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Abstract

We develop the existence and approximation theory for holomorphic maps from
families of complex structures on smooth open surfaces to Oka manifolds.

Along the way, we prove Runge and Mergelyan approximation theorems and
Weierstrass interpolation theorem on families of open Riemann surfaces.

As an application, we construct families of directed holomorphic immersions
and conformal minimal immersions to Euclidean spaces for a given family of
conformal structures on a smooth oriented surface.
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Almost complex structures

An almost complex structure on a smooth orientable surface X is an
endomorphism J of the tangent bundle TX satisfying J2 = −Id . Every such J
is determined by the choice of an orientation and a Riemannian metric on X .

A differentiable function f : X → C is said to be J-holomorphic if the
Cauchy–Riemann equation dfx ◦ Jx =

√
−1 dfx holds for every x ∈ X .

Assuming that J is of Hölder class C(k,α) for some k ∈ Z+ and 0 < α < 1,
there is an atlas {(Ui , φi )} of open sets Ui ⊂ X with

⋃
i Ui = X and

J-holomorphic charts φi : Ui → φi (Ui ) ⊂ C of class C(k+1,α)(Ui ).
Hence, J determines on X the structure of a Riemann surface, denoted (X , J),
which is Ck+1 compatible with the smooth structure on X .

On a smooth manifold X of dimension 2n ≥ 4, the same is true if J is formally
integrable and of Hölder class C(k,α) for some k = 1, 2, . . . and 0 < α < 1
(Newlander and Nirenberg 1957, Nijenhuis and Woolf 1963, Kohn 1963,
Malgrange 1969, Webster 1989,...).



Runge sets, parameter spaces

Let X be a smooth, connected, open, orientable surface.

A compact set K in X is said to be Runge if X \K has no holes.
Such a set is holomorphically convex in the Riemann surface (X , J) for any
complex structure J on X .

Let l ∈ Z+ = {0, 1, 2, . . .}. We let T (the parameter space) be a paracompact
Hausdorff space if l = 0, and a manifold of class Cl if l > 0.

We say that a function f : T × X → C is of class Cl ,k if it has l derivatives in
the T variable followed by k derivatives in the X variable, and they are
continuous. The same definition applies to related objects.



Motivation and the main problem

Assume that X is a smooth orientable surface, T is a topological space, (Y , JY ) is a
complex manifold, and ft : X → Y (t ∈ T ) is a continuous family of smooth
immersions such that ft (X ) ⊂ Y is a complex curve in Y for every t ∈ T .

Then, Jt = f ∗t JY is a continuous family of complex structure on X such that
ft : X → Y is (Jt , JY )-holomorphic.

Problem

Can this be reversed? Given a continuous family {Jt}t∈T of complex structures
on X , is there a continuous family ft : X → Y (t ∈ T ) of nonconstant
(Jt , JY )-holomorphic maps? Which other properties can be imposed?

Is every family of continuous maps ft : Xt → Y (t ∈ T ) homotopic to a family
of nonconstant holomorphic maps?

Assuming that ft is (Jt , JY )-holomorphic on an open neighbourhood of a Runge
compact K ⊂ X , can we approximate it on T ×K by a family of holomorphic
maps Ft : Xt → Y ? What about interpolation?



Enter Oka manifolds

The answer is negative in general even for a single map X → Y . For example, by
Picard’s theorem there is no nonconstant holomorphic map C→ C \ {0, 1}.

A complex manifold X is said to be a Stein manifold if X is biholomorphic to a closed
complex submanifold of an affine space CN . By Behnke and Stein 1949, every open
Riemann surface is a Stein manifold (a closed smooth complex curve in C3).

A complex manifold Y is called an Oka manifold if maps X → Y from any Stein
manifold X satisfy all forms of the Oka principle:

(a) Every continuous map f : X → Y is homotopic to a holomorphic map.

(b) If in addition f is holomorphic on a compact O(X )-convex subset K ⊂ X and on
a closed complex subvariety X ′ of X , then the homotopy from f to a
holomorphic map F : X → Y can be chosen to consist of maps with the same
properties which approximate f on K and agree with f on X ′.

(c) A similar statement holds for families of maps depending continuously on a
parameter in a compact Hausdorff space.



Examples and properties of Oka manifolds

Oka–Weil–Cartan, 1936–1951 Cn is Oka; Oka 1939 C∗ is Oka.

Grauert 1957 Every complex homogeneous manifold is Oka.

Gromov 1989 Every elliptic complex manifold. Detailed proofs and extensions by
J. Prezelj and F., 2000-2002.

F., 2005-9 A complex manifold Y is an Oka manifold iff it satisfies the

Convex Approximation Property (CAP): Every holomorphic map f : K → Y
from a compact convex set K ⊂ Cn is a uniform limit of entire maps Cn → Y .

The class of Oka manifolds is invariant under holomorphic fibre bundle
projections with Oka fibres; in particular, under covering maps.

Kusakabe 2021 If a complex manifold Y is a union of Zariski open Oka domains,
then Y is Oka.

Kusakabe 2024 The complement Cn \K of any compact polynomialy convex set
K ⊂ Cn for n > 1 is Oka. The same holds if Cn is replaced by any Stein
manifold Y with Varolin’s density property.



The Oka principle for families of open Riemann surfaces

Assume the following:

T is a local Euclidean neighbourhood retract if l = 0 (this holds in particular if
X is an at most countable locally compact CW-complex of finite dimension),

and a manifold of class Cl if l > 0.

X is a smooth open surface.

{Jt}t∈T is a family of complex structures on X of class Cl ,(k,α)(T ×X ) for some
k ∈ Z+, 0 ≤ l ≤ k + 1, 0 < α < 1.

K ⊂ T × X is a closed subset whose fibres Kt = {x ∈ X : (t, x) ∈ K} are
compact Runge sets which are upper semicontinuous in t ∈ T .

Y is an Oka manifold endowed with a distance function distY .

f : T × X → Y is a continuous map, and there is an open set U ⊂ T × X
containing K such that ft = f (t, · ) : X → Y is Jt -holomorphic on Ut for every
t ∈ T . (Such f is said to be X -holomorphic on U.)



The main theorem

Theorem

Given a continuous function ε : T → (0,+∞), there are a neighbourhood
U ′ ⊂ U of K and a homotopy fs : T × X → Y (s ∈ I = [0, 1]) satisfying:

(i) f0 = f .

(ii) fs(t, · ) : X → Y is Jt -holomorphic on U ′t ⊃ Kt for every t ∈ T , s ∈ I .

(iii) supx∈Kt
distY (fs(t, x), f (t, x)) < ε(t) for every t ∈ T and s ∈ I .

(iv) The map F = f1 : T × X → Y is X -holomorphic.

(v) If Q is a closed subset of T and Ut = X for all t ∈ Q, then fs(t, · ) can be
chosen independent of s ∈ I for every t ∈ Q, so F = f on Q × X .

(vi) If Y = C then T can be any Hausdorff paracompact space, so the
conclusion holds for the universal family of complex structures on X .



The main theorem, the case l > 0

Theorem (continued)

Assume in addition that the following hold:

T is a manifold of class Cl , l > 0, and Q is a closed Cl submanifold of T .

The family {Jt}t∈T is of class Cl ,(k,α) with l ≤ k + 1.

The map f : T × X → Y is X -holomorphic on a neighbourhood U of K and
f |U ∈ Cl ,0(U,Y ).

Then, f |U ∈ Cl ,k+1(U,Y ) and there is a homotopy fs : T ×X → Y (s ∈ I ) satisfying
conditions (i)–(iv) such that fs approximates f in the fine Cl ,k+1-topology on K for
every s ∈ I , and F = f1 : T × X → Y is X -holomorphic and of class Cl ,k+1.

The analogous results holds for the family (X × Z , Jt × JZ ) where (X , Jt ) are
Riemann surfaces as above and (Z , JZ ) is a Stein manifold.



Complex structures and the Beltrami equation

The proof uses Oka theory and an extension of a theorem by Ahlfors and Bers 1960
on quasiconformal maps C→ C to domains in open Riemann surfaces.

A Riemannian metric g on a surface X determines a unique conformal structure, and
hence a complex structure J = Jg if X is oriented.

In a local coordinate z = x + ıy (ı =
√
−1) on U ⊂ X we have

g = Edx2 + 2Fdxdy + Gdy2 = λ|dz + µdz̄ |2

where λ > 0 and µ : U → D = {|ζ| < 1} is the Beltrami coefficient. Then,

[J ] =
1√

EG − F 2

(
−F −G
E F

)
=

(
−b −c

(b2 + 1)/c b

)
where

δ = EG − F 2 > 0, b = F/
√

δ, c = G/
√

δ > 0,

µ =
1− c + ıb
1 + c + ıb

.



Isothermal coordinates

Let U ⊂ X be an open set. A local diffeomorphism f : U → C is conformal
from the g -structure on X to the standard conformal structure on C iff

g = h|df |2 holds for a positive function h > 0.

A chart f with this property is said to be isothermal for g . Such f is
J-holomorphic or J-antiholomorphic. Assume that f is orientation preserving,
which amounts to |fz | > |fz̄ |. Note that

|df |2 = |fzdz + fz̄dz̄ |2 = |fz |2 ·
∣∣∣dz + fz̄

fz
dz̄
∣∣∣2.

A comparison with
g = λ|dz + µdz̄ |2

shows that f is isothermal iff it satisfies the Beltrami equation

fz̄ = µfz .



A version of Ahlfors–Bers–Hamilton theorem

Assume that (X , J0) is an open Riemann surface and z : X → C is a holomorphic

immersion. Given a domain Ω b X and a function µ ∈ C(k,α)(Ω, D), we denote by Jµ

the associated complex structure on Ω, with J0 the initial complex structure on X .

Theorem

Let Ω be a smoothly bounded relatively compact domain in X . For any k ∈ Z+ and
0 < α < 1 there is a constant c = c(k, α) > 0 such that for every µ ∈ C(k,α)(Ω, D)

with ‖µ‖k,α < c there is function f = f (µ) ∈ C(k+1,α)(Ω) solving the Beltrami
equation fz̄ = µfz , depending smoothly on µ, with f (0) = z |Ω.

Corollary

For every complex structure J of class Ck,α on Ω (k ∈ Z+, 0 < α < 1) which is
sufficiently close to J0 there is a (J, J0)-biholomorphic map ΦJ : Ω→ ΦJ (Ω) ⊂ X of
class Ck+1,α depending smoothly on J, with ΦJ0 the identity on Ω.



The Cauchy–Green formula

Let X be an open Riemann surface and z = u+ ıv : X → C a holomorphic immersion.
There is a meromorphic 1-form on X × X of the form

ω(q, x) = ξ(q, x)dz(x) for q, x ∈ X

which is holomorphic on X × X \DX and for each q ∈ X , ω(q, · ) has a simple pole
at q with residue 1. In a neighbourhood U ⊂ X × X of DX ,

ξ(q, x) =
1

z(x)− z(q)
+ h(q, x), h holomorphic on U.

Given a relatively compact smoothly bounded domain Ω b X , f ∈ C1(Ω) and q ∈ Ω,
we have the Cauchy–Green formula

f (q) =
1

2πı

∫
x∈bΩ

f (x)ω(q, x)− 1

2πı

∫
x∈Ω

∂f (x) ∧ω(q, x)

=
1

2πı

∫
x∈bΩ

f (x) ξ(q, x)dz(x)− 1

π

∫
x∈Ω

fz̄ (x)ξ(q, x)dσ(x).



The Cauchy–Green and Beurling operators

We have the Cauchy–Green operator

P(φ)(q) = − 1

π

∫
x∈Ω

φ(x)ξ(q, x)dσ(x)

satisfying
∂z̄P(φ) = φ

and the Beurling operator

S(φ)(q) = ∂zP(φ)(q) = −
1

π

∫
Ω

φ(x)∂z(q)ξ(q, x)dσ(x).

For every k ∈ Z+ and 0 < α < 1,

P : Ck,α(Ω)→ Ck+1,α(Ω) and S : Ck,α(Ω)→ Ck,α(Ω)

are bounded linear operators.



The outline of proof

The proof is inspired by Ahlfors and Bers 1960.

We look for a solution of the Beltrami equation fz̄ = µfz on Ω in the form

f = f (µ) = z |Ω + P(φ), φ ∈ C(k,α)(Ω).

Here, P is the Cauchy operator associated to a Cauchy kernel on (X , J0).
Thus, φ = 0 corresponds to f (0) = z |Ω. We have

fz̄ = ∂z̄P(φ) = φ, fz = 1 + ∂zP(φ) = 1 + S(φ),

where S is the Beurling operator associated to P.

Inserting in the Beltrami equation fz̄ = µfz gives

φ = µ(S(φ) + 1) = µS(φ) + µ ⇐⇒ (I − µS)φ = µ.



The outline of proof

Assuming that ‖µS‖ ≤ ‖µ‖(k,α)‖S‖ < 1, the operator I − µS is invertible on

C(k,α)(Ω), with the bounded inverse

Θ(µ) = (I − µS)−1 =
∞

∑
j=0

(µS)j .

For such µ, the equation for φ has the unique solution φ = Θ(µ)µ, and hence
the Beltrami equation fz̄ = µfz has the solution

f (µ) = z |Ω + P(Θ(µ)µ) ∈ C(k+1,α)(Ω).

It follows that f (µ) is smooth (analytic) in µ.

If µ is close to 0 then f (µ) : Ω→ C is a Jµ-holomorphic immersion. Lifting
f (µ) with respect to the immersion z : X → C gives (Jµ, J0)-biholomorphisms
Φµ : Ω→ Φµ(Ω) with z ◦Φµ = fµ and Φ0 the identity map on Ω.



The idea of proof of the main theorem

Assume that {Jt}t∈T is a family of complex structures on X as in the main theorem,
K ⊂ T × X is a closed set with compact Runge fibres Kt , and f : T × X → Y is a
map of class Cl ,0(T × X ) such that ft = f (t, · ) is Jt -holomorphic on a
neighbourhood Ut ⊃ Kt for every t ∈ T .

Fix t0 ∈ T . Pick a smoothly bounded domain Ω b X containing Kt0 . There is a
neighbourhood T0 ⊂ T of t0 and a family of (Jt , Jt0 )-biholomorphic maps

Φt : Ω→ Φt (Ω) of class Cl ,(k+1,α)(T0 ×Ω). We may assume that Kt ⊂ Ω for all
t ∈ T0. Then, the map ht = ft ◦Φ−1t : Φt (Ω)→ Y is Jt0 -holomorphic on a
neighbourhood of the compact Runge set K̃t = Φt (Kt ) for t ∈ T0.

We may assume that T0 ⊂ Rn ⊂ Cn, so T0 × X is a Levi-flat submanifold of
Cn × (X , Jt0 ) fibered over T0. The compact subset K̃ with fibres K̃t (t ∈ T0) is
O(Cn × X )-convex. Since Y is an Oka manifold, we can approximate the maps ht
uniformly on K̃t by Jt0 -holomorphic maps h̃t : X → Y of class Cl in t ∈ T0.
Then, f̃t = h̃t ◦Φt : Ω→ Y is Jt -holomorphic for every t ∈ T0.

This is a step in an inductive construction which leads in the limit to an
X -holomorphic map F : T × X → Y of class Cl ,k+1.



Directed holomorphic immersions

A connected projective manifold Y ⊂ CPn−1 determines the punctured
complex cone

A = A(Y ) = {(z1, . . . , zn) ∈ Cn
∗ : [z1 : · · · : zn] ∈ Y }.

A is smooth and connected, A = A∪ {0} ⊂ Cn is an algebraic subvariety of
Cn, and A is an Oka manifold if and only if Y = P(A) is an Oka manifold.

This holds in particular if Y ⊂ Pn−1 is a smooth uniformly rational variety, for
such are algebraically elliptic and hence Oka (Arzhantsev, Kaliman,
Zaidenberg).

Let X be an open Riemann surface. A holomorphic immersion h : X → Cn is
said to be directed by A, or an A-immersion, if its complex derivative with
respect to any local holomorphic coordinate on X assumes values in A.



Directed holomorphic immersions

Clearly, this holds iff the holomorphic map f = dh/θ : X → Cn assume values
in A, where θ is any nowhere vanishing holomorphic 1-form on X .

Conversely, a holomorphic map f : X → A satisfying the period vanishing
conditions ∫

C
f θ = 0 for all closed curves C ⊂ X

integrates to a holomorphic A-immersion h : X → Cn given by

h(x) = v +
∫ x

x0
f θ, x ∈ X

for any x0 ∈ X and v ∈ Cn.



Families of directed holomorphic immersions

Theorem

Assume that

A ⊂ Cn
∗ is a smooth Oka cone,

X , T , and {Jt}t∈T are as in the main theorem, and

{θt}t∈T is a family of nowhere vanishing Jt -holomorphic 1-forms on X .

Given a continuous map f0 : T ×X → A, there is map h : T ×X → Cn of class
Cl ,k+1 such that ht = h(t, · ) is a Jt -holomorphic A-immersion for every t ∈ T ,
and the map f : T × X → A defined by f (t, · ) = dht/θt is homotopic to f0.

For A = Cn
∗ we obtain families of Jt -holomorphic immersions X → Cn.

The special case n = 1 gives the Gunning–Narasimhan theorem for families.



Holomorphic null curves and conformal minimal immersions

A case of major interest is the punctured null quadric

A =
{
(z1, . . . , zn) ∈ Cn

∗ : z21 + z22 + · · ·+ z2n = 0
}

, n ≥ 3.

Holomorphic A-immersions are called holomorphic null curves in Cn.

The real and imaginary part of a holomorphic null immersion X → Cn are conformal
harmonic (minimal) immersions X → Rn. Conversely, a conformal minimal immersion
X → Rn is locally the real part of a holomorphic null curve.

Corollary

Given a continuous map f0 : T × X → A, there is a map F : T × X → Rn of class
Cl ,k+1 such that Ft = F (t, · ) : (X , Jt )→ Rn is a conformal minimal immersion with
given flux for every t ∈ T , and the map

f : T × X → A, f (t, · ) = ∂JtFt/θt for all t ∈ T

is homotopic to f0. (Vanishing flux corresponds to holomorphic null curves in Cn.)
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