω of some Hölder class, with a gain of one derivative in the space
variable and without any loss of regularity in the parameter b ∈ B.

An application is the Oka principle for complex line bundles on families of open
Riemann surfaces.
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Almost complex structures

An almost complex structure on a smooth orientable manifold X is an endomorphism
J of the tangent bundle TX satisfying J2 = −Id .

A differentiable function f : X → C is said to be J-holomorphic if the
Cauchy–Riemann equation dfx ◦ Jx =

√
−1 dfx holds for every x ∈ X .

Assuming that X is a surface and J is of local Hölder class C(k,α)

(k ∈ Z+, 0 < α < 1), there is an atlas {(Ui , ϕi )} of open sets Ui ⊂ X with⋃
i Ui = X and J-holomorphic charts ϕi : Ui → ϕi (Ui ) ⊂ C of class C(k+1,α)(Ui ).

Hence, J determines on X the structure of a Riemann surface, denoted (X , J), whose

underlying smooth structure is C(k+1,α) compatible with the given smooth structure
on X .

On a smooth manifold X of dimension 2n ≥ 4, the same is true if J is formally
integrable and of Hölder class C(k,α) for some k = 1, 2, . . . and 0 < α < 1
(Newlander and Nirenberg 1957, Nijenhuis and Woolf 1963, Kohn 1963, Malgrange
1969, Webster 1989, Hörmander 1990...).
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Complex structures and the Beltrami equation

A smooth Riemannian metric g on a surface X determines a unique conformal
structure, and hence a complex structure J = Jg if X is oriented. Conversely, every
complex structure J arises in this way. Metrics g , g ′ determine the same conformal
structure iff g ′ = λg for a positive function λ : X → (0,∞).

In a smooth local coordinate z = x + ıy (ı =
√
−1) on U ⊂ X we have

g = Edx2 + 2Fdxdy + Gdy2 = λ|dz + µdz̄ |2

where λ > 0 and µ : U → D = {|ζ| < 1} is the Beltrami coefficient. Then,

[J ] =
1√

EG − F 2

(
−F −G
E F

)
=

(
−b −c

(b2 + 1)/c b

)
where

δ = EG − F 2 > 0, b = F/
√

δ, c = G/
√

δ > 0,

µ =
1− c + ıb
1+ c + ıb

.
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Isothermal coordinates

Let U ⊂ X be an open set. A local diffeomorphism f : U → C is conformal
from the g -structure on X to the standard conformal structure on C iff

g = h|df |2 holds for a positive function h > 0.

A chart f with this property is said to be isothermal for g . Such f is
J-holomorphic or J-antiholomorphic. Assume that f is in the same orientation
class as z : U → C, which amounts to |fz | > |fz̄ |. Note that

|df |2 = |fzdz + fz̄dz̄ |2 = |fz |2 ·
∣∣∣dz + fz̄

fz
dz̄

∣∣∣2.
A comparison with

g = λ|dz + µdz̄ |2

shows that f is isothermal iff it satisfies the Beltrami equation

fz̄ = µfz .
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In a reference complex structure

The situation is especially simple if we fix a reference complex structure J0 on X , so
(X , J0) is an open Riemann surface.

By Gunning and Narasimhan 1967, X admits a J0-holomorphic immersion
z = u + ıv : X → C. Its differential dz = du + ıdv is a nowhere vanishing
holomorphic 1-form on X trivialising the canonical bundle T ∗X = KX ,
|dz |2 = du2 + dv2 is a Riemannian metric on X determining J0,

ı
2dz ∧ dz̄ = du ∧ dv

is the associated area form, and dσ = du dv is the surface measure on X .

The function z provides a local holomorphic coordinate on X at every point. Any
Riemannian metric g on X is globally of the form

g = λ|dz + µdz̄ |2

for some functions λ : X → (0,∞) and µ : X → D. Conversely, any function
µ : X → D determines a Riemannian metric gµ = |dz + µdz̄ |2, and hence a complex
structure Jµ on X , with J0 the given reference structure.
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A version of Ahlfors–Bers–Hamilton theorem

Assume that (X , J0) is an open Riemann surface and z : X → C is a holomorphic

immersion. Given a domain Ω ⋐ X and a function µ ∈ C(k,α)(Ω,D), we denote by Jµ

the associated complex structure on Ω, with J0 the initial structure.

Theorem (the mapping theorem)

Let Ω be a relatively compact domain in X with C(k+1,α) boundary
(k ∈ Z+, 0 < α < 1). There exists c = c(k, α) > 0 such that for every

µ ∈ C(k,α)(Ω,D) with ∥µ∥k,α < c there is function f = f (µ) ∈ C(k+1,α)(Ω) solving
the Beltrami equation fz̄ = µfz , depending analytically on µ, with f (0) = z |Ω.

Note that f (µ) : Ω → C is Jµ-holomorphic, and an immersion if µ is small enough.

Corollary

For every complex structure J of class C(k,α) on Ω which is sufficiently close to J0
there is a (J, J0)-biholomorphic map ΦJ : Ω → ΦJ (Ω) ⊂ X of class C(k+1,α)(Ω)
depending analytically on J, with ΦJ0 = IdΩ.
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The tools: Cauchy kernel and Cauchy–Green formula

Let X be an open Riemann surface and z = u + ıv : X → C a holomorphic
immersion. Set DX = {(x , x) : x ∈ X} ⊂ X × X .

Scheinberg 1978 There is a meromorphic 1-form on X × X of the form

ω(q, x) = ξ(q, x)dz(x) for q, x ∈ X

which is holomorphic on X ×X \DX and for each q ∈ X , ω(q, · ) has a simple pole
at q with residue 1.

In a neighbourhood U ⊂ X × X of DX we have

ξ(q, x) =
1

z(x)− z(q)
+ h(q, x), h holomorphic on U.

Given a relatively compact smoothly bounded domain Ω ⋐ X , f ∈ C1(Ω) and q ∈ Ω,
we have the Cauchy–Green formula

f (q) =
1

2πı

∫
x∈bΩ

f (x)ω(q, x)− 1

2πı

∫
x∈Ω

∂f (x) ∧ ω(q, x)

=
1

2πı

∫
x∈bΩ

f (x) ξ(q, x)dz(x)− 1

π

∫
x∈Ω

fz̄ (x)ξ(q, x)dσ(x).
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The Cauchy–Green and the Beurling operator

We have the Cauchy–Green operator

P(ϕ)(q) = − 1

π

∫
x∈Ω

ϕ(x)ξ(q, x)dσ(x)

solving the ∂̄-equation
∂z̄P(ϕ) = ϕ

and the Beurling operator (a Calderón–Zygmund type singular integral operator)

S(ϕ)(q) = ∂zP(ϕ)(q) = − 1

π
P.V .

∫
Ω

ϕ(x)∂z(q)ξ(q, x)dσ(x).

For every k ∈ Z+ and 0 < α < 1,

P : C(k,α)(Ω) → C(k+1,α)(Ω) and S : C(k,α)(Ω) → C(k,α)(Ω)

are bounded linear operators. (In S , we use a bounded linear extension operator

C(k,α)(Ω) → C
(k,α)
0 (Ω′) with Ω ⋐ Ω′ ⋐ X .) In any local holomorphic coordinate,

they differ from the standard operators on C by a smoothing operator.
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Proof of the mapping theorem

The proof is inspired by Ahlfors and Bers 1960 who considered the planar case.

We look for a solution of the Beltrami equation fz̄ = µfz on Ω in the form

f = f (µ) = z |Ω + P(ϕ), ϕ ∈ C(k,α)(Ω).

Thus, ϕ = 0 corresponds to f (0) = z |Ω.

We have

fz̄ = ∂z̄P(ϕ) = ϕ, fz = 1+ ∂zP(ϕ) = 1+ S(ϕ).

Inserting in the Beltrami equation fz̄ = µfz gives

ϕ = µ(S(ϕ) + 1) = µS(ϕ) + µ ⇐⇒ (I − µS)ϕ = µ.
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Proof of the mapping theorem, 2

Assuming that ∥µS∥ ≤ ∥µ∥(k,α)∥S∥ < 1, the operator I − µS is invertible on

C(k,α)(Ω), with the bounded inverse

Θ(µ) = (I − µS)−1 =
∞

∑
j=0

(µS)j .

For such µ, the equation (I − µS)ϕ = µ has the unique solution ϕ = Θ(µ)µ,
and hence the Beltrami equation fz̄ = µfz has the solution

f (µ) = z |Ω + P(Θ(µ)µ) ∈ C(k+1,α)(Ω).

It follows that f (µ) is analytic in µ.

If µ is close to 0 then f (µ) : Ω → C is a Jµ-holomorphic immersion. Lifting
f (µ) with respect to the immersion z : X → C gives (Jµ, J0)-biholomorphisms
Φµ : Ω → Φµ(Ω) with z ◦ Φµ = fµ and Φ0 the identity map on Ω.
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The ∂̄-equation for a family of complex structures

Theorem (main)

Assume that (X , J) is an open Riemann surface and Ω ⋐ X is a relatively

compact domain with C(k+1,α) boundary for some k ∈ Z+ and 0 < α < 1.

For µ ∈ C(k,α)(Ω,D) let Jµ denote the associated complex structure on Ω,
with J0 = J |Ω. For c > 0 set

Bc = {µ ∈ C(k,α)(Ω) : ∥µ∥k,α < c}.

There exists c > 0 such that for any map

Bc ∋ µ 7→ βµ ∈ Γ(k,α)(Ω,T
∗(0,1)
Jµ

Ω)

of class Cl , l ∈ {0, 1, . . . ,∞,ω}, there is a function f ∈ Cl ,(k+1,α)(Bc × Ω)
such that for every µ ∈ Bc the function fµ = f (µ, · ) : Ω → C satisfies

∂̄Jµ fµ = βµ.
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Proof, 1

Let z : X → C be a J-holomorphic immersion. By the mapping theorem, there is
c > 0 and a function h : Bc × Ω → C such that for every µ ∈ Bc ,

hµ = h(µ, · ) : Ω → C

is a Jµ-holomorphic immersion of class C(k+1,α)(Ω), analytic in µ, with h0 = z . The

differentials dhµ and dhµ = dhµ span the bundles T
∗(1,0)
Jµ

(X ) and T
∗(0,1)
Jµ

(X ).

We shall express the equation ∂̄Jµ
fµ = βµ as a nonhomogeneous Beltrami equation.

For µ ∈ Bc we can uniquely express any complex 1-form β on Ω as

β = Adz + Bdz̄ = Aµdhµ + Bµdhµ.

We now express Aµ and Bµ in terms of the functions A,B, µ, and

gµ := (hµ)z ∈ C(k,α)(Ω), gµ ̸= 0.
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Proof, 2

We have that
dhµ = (hµ)z dz + (hµ)z̄ dz̄ = gµ dz + µgµ dz̄ ,

where the second identity follows from (hµ)z̄ = µ(hµ)z .

Hence

Adz + Bdz̄ = Aµdhµ + Bµdhµ

= Aµ(gµdz + µgµdz̄) + Bµ(µgµ dz + gµ dz̄)

= (Aµgµ + Bµµgµ)dz + (Aµµgµ + Bµgµ)dz̄ .

Equating the coefficients gives

A = Aµgµ + Bµµgµ, B = Aµµgµ + Bµgµ.

Solving these equations on Aµ and Bµ we obtain

Aµ =
A− µ̄B

(1− |µ|2)gµ
, Bµ =

B − µA

(1− |µ|2)gµ
.
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Proof, 3

For the 1-form df = fzdz + fz̄dz̄ = fhµ
dhµ + fhµ

dhµ we have

A = fz , B = fz̄ , Aµ = fhµ
, Bµ = fhµ

.

Inserting these quantities in the above expression for Bµ shows that the
nonhomogeneous Cauchy–Riemann equation

∂̄Jµ
f = uµdhµ ⇐⇒ fhµ

=
fz̄ − µfz

(1− |µ|2)gµ
= uµ

is equivalent to the nonhomogeneous Beltrami equation

fz̄ − µfz = (1− |µ|2)gµ uµ. (1)

Note that the right hand side is of class Cl ,(k,α) on Bc × Ω.

Let P and S be the Cauchy–Green and the Beurling operator associated to the
immersion z : X → C.
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Proof, 4

We look for a solution of (1) in the form

f = f (µ) = P(ϕ)

with ϕ ∈ C(k,α)(Ω) to be determined.

Inserting fz̄ = P(ϕ)z̄ = ϕ and fz = P(ϕ)z = S(ϕ) into (1) gives

fz̄ − µfz = (I − µS)ϕ = (1− |µ|2)gµ uµ.

For ∥µ∥k,α small enough the operator I − µS is invertible and we obtain

ϕ = ϕµ = (I − µS)−1
(
(1− |µ|2)gµ uµ

)
.

Since (I − µS)−1 ∈ Lin(Ck,α(Ω)) is analytic in µ and

(1− |µ|2)gµ uµ ∈ Cl ,(k,α)(Bc × Ω), the map (µ, x) 7→ ϕµ(x) belongs to

Cl ,(k,α)(Bc × Ω). Finally, the solution of (1) is

fµ = P(ϕµ),

and the map (µ, x) → fµ(x) belongs to Cl ,(k+1,α)(Bc × Ω).
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Solution of the global ∂̄-equation in families

Corollary

Assume that

B is a paracompact Hausdorff space if l = 0 and a Cl manifold if l ∈ N,

X is a smooth open orientable surface, and

{Jb}b∈B is a family of complex structures of class Cl ,(k,α) on a smooth open
orientable surface X , where l , k ∈ Z+, l ≤ k + 1, 0 < α < 1.

Given a family {βb}b∈B of (0, 1)-forms βb ∈ Γ(X ,T
∗(0,1)
Jb

X ) of class Cl ,(k,α), there is

a function f : B ×X → C of class Cl ,(k+1,α) satisfying

∂̄Jb f (b, · ) = βb on X for every b ∈ B.

The condition l ≤ k + 1 in the corollary is due to the use of the Runge approximation
theorem for fibrewise holomorphic functions on families of open Riemann surfaces,
which was proved in my paper Runge and Mergelyan theorems on families of open
Riemann surfaces (2024).
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Vanishing of Dolbeault cohomology

Assume that B, X , and J = {Jb}b∈B are as above, where J is of class Cl ,(k,α) for
some 0 ≤ l ≤ k + 1 and 0 < α < 1. Denote by O the sheaf of germs of J-holomorphic
functions f of class Cl on Z = B ×X .

Theorem
Hq(Z ,O) = 0 for all q = 1, 2, . . ..

Proof. Consider the sequence of homomorphisms of sheaves of abelian groups

0 −→ O ↪−→ Cl ,(k+1,α) ∂̄−→ C
l ,(k,α)
(0,1)

−→ 0

where ∂̄ equals ∂̄Jb on Zb = (X , Jb) for every b ∈ B. By the main theorem, the
sequence is exact. The second and the third sheaf are fine sheaves, so their
cohomology groups of order ≥ 1 vanish. It follows that

H1(Z ,O) = Γ
(
Z ,C

l ,(k,α)
(0,1)

)
/∂̄ Γ

(
Z ,Cl ,(k+1,α)) = 0

by the Corollary, and Hq(Z ,O) = 0 for q ≥ 2.
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The Oka principle for line bundles on families

Let B, X and J = {Jb}b∈B be as above. Denote by

Pic(Z ) ∼= H1(Z ,O∗)

the set of isomorphism classes of fibrewise holomorphic line bundles on
Z = B × X . We have the following Oka principle.

Theorem
Every topological complex line bundle on Z = B × X is isomorphic to a
fibrewise holomorphic line bundle, and any two fibrewise holomorphic line
bundles on Z which are topologically isomorphic are also isomorphic as
fibrewise holomorphic line bundles. Furthermore,

Pic(Z ) ∼= H2(Z ,Z).
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Proof

Let σ(f ) = e2πıf . Consider the following commutative diagram:

0 −→ Z ↪−→ O
σ−→ O∗ −→ 1y y y

0 −→ Z ↪−→ C
σ−→ C∗ −→ 1

Since C is a fine sheaf, we have Hq(Z ,C) = 0 for all q ∈ N. We proved that
Hq(Z ,O) = 0 for all q ∈ N. Hence, the relevant part of the associated long exact
sequence of cohomology groups gives

0 −→ H1(Z ,O∗) −→ H2(Z ;Z) −→ 0y ∥∥
0 −→ H1(Z ,C∗) −→ H2(Z ;Z) −→ 0

Thus, all arrows in the central square are isomorphisms. Since Pic(Z ) ∼= H1(Z ,O∗)
and H1(Z ,C∗) is the set of isomorphisms classes of topological line bundles on Z , the
theorem follows.
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